
STATA TIME-SERIES
REFERENCE MANUAL

RELEASE 14

®

A Stata Press Publication
StataCorp LP
College Station, Texas

® Copyright c© 1985–2015 StataCorp LP
All rights reserved
Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-169-2
ISBN-13: 978-1-59718-169-3

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright c© 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14 . Statistical Software. College Station, TX: StataCorp LP.

Contents

intro . Introduction to time-series manual 1
time series . Introduction to time-series commands 2

arch Autoregressive conditional heteroskedasticity (ARCH) family of estimators 12
arch postestimation . Postestimation tools for arch 46
arfima Autoregressive fractionally integrated moving-average models 52
arfima postestimation . Postestimation tools for arfima 71
arima . ARIMA, ARMAX, and other dynamic regression models 79
arima postestimation . Postestimation tools for arima 103

corrgram . Tabulate and graph autocorrelations 112
cumsp . Cumulative spectral distribution 120

dfactor . Dynamic-factor models 124
dfactor postestimation . Postestimation tools for dfactor 142
dfgls . DF-GLS unit-root test 148
dfuller . Augmented Dickey–Fuller unit-root test 155

estat acplot Plot parametric autocorrelation and autocovariance functions 161
estat aroots . Check the stability condition of ARIMA estimates 166
estat sbknown . Test for a structural break with a known break date 172
estat sbsingle Test for a structural break with an unknown break date 177

fcast compute . Compute dynamic forecasts after var, svar, or vec 186
fcast graph . Graph forecasts after fcast compute 195
forecast . Econometric model forecasting 199
forecast adjust . Adjust a variable by add factoring, replacing, etc. 213
forecast clear . Clear current model from memory 217
forecast coefvector . Specify an equation via a coefficient vector 218
forecast create . Create a new forecast model 223
forecast describe . Describe features of the forecast model 225
forecast drop . Drop forecast variables 231
forecast estimates . Add estimation results to a forecast model 233
forecast exogenous . Declare exogenous variables 244
forecast identity . Add an identity to a forecast model 246
forecast list . List forecast commands composing current model 248
forecast query . Check whether a forecast model has been started 250
forecast solve . Obtain static and dynamic forecasts 251

irf Create and analyze IRFs, dynamic-multiplier functions, and FEVDs 267
irf add . Add results from an IRF file to the active IRF file 272
irf cgraph Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs 274
irf create . Obtain IRFs, dynamic-multiplier functions, and FEVDs 279
irf ctable Combined tables of IRFs, dynamic-multiplier functions, and FEVDs 305
irf describe . Describe an IRF file 311
irf drop . Drop IRF results from the active IRF file 315
irf graph . Graphs of IRFs, dynamic-multiplier functions, and FEVDs 318
irf ograph Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs 325
irf rename . Rename an IRF result in an IRF file 331

i

ii Contents

irf set . Set the active IRF file 333
irf table . Tables of IRFs, dynamic-multiplier functions, and FEVDs 336

mgarch . Multivariate GARCH models 342
mgarch ccc Constant conditional correlation multivariate GARCH models 348
mgarch ccc postestimation . Postestimation tools for mgarch ccc 363
mgarch dcc Dynamic conditional correlation multivariate GARCH models 368
mgarch dcc postestimation . Postestimation tools for mgarch dcc 383
mgarch dvech . Diagonal vech multivariate GARCH models 388
mgarch dvech postestimation Postestimation tools for mgarch dvech 401
mgarch vcc Varying conditional correlation multivariate GARCH models 407
mgarch vcc postestimation . Postestimation tools for mgarch vcc 422
mswitch . Markov-switching regression models 427
mswitch postestimation . Postestimation tools for mswitch 453

newey . Regression with Newey–West standard errors 463
newey postestimation . Postestimation tools for newey 468

pergram . Periodogram 474
pperron . Phillips–Perron unit-root test 482
prais . Prais–Winsten and Cochrane–Orcutt regression 487
prais postestimation . Postestimation tools for prais 499
psdensity Parametric spectral density estimation after arima, arfima, and ucm 502

rolling . Rolling-window and recursive estimation 513

sspace . State-space models 521
sspace postestimation . Postestimation tools for sspace 545

tsappend . Add observations to a time-series dataset 553
tsfill . Fill in gaps in time variable 560
tsfilter . Filter a time-series, keeping only selected periodicities 565
tsfilter bk . Baxter–King time-series filter 584
tsfilter bw . Butterworth time-series filter 593
tsfilter cf . Christiano–Fitzgerald time-series filter 602
tsfilter hp . Hodrick–Prescott time-series filter 611
tsline . Plot time-series data 618
tsreport Report time-series aspects of a dataset or estimation sample 624
tsrevar . Time-series operator programming command 631
tsset . Declare data to be time-series data 634
tssmooth . Smooth and forecast univariate time-series data 651
tssmooth dexponential . Double-exponential smoothing 653
tssmooth exponential . Single-exponential smoothing 660
tssmooth hwinters . Holt–Winters nonseasonal smoothing 669
tssmooth ma . Moving-average filter 677
tssmooth nl . Nonlinear filter 683
tssmooth shwinters . Holt–Winters seasonal smoothing 686

ucm . Unobserved-components model 696
ucm postestimation . Postestimation tools for ucm 725

var intro . Introduction to vector autoregressive models 732
var . Vector autoregressive models 739
var postestimation . Postestimation tools for var 752
var svar . Structural vector autoregressive models 756

Contents iii

var svar postestimation . Postestimation tools for svar 775
varbasic . Fit a simple VAR and graph IRFs or FEVDs 778
varbasic postestimation . Postestimation tools for varbasic 783
vargranger Perform pairwise Granger causality tests after var or svar 787
varlmar Perform LM test for residual autocorrelation after var or svar 793
varnorm . Test for normally distributed disturbances after var or svar 797
varsoc . Obtain lag-order selection statistics for VARs and VECMs 803
varstable . Check the stability condition of VAR or SVAR estimates 809
varwle . Obtain Wald lag-exclusion statistics after var or svar 815
vec intro . Introduction to vector error-correction models 821
vec . Vector error-correction models 840
vec postestimation . Postestimation tools for vec 865
veclmar . Perform LM test for residual autocorrelation after vec 869
vecnorm . Test for normally distributed disturbances after vec 873
vecrank . Estimate the cointegrating rank of a VECM 877
vecstable . Check the stability condition of VECM estimates 886

wntestb . Bartlett’s periodogram-based test for white noise 891
wntestq . Portmanteau (Q) test for white noise 896

xcorr . Cross-correlogram for bivariate time series 899

Glossary . 904

Subject and author index . 913

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[D] Stata Data Management Reference Manual
[FN] Stata Functions Reference Manual
[G] Stata Graphics Reference Manual
[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[I] Stata Glossary and Index

[M] Mata Reference Manual

v

Title

intro — Introduction to time-series manual

Description Also see

Description
This manual documents Stata’s time-series commands and is referred to as [TS] in cross-references.

After this entry, [TS] time series provides an overview of the ts commands. The other parts of
this manual are arranged alphabetically. If you are new to Stata’s time-series features, we recommend
that you read the following sections first:

[TS] time series Introduction to time-series commands
[TS] tsset Declare a dataset to be time-series data

Stata is continually being updated, and Stata users are always writing new commands. To ensure
that you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual

1

Title

time series — Introduction to time-series commands

Description Remarks and examples References Also see

Description
The Time-Series Reference Manual organizes the commands alphabetically, making it easy to find

individual command entries if you know the name of the command. This overview organizes and
presents the commands conceptually, that is, according to the similarities in the functions that they
perform. The table below lists the manual entries that you should see for additional information.

Data management tools and time-series operators.
These commands help you prepare your data for further analysis.

Univariate time series.
These commands are grouped together because they are either estimators or filters designed for
univariate time series or preestimation or postestimation commands that are conceptually related
to one or more univariate time-series estimators.

Multivariate time series.
These commands are similarly grouped together because they are either estimators designed for
use with multivariate time series or preestimation or postestimation commands conceptually related
to one or more multivariate time-series estimators.

Forecasting models.
These commands work as a group to provide the tools you need to create models by combining
estimation results, identities, and other objects and to solve those models to obtain forecasts.

Within these three broad categories, similar commands have been grouped together.

Data management tools and time-series operators
[TS] tsset Declare data to be time-series data
[TS] tsfill Fill in gaps in time variable
[TS] tsappend Add observations to a time-series dataset
[TS] tsreport Report time-series aspects of a dataset or estimation

sample
[TS] tsrevar Time-series operator programming command
[TS] rolling Rolling-window and recursive estimation
[D] datetime business calendars User-definable business calendars

2

time series — Introduction to time-series commands 3

Univariate time series

Estimators
[TS] arfima Autoregressive fractionally integrated moving-average

models
[TS] arfima postestimation Postestimation tools for arfima
[TS] arima ARIMA, ARMAX, and other dynamic regression models
[TS] arima postestimation Postestimation tools for arima
[TS] arch Autoregressive conditional heteroskedasticity (ARCH)

family of estimators
[TS] arch postestimation Postestimation tools for arch
[TS] mswitch Markov-switching regression models
[TS] mswitch postestimation Postestimation tools for mswitch
[TS] newey Regression with Newey–West standard errors
[TS] newey postestimation Postestimation tools for newey
[TS] prais Prais–Winsten and Cochrane–Orcutt regression
[TS] prais postestimation Postestimation tools for prais
[TS] ucm Unobserved-components model
[TS] ucm postestimation Postestimation tools for ucm

Time-series smoothers and filters
[TS] tsfilter bk Baxter–King time-series filter
[TS] tsfilter bw Butterworth time-series filter
[TS] tsfilter cf Christiano–Fitzgerald time-series filter
[TS] tsfilter hp Hodrick–Prescott time-series filter
[TS] tssmooth ma Moving-average filter
[TS] tssmooth dexponential Double-exponential smoothing
[TS] tssmooth exponential Single-exponential smoothing
[TS] tssmooth hwinters Holt–Winters nonseasonal smoothing
[TS] tssmooth shwinters Holt–Winters seasonal smoothing
[TS] tssmooth nl Nonlinear filter

4 time series — Introduction to time-series commands

Diagnostic tools
[TS] corrgram Tabulate and graph autocorrelations
[TS] xcorr Cross-correlogram for bivariate time series
[TS] cumsp Cumulative spectral distribution
[TS] pergram Periodogram
[TS] psdensity Parametric spectral density estimation
[TS] estat acplot Plot parametric autocorrelation and autocovariance functions
[TS] estat aroots Check the stability condition of ARIMA estimates
[TS] dfgls DF-GLS unit-root test
[TS] dfuller Augmented Dickey–Fuller unit-root test
[TS] pperron Phillips–Perron unit-root test
[TS] estat sbknown Test for a structural break with a known break date
[TS] estat sbsingle Test for a structural break with an unknown break date
[R] regress postestimation time series Postestimation tools for regress with time series
[TS] mswitch postestimation Postestimation tools for mswitch
[TS] wntestb Bartlett’s periodogram-based test for white noise
[TS] wntestq Portmanteau (Q) test for white noise

Multivariate time series

Estimators
[TS] dfactor Dynamic-factor models
[TS] dfactor postestimation Postestimation tools for dfactor
[TS] mgarch ccc Constant conditional correlation multivariate GARCH models
[TS] mgarch ccc postestimation Postestimation tools for mgarch ccc
[TS] mgarch dcc Dynamic conditional correlation multivariate GARCH models
[TS] mgarch dcc postestimation Postestimation tools for mgarch dcc
[TS] mgarch dvech Diagonal vech multivariate GARCH models
[TS] mgarch dvech postestimation Postestimation tools for mgarch dvech
[TS] mgarch vcc Varying conditional correlation multivariate GARCH models
[TS] mgarch vcc postestimation Postestimation tools for mgarch vcc
[TS] sspace State-space models
[TS] sspace postestimation Postestimation tools for sspace
[TS] var Vector autoregressive models
[TS] var postestimation Postestimation tools for var
[TS] var svar Structural vector autoregressive models
[TS] var svar postestimation Postestimation tools for svar
[TS] varbasic Fit a simple VAR and graph IRFs or FEVDs
[TS] varbasic postestimation Postestimation tools for varbasic
[TS] vec Vector error-correction models
[TS] vec postestimation Postestimation tools for vec

time series — Introduction to time-series commands 5

Diagnostic tools
[TS] varlmar Perform LM test for residual autocorrelation
[TS] varnorm Test for normally distributed disturbances
[TS] varsoc Obtain lag-order selection statistics for VARs and VECMs
[TS] varstable Check the stability condition of VAR or SVAR estimates
[TS] varwle Obtain Wald lag-exclusion statistics
[TS] veclmar Perform LM test for residual autocorrelation
[TS] vecnorm Test for normally distributed disturbances
[TS] vecrank Estimate the cointegrating rank of a VECM
[TS] vecstable Check the stability condition of VECM estimates

Forecasting, inference, and interpretation
[TS] irf create Obtain IRFs, dynamic-multiplier functions, and FEVDs
[TS] fcast compute Compute dynamic forecasts after var, svar, or vec
[TS] vargranger Perform pairwise Granger causality tests

Graphs and tables
[TS] corrgram Tabulate and graph autocorrelations
[TS] xcorr Cross-correlogram for bivariate time series
[TS] pergram Periodogram
[TS] irf graph Graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf cgraph Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ograph Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf table Tables of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ctable Combined tables of IRFs, dynamic-multiplier functions, and FEVDs
[TS] fcast graph Graph forecasts after fcast compute
[TS] tsline Plot time-series data
[TS] varstable Check the stability condition of VAR or SVAR estimates
[TS] vecstable Check the stability condition of VECM estimates
[TS] wntestb Bartlett’s periodogram-based test for white noise

Results management tools
[TS] irf add Add results from an IRF file to the active IRF file
[TS] irf describe Describe an IRF file
[TS] irf drop Drop IRF results from the active IRF file
[TS] irf rename Rename an IRF result in an IRF file
[TS] irf set Set the active IRF file

6 time series — Introduction to time-series commands

Forecasting models
[TS] forecast Econometric model forecasting
[TS] forecast adjust Adjust a variable by add factoring, replacing, etc.
[TS] forecast clear Clear current model from memory
[TS] forecast coefvector Specify an equation via a coefficient vector
[TS] forecast create Create a new forecast model
[TS] forecast describe Describe features of the forecast model
[TS] forecast drop Drop forecast variables
[TS] forecast estimates Add estimation results to a forecast model
[TS] forecast exogenous Declare exogenous variables
[TS] forecast identity Add an identity to a forecast model
[TS] forecast list List forecast commands composing current model
[TS] forecast query Check whether a forecast model has been started
[TS] forecast solve Obtain static and dynamic forecasts

Remarks and examples
Remarks are presented under the following headings:

Data management tools and time-series operators
Univariate time series

Estimators
Time-series smoothers and filters
Diagnostic tools

Multivariate time series
Estimators
Diagnostic tools

Forecasting models

time series — Introduction to time-series commands 7

We also offer a NetCourse on Stata’s time-series capabilities; see
http://www.stata.com/netcourse/nc461.html.

Data management tools and time-series operators

Because time-series estimators are, by definition, a function of the temporal ordering of the
observations in the estimation sample, Stata’s time-series commands require the data to be sorted and
indexed by time, using the tsset command, before they can be used. tsset is simply a way for you
to tell Stata which variable in your dataset represents time; tsset then sorts and indexes the data
appropriately for use with the time-series commands. Once your dataset has been tsset, you can
use Stata’s time-series operators in data manipulation or programming using that dataset and when
specifying the syntax for most time-series commands. Stata has time-series operators for representing
the lags, leads, differences, and seasonal differences of a variable. The time-series operators are
documented in [TS] tsset.

You can also define a business-day calendar so that Stata’s time-series operators respect the structure
of missing observations in your data. The most common example is having Monday come after Friday
in market data. [D] datetime business calendars provides a discussion and examples.

tsset can also be used to declare that your dataset contains cross-sectional time-series data, often
referred to as panel data. When you use tsset to declare your dataset to contain panel data, you
specify a variable that identifies the panels and a variable that identifies the time periods. Once your
dataset has been tsset as panel data, the time-series operators work appropriately for the data.

tsfill, which is documented in [TS] tsfill, can be used after tsset to fill in missing times with
missing observations. tsset will report any gaps in your data, and tsreport will provide more
details about the gaps. tsappend adds observations to a time-series dataset by using the information
set by tsset. This function can be particularly useful when you wish to predict out of sample after
fitting a model with a time-series estimator. tsrevar is a programmer’s command that provides a
way to use varlists that contain time-series operators with commands that do not otherwise support
time-series operators.

rolling performs rolling regressions, recursive regressions, and reverse recursive regressions.
Any command that stores results in e() or r() can be used with rolling.

Univariate time series

Estimators

The seven univariate time-series estimators currently available in Stata are arfima, arima, arch,
mswitch, newey, prais, and ucm. newey and prais are really just extensions to ordinary linear
regression. When you fit a linear regression on time-series data via ordinary least squares (OLS), if
the disturbances are autocorrelated, the parameter estimates are usually consistent, but the estimated
standard errors tend to be underestimated. Several estimators have been developed to deal with this
problem. One strategy is to use OLS for estimating the regression parameters and use a different
estimator for the variances, one that is consistent in the presence of autocorrelated disturbances, such
as the Newey–West estimator implemented in newey. Another strategy is to model the dynamics of
the disturbances. The estimators found in prais, arima, arch, arfima, and ucm are based on such
a strategy.

prais implements two such estimators: the Prais–Winsten and the Cochrane–Orcutt generalized
least-squares (GLS) estimators. These estimators are GLS estimators, but they are fairly restrictive
in that they permit only first-order autocorrelation in the disturbances. Although they have certain

http://www.stata.com/netcourse/nc461.html

8 time series — Introduction to time-series commands

pedagogical and historical value, they are somewhat obsolete. Faster computers with more memory
have made it possible to implement full information maximum likelihood (FIML) estimators, such
as Stata’s arima command. These estimators permit much greater flexibility when modeling the
disturbances and are more efficient estimators.

arima provides the means to fit linear models with autoregressive moving-average (ARMA)
disturbances, or in the absence of linear predictors, autoregressive integrated moving-average (ARIMA)
models. This means that, whether you think that your data are best represented as a distributed-lag
model, a transfer-function model, or a stochastic difference equation, or you simply wish to apply
a Box–Jenkins filter to your data, the model can be fit using arima. arch, a conditional maximum
likelihood estimator, has similar modeling capabilities for the mean of the time series but can also model
autoregressive conditional heteroskedasticity in the disturbances with a wide variety of specifications
for the variance equation.

arfima estimates the parameters of autoregressive fractionally integrated moving-average (ARFIMA)
models, which handle higher degrees of dependence than ARIMA models. ARFIMA models allow the
autocorrelations to decay at the slower hyperbolic rate, whereas ARIMA models handle processes
whose autocorrelations decay at an exponential rate.

Markov-switching models are used for series that are believed to transition over a finite set
of unobserved states, allowing the process to evolve differently in each state. The transitions occur
according to a Markov process. mswitch estimates the state-dependent parameters of Markov-switching
dynamic regression models and Markov-switching autoregression models.

Unobserved-components models (UCMs) decompose a time series into trend, seasonal, cyclical,
and idiosyncratic components and allow for exogenous variables. ucm estimates the parameters of
UCMs by maximum likelihood. UCMs can also model the stationary cyclical component using the
stochastic-cycle parameterization that has an intuitive frequency-domain interpretation.

Time-series smoothers and filters

In addition to the estimators mentioned above, Stata also provides time-series filters and smoothers.
The Baxter–King and Christiano–Fitzgerald band-pass filters and the Butterworth and Hodrick–Prescott
high-pass filters are implemented in tsfilter; see [TS] tsfilter for an overview.

Also included are a simple, uniformly weighted, moving-average filter with unit weights; a
weighted moving-average filter in which you can specify the weights; single- and double-exponential
smoothers; Holt–Winters seasonal and nonseasonal smoothers; and a nonlinear smoother. Most of
these smoothers were originally developed as ad hoc procedures and are used for reducing the noise in
a time series (smoothing) or forecasting. Although they have limited application for signal extraction,
these smoothers have all been found to be optimal for some underlying modern time-series models;
see [TS] tssmooth.

Diagnostic tools

Stata’s time-series commands also include several preestimation and postestimation diagnostic and
interpretation commands. corrgram estimates the autocorrelation function and partial autocorrelation
function of a univariate time series, as well as Q statistics. These functions and statistics are often used
to determine the appropriate model specification before fitting ARIMA models. corrgram can also be
used with wntestb and wntestq to examine the residuals after fitting a model for evidence of model
misspecification. Stata’s time-series commands also include the commands pergram and cumsp,
which provide the log-standardized periodogram and the cumulative-sample spectral distribution,
respectively, for time-series analysts who prefer to estimate in the frequency domain rather than the
time domain.

time series — Introduction to time-series commands 9

psdensity computes the spectral density implied by the parameters estimated by arfima, arima,
or ucm. The estimated spectral density shows the relative importance of components at different
frequencies. estat acplot computes the autocorrelation and autocovariance functions implied by
the parameters estimated by arima. These functions provide a measure of the dependence structure
in the time domain.

xcorr estimates the cross-correlogram for bivariate time series and can similarly be used for both
preestimation and postestimation. For example, the cross-correlogram can be used before fitting a
transfer-function model to produce initial estimates of the IRF. This estimate can then be used to
determine the optimal lag length of the input series to include in the model specification. It can
also be used as a postestimation tool after fitting a transfer function. The cross-correlogram between
the residual from a transfer-function model and the prewhitened input series of the model can be
examined for evidence of model misspecification.

When you fit ARMA or ARIMA models, the dependent variable being modeled must be covariance
stationary (ARMA models), or the order of integration must be known (ARIMA models). Stata has three
commands that can test for the presence of a unit root in a time-series variable: dfuller performs
the augmented Dickey–Fuller test, pperron performs the Phillips–Perron test, and dfgls performs
a modified Dickey–Fuller test. arfima can also be used to investigate the order of integration. After
estimation, you can use estat aroots to check the stationarity of an ARMA process.

After using mswitch to fit a Markov-switching model, two postestimation commands help interpret
the results. estat transition reports the transition probabilities and the corresponding standard
errors in a tabular form. estat duration computes the expected duration of being in a given state
and displays See [TS] mswitch postestimation.

After fitting a model with regress or ivregress, estat sbknown and estat sbsingle test
for structural breaks. estat sbknown tests for breaks at known break dates, and estat sbsingle
tests for a break at an unknown break date; see [TS] estat sbknown and [TS] estat sbsingle.

The remaining diagnostic tools for univariate time series are for use after fitting a linear model via
OLS with Stata’s regress command. They are documented collectively in [R] regress postestimation
time series. They include estat dwatson, estat durbinalt, estat bgodfrey, and estat
archlm. estat dwatson computes the Durbin–Watson d statistic to test for the presence of first-
order autocorrelation in the OLS residuals. estat durbinalt likewise tests for the presence of
autocorrelation in the residuals. By comparison, however, Durbin’s alternative test is more general
and easier to use than the Durbin–Watson test. With estat durbinalt, you can test for higher
orders of autocorrelation, the assumption that the covariates in the model are strictly exogenous is
relaxed, and there is no need to consult tables to compute rejection regions, as you must with the
Durbin–Watson test. estat bgodfrey computes the Breusch–Godfrey test for autocorrelation in the
residuals, and although the computations are different, the test in estat bgodfrey is asymptotically
equivalent to the test in estat durbinalt. Finally, estat archlm performs Engle’s LM test for the
presence of autoregressive conditional heteroskedasticity.

Multivariate time series

Estimators

Stata provides commands for fitting the most widely applied multivariate time-series models. var
and svar fit vector autoregressive and structural vector autoregressive models to stationary data. vec
fits cointegrating vector error-correction models. dfactor fits dynamic-factor models. mgarch ccc,
mgarch dcc, mgarch dvech, and mgarch vcc fit multivariate GARCH models. sspace fits state-space
models. Many linear time-series models, including vector autoregressive moving-average (VARMA)
models and structural time-series models, can be cast as state-space models and fit by sspace.

10 time series — Introduction to time-series commands

Diagnostic tools

Before fitting a multivariate time-series model, you must specify the number of lags of the dependent
variable to include. varsoc produces statistics for determining the order of a VAR or VECM.

Several postestimation commands perform the most common specification analysis on a previously
fitted VAR or SVAR. You can use varlmar to check for serial correlation in the residuals, varnorm
to test the null hypothesis that the disturbances come from a multivariate normal distribution, and
varstable to see if the fitted VAR or SVAR is stable. Two common types of inference about VAR
models are whether one variable Granger-causes another and whether a set of lags can be excluded
from the model. vargranger reports Wald tests of Granger causation, and varwle reports Wald lag
exclusion tests.

Similarly, several postestimation commands perform the most common specification analysis on a
previously fitted VECM. You can use veclmar to check for serial correlation in the residuals, vecnorm
to test the null hypothesis that the disturbances come from a multivariate normal distribution, and
vecstable to analyze the stability of the previously fitted VECM.

VARs and VECMs are often fit to produce baseline forecasts. fcast produces dynamic forecasts
from previously fitted VARs and VECMs.

Many researchers fit VARs, SVARs, and VECMs because they want to analyze how unexpected
shocks affect the dynamic paths of the variables. Stata has a suite of irf commands for estimating
IRF functions and interpreting, presenting, and managing these estimates; see [TS] irf.

Forecasting models

Stata provides a set of commands for obtaining forecasts by solving models, collections of equations
that jointly determine the outcomes of one or more variables. You use Stata estimation commands such
as regress, reg3, var, and vec to fit stochastic equations and store the results using estimates
store. Then you create a forecast model using forecast create and use commands, including
forecast estimates and forecast identity, to build models consisting of estimation results,
nonstochastic relationships (identities), and other model features. Models can be as simple as a single
linear regression for which you want to obtain dynamic forecasts, or they can be complicated systems
consisting of dozens of estimation results and identities representing a complete macroeconometric
model.

The forecast solve command allows you to obtain both stochastic and dynamic forecasts.
Confidence intervals for forecasts can be obtained via stochastic simulation incorporating both
parameter uncertainty and additive random shocks. By using forecast adjust, you can incorporate
outside information and specify different paths for some of the model’s variables to obtain forecasts
under alternative scenarios.

References
Baum, C. F. 2005. Stata: The language of choice for time-series analysis? Stata Journal 5: 46–63.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the
Social Science. New York: Cambridge University Press.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Pickup, M. 2015. Introduction to Time Series Analysis. Thousand Oaks, CA: Sage.

http://www.stata-journal.com/sjpdf.html?articlenum=st0080
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/imtsa.html
http://www.stata.com/bookstore/introduction-time-series-analysis/

time series — Introduction to time-series commands 11

Pisati, M. 2001. sg162: Tools for spatial data analysis. Stata Technical Bulletin 60: 21–37. Reprinted in Stata Technical
Bulletin Reprints, vol. 10, pp. 277–298. College Station, TX: Stata Press.

Stock, J. H., and M. W. Watson. 2001. Vector autoregressions. Journal of Economic Perspectives 15: 101–115.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual

http://www.stata.com/products/stb/journals/stb60.pdf

Title

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

arch fits regression models in which the volatility of a series varies through time. Usually, periods
of high and low volatility are grouped together. ARCH models estimate future volatility as a function of
prior volatility. To accomplish this, arch fits models of autoregressive conditional heteroskedasticity
(ARCH) by using conditional maximum likelihood. In addition to ARCH terms, models may include
multiplicative heteroskedasticity. Gaussian (normal), Student’s t, and generalized error distributions
are supported.

Concerning the regression equation itself, models may also contain ARCH-in-mean and ARMA
terms.

Quick start
ARCH model of y with first- and second-order ARCH components and regressor x using tsset data

arch y x, arch(1,2)

Add a second-order GARCH component
arch y x, arch(1,2) garch(2)

Add an autoregressive component of order 2 and a moving-average component of order 3
arch y x, arch(1,2) garch(2) ar(2) ma(3)

As above, but with the conditional variance included in the mean equation
arch y x, arch(1,2) garch(2) ar(2) ma(3) archm

EGARCH model of order 2 for y with an autoregressive component of order 1
arch y, earch(2) egarch(2) ar(1)

12

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 13

Menu
ARCH/GARCH

Statistics > Time series > ARCH/GARCH > ARCH and GARCH models

EARCH/EGARCH

Statistics > Time series > ARCH/GARCH > Nelson’s EGARCH model

ABARCH/ATARCH/SDGARCH

Statistics > Time series > ARCH/GARCH > Threshold ARCH model

ARCH/TARCH/GARCH

Statistics > Time series > ARCH/GARCH > GJR form of threshold ARCH model

ARCH/SAARCH/GARCH

Statistics > Time series > ARCH/GARCH > Simple asymmetric ARCH model

PARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Power ARCH model

NARCH/GARCH

Statistics > Time series > ARCH/GARCH > Nonlinear ARCH model

NARCHK/GARCH

Statistics > Time series > ARCH/GARCH > Nonlinear ARCH model with one shift

APARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Asymmetric power ARCH model

NPARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Nonlinear power ARCH model

14 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Syntax
arch depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
arch(numlist) ARCH terms
garch(numlist) GARCH terms
saarch(numlist) simple asymmetric ARCH terms
tarch(numlist) threshold ARCH terms
aarch(numlist) asymmetric ARCH terms
narch(numlist) nonlinear ARCH terms
narchk(numlist) nonlinear ARCH terms with single shift
abarch(numlist) absolute value ARCH terms
atarch(numlist) absolute threshold ARCH terms
sdgarch(numlist) lags of σt
earch(numlist) news terms in Nelson’s (1991) EGARCH model
egarch(numlist) lags of ln(σ2

t)
parch(numlist) power ARCH terms
tparch(numlist) threshold power ARCH terms
aparch(numlist) asymmetric power ARCH terms
nparch(numlist) nonlinear power ARCH terms
nparchk(numlist) nonlinear power ARCH terms with single shift
pgarch(numlist) power GARCH terms
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

archm include ARCH-in-mean term in the mean-equation specification
archmlags(numlist) include specified lags of conditional variance in mean equation
archmexp(exp) apply transformation in exp to any ARCH-in-mean terms
arima(#p,#d,#q) specify ARIMA(p, d, q) model for dependent variable
ar(numlist) autoregressive terms of the structural model disturbance
ma(numlist) moving-average terms of the structural model disturbances

Model 3

distribution(dist
[

#
]
) use dist distribution for errors (may be gaussian, normal, t,

or ged; default is gaussian)
het(varlist) include varlist in the specification of the conditional variance
savespace conserve memory during estimation

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 15

Priming

arch0(xb) compute priming values on the basis of the expected unconditional
variance; the default

arch0(xb0) compute priming values on the basis of the estimated variance of the
residuals from OLS

arch0(xbwt) compute priming values on the basis of the weighted sum of squares
from OLS residuals

arch0(xb0wt) compute priming values on the basis of the weighted sum of squares
from OLS residuals, with more weight at earlier times

arch0(zero) set priming values of ARCH terms to zero
arch0(#) set priming values of ARCH terms to #
arma0(zero) set all priming values of ARMA terms to zero; the default
arma0(p) begin estimation after observation p, where p is the

maximum AR lag in model
arma0(q) begin estimation after observation q, where q is the

maximum MA lag in model
arma0(pq) begin estimation after observation (p+ q)
arma0(#) set priming values of ARMA terms to #
condobs(#) set conditioning observations at the start of the sample to #

SE/Robust

vce(vcetype) vcetype may be opg, robust, or oim

Reporting

level(#) set confidence level; default is level(95)

detail report list of gaps in time series
nocnsreport do not display constraints
display options control columns and column formats, row spacing, and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

You must tsset your data before using arch; see [TS] tsset.
depvar and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

To fit an ARCH(#m) model with Gaussian errors, type

. arch depvar . . . , arch(1/#m)

To fit a GARCH(#m, #k) model assuming that the errors follow Student’s t distribution with 7 degrees
of freedom, type

. arch depvar . . . , arch(1/#m) garch(1/#k) distribution(t 7)

You can also fit many other models.

16 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Details of syntax

The basic model arch fits is

yt = xtβ+ εt

Var(εt) = σ2
t = γ0 +A(σ, ε) +B(σ, ε)2

(1)

The yt equation may optionally include ARCH-in-mean and ARMA terms:

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

If no options are specified, A() = B() = 0, and the model collapses to linear regression. The
following options add to A() (α, γ, and κ represent parameters to be estimated):

Option Terms added to A()

arch() A() = A()+α1,1ε
2
t−1 + α1,2ε

2
t−2 + · · ·

garch() A() = A()+α2,1σ
2
t−1 + α2,2σ

2
t−2 + · · ·

saarch() A() = A()+α3,1εt−1 + α3,2εt−2 + · · ·
tarch() A() = A()+α4,1ε

2
t−1(εt−1 > 0) + α4,2ε

2
t−2(εt−2 > 0) + · · ·

aarch() A() = A()+α5,1(|εt−1|+ γ5,1εt−1)2 + α5,2(|εt−2|+ γ5,2εt−2)2 + · · ·
narch() A() = A()+α6,1(εt−1 − κ6,1)2 + α6,2(εt−2 − κ6,2)2 + · · ·
narchk() A() = A()+α7,1(εt−1 − κ7)2 + α7,2(εt−2 − κ7)2 + · · ·

The following options add to B():

Option Terms added to B()

abarch() B() = B()+α8,1|εt−1|+ α8,2|εt−2|+ · · ·
atarch() B() = B()+α9,1|εt−1|(εt−1 > 0) + α9,2|εt−2|(εt−2 > 0) + · · ·
sdgarch() B() = B()+α10,1σt−1 + α10,2σt−2 + · · ·

Each option requires a numlist argument (see [U] 11.1.8 numlist), which determines the lagged
terms included. arch(1) specifies α1,1ε

2
t−1, arch(2) specifies α1,2ε

2
t−2, arch(1,2) specifies

α1,1ε
2
t−1 + α1,2ε

2
t−2, arch(1/3) specifies α1,1ε

2
t−1 + α1,2ε

2
t−2 + α1,3ε

2
t−3, etc.

If the earch() or egarch() option is specified, the basic model fit is

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

lnVar(εt) = lnσ2
t = γ0 + C(lnσ, z) +A(σ, ε) +B(σ, ε)2

(2)

where zt = εt/σt. A() and B() are given as above, but A() and B() now add to lnσ2
t rather than

σ2
t . (The options corresponding to A() and B() are rarely specified here.) C() is given by

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 17

Option Terms added to C()

earch() C() = C() +α11,1zt−1 + γ11,1(|zt−1| −
√

2/π)

+α11,2zt−2 + γ11,2(|zt−2| −
√

2/π) + · · ·
egarch() C() = C() +α12,1 lnσ2

t−1 + α12,2 lnσ2
t−2 + · · ·

Instead, if the parch(), tparch(), aparch(), nparch(), nparchk(), or pgarch() options are
specified, the basic model fit is

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

{Var(εt)}ϕ/2 = σϕt = γ0 +D(σ, ε) +A(σ, ε) +B(σ, ε)2

(3)

where ϕ is a parameter to be estimated. A() and B() are given as above, but A() and B() now add
to σϕt . (The options corresponding to A() and B() are rarely specified here.) D() is given by

Option Terms added to D()

parch() D() = D()+α13,1ε
ϕ
t−1 + α13,2ε

ϕ
t−2 + · · ·

tparch() D() = D()+α14,1ε
ϕ
t−1(εt−1 > 0) + α14,2ε

ϕ
t−2(εt−2 > 0) + · · ·

aparch() D() = D()+α15,1(|εt−1|+ γ15,1εt−1)ϕ + α15,2(|εt−2|+ γ15,2εt−2)ϕ + · · ·
nparch() D() = D()+α16,1|εt−1 − κ16,1|ϕ + α16,2|εt−2 − κ16,2|ϕ + · · ·
nparchk() D() = D()+α17,1|εt−1 − κ17|ϕ + α17,2|εt−2 − κ17|ϕ + · · ·
pgarch() D() = D()+α18,1σ

ϕ
t−1 + α18,2σ

ϕ
t−2 + · · ·

Common models

Common term Options to specify

ARCH (Engle 1982) arch()

GARCH (Bollerslev 1986) arch() garch()

ARCH-in-mean (Engle, Lilien, and Robins 1987) archm arch() [garch()]

GARCH with ARMA terms arch() garch() ar() ma()

EGARCH (Nelson 1991) earch() egarch()

TARCH, threshold ARCH (Zakoian 1994) abarch() atarch() sdgarch()

GJR, form of threshold ARCH (Glosten, Jagannathan, and Runkle 1993) arch() tarch() [garch()]

SAARCH, simple asymmetric ARCH (Engle 1990) arch() saarch() [garch()]

PARCH, power ARCH (Higgins and Bera 1992) parch() [pgarch()]

NARCH, nonlinear ARCH narch() [garch()]

NARCHK, nonlinear ARCH with one shift narchk() [garch()]

A-PARCH, asymmetric power ARCH (Ding, Granger, and Engle 1993) aparch() [pgarch()]

NPARCH, nonlinear power ARCH nparch() [pgarch()]

18 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

In all cases, you type
arch depvar

[
indepvars

]
, options

where options are chosen from the table above. Each option requires that you specify as its argument
a numlist that specifies the lags to be included. For most ARCH models, that value will be 1. For
instance, to fit the classic first-order GARCH model on cpi, you would type

. arch cpi, arch(1) garch(1)

If you wanted to fit a first-order GARCH model of cpi on wage, you would type

. arch cpi wage, arch(1) garch(1)

If, for any of the options, you want first- and second-order terms, specify optionname(1/2). Specifying
garch(1) arch(1/2) would fit a GARCH model with first- and second-order ARCH terms. If you
specified arch(2), only the lag 2 term would be included.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 19

Reading arch output

The regression table reported by arch when using the normal distribution for the errors will appear
as

op.depvar Coef. Std. Err. z P>|z| [95% Conf. Interval]

depvar
x1 # . . .
x2

L1. # . . .
L2. # . . .

_cons # . . .

ARCHM
sigma2 # . . .

ARMA
ar

L1. # . . .

ma
L1. # . . .

HET
z1 # . . .
z2

L1. # . . .
L2. # . . .

ARCH
arch
L1. # . . .

garch
L1. # . . .

aparch
L1. # . . .

etc.

_cons # . . .

POWER
power # . . .

Dividing lines separate “equations”.

The first one, two, or three equations report the mean model:

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

The first equation reports β, and the equation will be named [depvar]; if you fit a model on d.cpi,
the first equation would be named [cpi]. In Stata, the coefficient on x1 in the above example could
be referred to as [depvar] b[x1]. The coefficient on the lag 2 value of x2 would be referred to
as [depvar] b[L2.x2]. Such notation would be used, for instance, in a later test command; see
[R] test.

20 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

The [ARCHM] equation reports the ψ coefficients if your model includes ARCH-in-mean terms;
see options discussed under the Model 2 tab below. Most ARCH-in-mean models include only a
contemporaneous variance term, so the term

∑
i ψig(σ2

t−i) becomes ψσ2
t . The coefficient ψ will

be [ARCHM] b[sigma2]. If your model includes lags of σ2
t , the additional coefficients will be

[ARCHM] b[L1.sigma2], and so on. If you specify a transformation g() (option archmexp()),
the coefficients will be [ARCHM] b[sigma2ex], [ARCHM] b[L1.sigma2ex], and so on. sigma2ex
refers to g(σ2

t), the transformed value of the conditional variance.

The [ARMA] equation reports the ARMA coefficients if your model includes them; see options discussed
under the Model 2 tab below. This equation includes one or two “variables” named ar and ma. In
later test statements, you could refer to the coefficient on the first lag of the autoregressive term
by typing [ARMA] b[L1.ar] or simply [ARMA] b[L.ar] (the L operator is assumed to be lag 1 if
you do not specify otherwise). The second lag on the moving-average term, if there were one, could
be referred to by typing [ARMA] b[L2.ma].

The next one, two, or three equations report the variance model.

The [HET] equation reports the multiplicative heteroskedasticity if the model includes it. When
you fit such a model, you specify the variables (and their lags), determining the multiplicative
heteroskedasticity; after estimation, their coefficients are simply [HET] b[op.varname].

The [ARCH] equation reports the ARCH, GARCH, etc., terms by referring to “variables” arch,
garch, and so on. For instance, if you specified arch(1) garch(1) when you fit the model, the
conditional variance is given by σ2

t = γ0 + α1,1ε
2
t−1 + α2,1σ

2
t−1. The coefficients would be named

[ARCH] b[cons] (γ0), [ARCH] b[L.arch] (α1,1), and [ARCH] b[L.garch] (α2,1).

The [POWER] equation appears only if you are fitting a variance model in the form of (3) above; the
estimated ϕ is the coefficient [POWER] b[power].

Also, if you use the distribution() option and specify either Student’s t or the generalized
error distribution but do not specify the degree-of-freedom or shape parameter, then you will see
two additional rows in the table. The final row contains the estimated degree-of-freedom or shape
parameter. Immediately preceding the final row is a transformed version of the parameter that arch
used during estimation to ensure that the degree-of-freedom parameter is greater than two or that the
shape parameter is positive.

The naming convention for estimated ARCH, GARCH, etc., parameters is as follows (definitions for
parameters αi, γi, and κi can be found in the tables for A(), B(), C(), and D() above):

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 21

Option 1st parameter 2nd parameter Common parameter

arch() α1 = [ARCH] b[arch]
garch() α2 = [ARCH] b[garch]
saarch() α3 = [ARCH] b[saarch]
tarch() α4 = [ARCH] b[tarch]
aarch() α5 = [ARCH] b[aarch] γ5 = [ARCH] b[aarch e]
narch() α6 = [ARCH] b[narch] κ6 = [ARCH] b[narch k]
narchk() α7 = [ARCH] b[narch] κ7 = [ARCH] b[narch k]

abarch() α8 = [ARCH] b[abarch]
atarch() α9 = [ARCH] b[atarch]
sdgarch() α10 = [ARCH] b[sdgarch]

earch() α11 = [ARCH] b[earch] γ11 = [ARCH] b[earch a]
egarch() α12 = [ARCH] b[egarch]

parch() α13 = [ARCH] b[parch] ϕ = [POWER] b[power]
tparch() α14 = [ARCH] b[tparch] ϕ = [POWER] b[power]
aparch() α15 = [ARCH] b[aparch] γ15 = [ARCH] b[aparch e] ϕ = [POWER] b[power]
nparch() α16 = [ARCH] b[nparch] κ16 = [ARCH] b[nparch k] ϕ = [POWER] b[power]
nparchk() α17 = [ARCH] b[nparch] κ17 = [ARCH] b[nparch k] ϕ = [POWER] b[power]
pgarch() α18 = [ARCH] b[pgarch] ϕ = [POWER] b[power]

Options

� � �
Model �

noconstant; see [R] estimation options.

arch(numlist) specifies the ARCH terms (lags of ε2t).

Specify arch(1) to include first-order terms, arch(1/2) to specify first- and second-order terms,
arch(1/3) to specify first-, second-, and third-order terms, etc. Terms may be omitted. Specify
arch(1/3 5) to specify terms with lags 1, 2, 3, and 5. All the options work this way.

arch() may not be specified with aarch(), narch(), narchk(), nparchk(), or nparch(), as
this would result in collinear terms.

garch(numlist) specifies the GARCH terms (lags of σ2
t).

saarch(numlist) specifies the simple asymmetric ARCH terms. Adding these terms is one way to
make the standard ARCH and GARCH models respond asymmetrically to positive and negative
innovations. Specifying saarch() with arch() and garch() corresponds to the SAARCH model
of Engle (1990).

saarch() may not be specified with narch(), narchk(), nparchk(), or nparch(), as this
would result in collinear terms.

tarch(numlist) specifies the threshold ARCH terms. Adding these is another way to make the
standard ARCH and GARCH models respond asymmetrically to positive and negative innovations.
Specifying tarch() with arch() and garch() corresponds to one form of the GJR model (Glosten,
Jagannathan, and Runkle 1993).

tarch() may not be specified with tparch() or aarch(), as this would result in collinear terms.

aarch(numlist) specifies the lags of the two-parameter term αi(|εt|+γiεt)
2. This term provides the

same underlying form of asymmetry as including arch() and tarch(), but it is expressed in a
different way.

aarch() may not be specified with arch() or tarch(), as this would result in collinear terms.

22 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

narch(numlist) specifies the lags of the two-parameter term αi(εt − κi)2. This term allows the
minimum conditional variance to occur at a value of lagged innovations other than zero. For any
term specified at lag L, the minimum contribution to conditional variance of that lag occurs when
ε2t−L = κL—the squared innovations at that lag are equal to the estimated constant κL.

narch() may not be specified with arch(), saarch(), narchk(), nparchk(), or nparch(),
as this would result in collinear terms.

narchk(numlist) specifies the lags of the two-parameter term αi(εt − κ)2; this is a variation of
narch() with κ held constant for all lags.

narchk() may not be specified with arch(), saarch(), narch(), nparchk(), or nparch(),
as this would result in collinear terms.

abarch(numlist) specifies lags of the term |εt|.
atarch(numlist) specifies lags of |εt|(εt > 0), where (εt > 0) represents the indicator function

returning 1 when true and 0 when false. Like the TARCH terms, these ATARCH terms allow the
effect of unanticipated innovations to be asymmetric about zero.

sdgarch(numlist) specifies lags of σt. Combining atarch(), abarch(), and sdgarch() produces
the model by Zakoian (1994) that the author called the TARCH model. The acronym TARCH,
however, refers to any model using thresholding to obtain asymmetry.

earch(numlist) specifies lags of the two-parameter term αzt+γ(|zt|−
√

2/π). These terms represent
the influence of news—lagged innovations—in Nelson’s (1991) EGARCH model. For these terms,
zt = εt/σt, and arch assumes zt ∼ N(0, 1). Nelson derived the general form of an EGARCH model
for any assumed distribution and performed estimation assuming a generalized error distribution
(GED). See Hamilton (1994) for a derivation where zt is assumed normal. The zt terms can be
parameterized in either of these two equivalent ways. arch uses Nelson’s original parameterization;
see Hamilton (1994) for an equivalent alternative.

egarch(numlist) specifies lags of ln(σ2
t).

For the following options, the model is parameterized in terms of h(εt)
ϕ and σϕt . One ϕ is estimated,

even when more than one option is specified.

parch(numlist) specifies lags of |εt|ϕ. parch() combined with pgarch() corresponds to the class
of nonlinear models of conditional variance suggested by Higgins and Bera (1992).

tparch(numlist) specifies lags of (εt > 0)|εt|ϕ, where (εt > 0) represents the indicator function
returning 1 when true and 0 when false. As with tarch(), tparch() specifies terms that allow
for a differential impact of “good” (positive innovations) and “bad” (negative innovations) news
for lags specified by numlist.

tparch() may not be specified with tarch(), as this would result in collinear terms.

aparch(numlist) specifies lags of the two-parameter term α(|εt| + γεt)
ϕ. This asymmetric power

ARCH model, A-PARCH, was proposed by Ding, Granger, and Engle (1993) and corresponds to
a Box–Cox function in the lagged innovations. The authors fit the original A-PARCH model on
more than 16,000 daily observations of the Standard and Poor’s 500, and for good reason. As the
number of parameters and the flexibility of the specification increase, more data are required to
estimate the parameters of the conditional heteroskedasticity. See Ding, Granger, and Engle (1993)
for a discussion of how seven popular ARCH models nest within the A-PARCH model.

When γ goes to 1, the full term goes to zero for many observations and can then be numerically
unstable.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 23

nparch(numlist) specifies lags of the two-parameter term α|εt − κi|ϕ.

nparch() may not be specified with arch(), saarch(), narch(), narchk(), or nparchk(),
as this would result in collinear terms.

nparchk(numlist) specifies lags of the two-parameter term α|εt−κ|ϕ; this is a variation of nparch()
with κ held constant for all lags. This is the direct analog of narchk(), except for the power
of ϕ. nparchk() corresponds to an extended form of the model of Higgins and Bera (1992) as
presented by Bollerslev, Engle, and Nelson (1994). nparchk() would typically be combined with
the pgarch() option.

nparchk() may not be specified with arch(), saarch(), narch(), narchk(), or nparch(),
as this would result in collinear terms.

pgarch(numlist) specifies lags of σϕt .

constraints(constraints), collinear; see [R] estimation options.

� � �
Model 2 �

archm specifies that an ARCH-in-mean term be included in the specification of the mean equation. This
term allows the expected value of depvar to depend on the conditional variance. ARCH-in-mean is
most commonly used in evaluating financial time series when a theory supports a tradeoff between
asset risk and return. By default, no ARCH-in-mean terms are included in the model.

archm specifies that the contemporaneous expected conditional variance be included in the mean
equation. For example, typing

. arch y x, archm arch(1)

specifies the model
yt = β0 + β1xt + ψσ2

t + εt

σ2
t = γ0 + γε2t−1

archmlags(numlist) is an expansion of archm that includes lags of the conditional variance σ2
t in

the mean equation. To specify a contemporaneous and once-lagged variance, specify either archm
archmlags(1) or archmlags(0/1).

archmexp(exp) applies the transformation in exp to any ARCH-in-mean terms in the model. The
expression should contain an X wherever a value of the conditional variance is to enter the expression.
This option can be used to produce the commonly used ARCH-in-mean of the conditional standard
deviation. With the example from archm, typing

. arch y x, archm arch(1) archmexp(sqrt(X))

specifies the mean equation yt = β0 + β1xt + ψσt + εt. Alternatively, typing

. arch y x, archm arch(1) archmexp(1/sqrt(X))

specifies yt = β0 + β1xt + ψ/σt + εt.

arima(#p,#d,#q) is an alternative, shorthand notation for specifying autoregressive models in the
dependent variable. The dependent variable and any independent variables are differenced #d times,
1 through #p lags of autocorrelations are included, and 1 through #q lags of moving averages are
included. For example, the specification

. arch y, arima(2,1,3)

is equivalent to

. arch D.y, ar(1/2) ma(1/3)

24 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

The former is easier to write for classic ARIMA models of the mean equation, but it is not nearly
as expressive as the latter. If gaps in the AR or MA lags are to be modeled, or if different operators
are to be applied to independent variables, the latter syntax is required.

ar(numlist) specifies the autoregressive terms of the structural model disturbance to be included in
the model. For example, ar(1/3) specifies that lags 1, 2, and 3 of the structural disturbance be
included in the model. ar(1,4) specifies that lags 1 and 4 be included, possibly to account for
quarterly effects.

If the model does not contain regressors, these terms can also be considered autoregressive terms
for the dependent variable; see [TS] arima.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for
the lagged innovations or white-noise disturbances.

� � �
Model 3 �

distribution(dist
[

#
]
) specifies the distribution to assume for the error term. dist may be

gaussian, normal, t, or ged. gaussian and normal are synonyms, and # cannot be specified
with them.

If distribution(t) is specified, arch assumes that the errors follow Student’s t distribution,
and the degree-of-freedom parameter is estimated along with the other parameters of the model.
If distribution(t #) is specified, then arch uses Student’s t distribution with # degrees of
freedom. # must be greater than 2.

If distribution(ged) is specified, arch assumes that the errors have a generalized error
distribution, and the shape parameter is estimated along with the other parameters of the model.
If distribution(ged #) is specified, then arch uses the generalized error distribution with
shape parameter #. # must be positive. The generalized error distribution is identical to the normal
distribution when the shape parameter equals 2.

het(varlist) specifies that varlist be included in the specification of the conditional variance. varlist
may contain time-series operators. This varlist enters the variance specification collectively as
multiplicative heteroskedasticity; see Judge et al. (1985). If het() is not specified, the model will
not contain multiplicative heteroskedasticity.

Assume that the conditional variance depends on variables x and w and has an ARCH(1) component.
We request this specification by using the het(x w) arch(1) options, and this corresponds to the
conditional-variance model

σ2
t = exp(λ0 + λ1xt + λ2wt) + αε2t−1

Multiplicative heteroskedasticity enters differently with an EGARCH model because the variance is
already specified in logs. For the het(x w) earch(1) egarch(1) options, the variance model is

ln(σ2
t) = λ0 + λ1xt + λ2wt + αzt−1 + γ(|zt−1| −

√
2/π) + δ ln(σ2

t−1)

savespace conserves memory by retaining only those variables required for estimation. The original
dataset is restored after estimation. This option is rarely used and should be specified only if
there is insufficient memory to fit a model without the option. arch requires considerably more
temporary storage during estimation than most estimation commands in Stata.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 25

� � �
Priming �

arch0(cond method) is a rarely used option that specifies how to compute the conditioning (presample
or priming) values for σ2

t and ε2t . In the presample period, it is assumed that σ2
t = ε2t and that this

value is constant. If arch0() is not specified, the priming values are computed as the expected
unconditional variance given the current estimates of the β coefficients and any ARMA parameters.

arch0(xb), the default, specifies that the priming values are the expected unconditional variance
of the model, which is

∑T
1 ε̂

2
t /T , where ε̂t is computed from the mean equation and any

ARMA terms.

arch0(xb0) specifies that the priming values are the estimated variance of the residuals from an
OLS estimate of the mean equation.

arch0(xbwt) specifies that the priming values are the weighted sum of the ε̂ 2
t from the current

conditional mean equation (and ARMA terms) that places more weight on estimates of ε2t at the
beginning of the sample.

arch0(xb0wt) specifies that the priming values are the weighted sum of the ε̂ 2
t from an OLS

estimate of the mean equation (and ARMA terms) that places more weight on estimates of ε2t
at the beginning of the sample.

arch0(zero) specifies that the priming values are 0. Unlike the priming values for ARIMA
models, 0 is generally not a consistent estimate of the presample conditional variance or squared
innovations.

arch0(#) specifies that σ2
t = ε2t = # for any specified nonnegative #. Thus arch0(0) is equivalent

to arch0(zero).

arma0(cond method) is a rarely used option that specifies how the εt values are initialized at the
beginning of the sample for the ARMA component, if the model has one. This option has an effect
only when AR or MA terms are included in the model (the ar(), ma(), or arima() options
specified).

arma0(zero), the default, specifies that all priming values of εt be taken as 0. This fits the model
over the entire requested sample and takes εt as its expected value of 0 for all lags required
by the ARMA terms; see Judge et al. (1985).

arma0(p), arma0(q), and arma0(pq) specify that estimation begin after priming the recursions
for a certain number of observations. p specifies that estimation begin after the pth observation
in the sample, where p is the maximum AR lag in the model; q specifies that estimation begin
after the qth observation in the sample, where q is the maximum MA lag in the model; and pq
specifies that estimation begin after the (p+ q)th observation in the sample.

During the priming period, the recursions necessary to generate predicted disturbances are performed,
but results are used only to initialize preestimation values of εt. To understand the definition
of preestimation, say that you fit a model in 10/100. If the model is specified with ar(1,2),
preestimation refers to observations 10 and 11.

The ARCH terms σ2
t and ε2t are also updated over these observations. Any required lags of εt

before the priming period are taken to be their expected value of 0, and ε2t and σ2
t take the

values specified in arch0().

arma0(#) specifies that the presample values of εt are to be taken as # for all lags required by
the ARMA terms. Thus arma0(0) is equivalent to arma0(zero).

condobs(#) is a rarely used option that specifies a fixed number of conditioning observations at
the start of the sample. Over these priming observations, the recursions necessary to generate
predicted disturbances are performed, but only to initialize preestimation values of εt, ε2t , and σ2

t .

26 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Any required lags of εt before the initialization period are taken to be their expected value of 0
(or the value specified in arma0()), and required values of ε2t and σ2

t assume the values specified
by arch0(). condobs() can be used if conditioning observations are desired for the lags in the
ARCH terms of the model. If arma() is also specified, the maximum number of conditioning
observations required by arma() and condobs(#) is used.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that are derived from asymptotic theory (oim, opg);
see [R] vce option.

For ARCH models, the robust or quasi–maximum likelihood estimates (QMLE) of variance are robust
to symmetric nonnormality in the disturbances. The robust variance estimates generally are not
robust to functional misspecification of the mean equation; see Bollerslev and Wooldridge (1992).

The robust variance estimates computed by arch are based on the full Huber/White/sandwich
formulation, as discussed in [P] robust. Many other software packages report robust estimates
that set some terms to their expectations of zero (Bollerslev and Wooldridge 1992), which saves
them from calculating second derivatives of the log-likelihood function.

� � �
Reporting �

level(#); see [R] estimation options.

detail specifies that a detailed list of any gaps in the series be reported, including gaps due to
missing observations or missing data for the dependent variable or independent variables.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
gtolerance(#), nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize
for all options except gtolerance(), and see below for information on gtolerance().

These options are often more important for ARCH models than for other maximum likelihood
models because of convergence problems associated with ARCH models—ARCH model likelihoods
are notoriously difficult to maximize.

Setting technique() to something other than the default or BHHH changes the vcetype to vce(oim).

The following options are all related to maximization and are either particularly important in fitting
ARCH models or not available for most other estimators.

gtolerance(#) specifies the tolerance for the gradient relative to the coefficients. When
|gi bi| ≤ gtolerance() for all parameters bi and the corresponding elements of the
gradient gi, the gradient tolerance criterion is met. The default gradient tolerance for arch
is gtolerance(.05).

gtolerance(999) may be specified to disable the gradient criterion. If the optimizer becomes
stuck with repeated “(backed up)” messages, the gradient probably still contains substantial
values, but an uphill direction cannot be found for the likelihood. With this option, results can
often be obtained, but whether the global maximum likelihood has been found is unclear.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 27

When the maximization is not going well, it is also possible to set the maximum number of
iterations (see [R] maximize) to the point where the optimizer appears to be stuck and to inspect
the estimation results at that point.

from(init specs) specifies the initial values of the coefficients. ARCH models may be sensitive
to initial values and may have coefficient values that correspond to local maximums. The
default starting values are obtained via a series of regressions, producing results that, on
the basis of asymptotic theory, are consistent for the β and ARMA parameters and generally
reasonable for the rest. Nevertheless, these values may not always be feasible in that the
likelihood function cannot be evaluated at the initial values arch first chooses. In such cases,
the estimation is restarted with ARCH and ARMA parameters initialized to zero. It is possible,
but unlikely, that even these values will be infeasible and that you will have to supply initial
values yourself.

The standard syntax for from() accepts a matrix, a list of values, or coefficient name value
pairs; see [R] maximize. arch also allows the following:

from(archb0) sets the starting value for all the ARCH/GARCH/. . . parameters in the conditional-
variance equation to 0.

from(armab0) sets the starting value for all ARMA parameters in the model to 0.

from(archb0 armab0) sets the starting value for all ARCH/GARCH/. . . and ARMA parameters
to 0.

The following option is available with arch but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

The volatility of a series is not constant through time; periods of relatively low volatility and periods
of relatively high volatility tend to be grouped together. This is a commonly observed characteristic
of economic time series and is even more pronounced in many frequently sampled financial series.
ARCH models seek to estimate this time-dependent volatility as a function of observed prior volatility.
Sometimes the model of volatility is of more interest than the model of the conditional mean. As
implemented in arch, the volatility model may also include regressors to account for a structural
component in the volatility—usually referred to as multiplicative heteroskedasticity.

ARCH models were introduced by Engle (1982) in a study of inflation rates, and there has since
been a barrage of proposed parametric and nonparametric specifications of autoregressive conditional
heteroskedasticity. Overviews of the literature can found in Bollerslev, Engle, and Nelson (1994) and
Bollerslev, Chou, and Kroner (1992). Introductions to basic ARCH models appear in many general
econometrics texts, including Davidson and MacKinnon (1993), Greene (2012), Kmenta (1997), Stock
and Watson (2011), and Wooldridge (2013). Harvey (1989) and Enders (2004) provide introductions
to ARCH in the larger context of econometric time-series modeling, and Hamilton (1994) gives
considerably more detail in the same context. Becketti (2013, chap. 8) provides a simple introduction
to ARCH modeling with an emphasis on how to use Stata’s arch command.

arch fits models of autoregressive conditional heteroskedasticity (ARCH, GARCH, etc.) using con-
ditional maximum likelihood. By “conditional”, we mean that the likelihood is computed based on
an assumed or estimated set of priming values for the squared innovations ε2t and variances σ2

t prior
to the estimation sample; see Hamilton (1994) or Bollerslev (1986). Sometimes more conditioning is
done on the first a, g, or a+ g observations in the sample, where a is the maximum ARCH term lag
and g is the maximum GARCH term lag (or the maximum lags from the other ARCH family terms).

28 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

The original ARCH model proposed by Engle (1982) modeled the variance of a regression model’s
disturbances as a linear function of lagged values of the squared regression disturbances. We can
write an ARCH(m) model as

yt = xtβ+ εt (conditional mean)
σ2
t = γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + · · ·+ γmε

2
t−m (conditional variance)

where
ε2t is the squared residuals (or innovations)

γi are the ARCH parameters

The ARCH model has a specification for both the conditional mean and the conditional variance,
and the variance is a function of the size of prior unanticipated innovations—ε2t . This model was
generalized by Bollerslev (1986) to include lagged values of the conditional variance—a GARCH
model. The GARCH(m, k) model is written as

yt = xtβ+ εt

σ2
t = γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + · · ·+ γmε

2
t−m + δ1σ

2
t−1 + δ2σ

2
t−2 + · · ·+ δkσ

2
t−k

where
γi are the ARCH parameters

δi are the GARCH parameters

In his pioneering work, Engle (1982) assumed that the error term, εt, followed a Gaussian
(normal) distribution: εt ∼ N(0, σ2

t). However, as Mandelbrot (1963) and many others have noted,
the distribution of stock returns appears to be leptokurtotic, meaning that extreme stock returns are
more frequent than would be expected if the returns were normally distributed. Researchers have
therefore assumed other distributions that can have fatter tails than the normal distribution; arch
allows you to fit models assuming the errors follow Student’s t distribution or the generalized error
distribution. The t distribution has fatter tails than the normal distribution; as the degree-of-freedom
parameter approaches infinity, the t distribution converges to the normal distribution. The generalized
error distribution’s tails are fatter than the normal distribution’s when the shape parameter is less than
two and are thinner than the normal distribution’s when the shape parameter is greater than two.

The GARCH model of conditional variance can be considered an ARMA process in the squared
innovations, although not in the variances as the equations might seem to suggest; see Hamilton (1994).
Specifically, the standard GARCH model implies that the squared innovations result from

ε2t = γ0 + (γ1 + δ1)ε2t−1 + (γ2 + δ2)ε2t−2 + · · ·+ (γk + δk)ε2t−k +wt− δ1wt−1− δ2wt−2− δ3wt−3

where
wt = ε2t − σ2

t

wt is a white-noise process that is fundamental for ε2t

One of the primary benefits of the GARCH specification is its parsimony in identifying the conditional
variance. As with ARIMA models, the ARMA specification in GARCH allows the conditional variance
to be modeled with fewer parameters than with an ARCH specification alone. Empirically, many series
with a conditionally heteroskedastic disturbance have been adequately modeled with a GARCH(1,1)
specification.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 29

An ARMA process in the disturbances can easily be added to the mean equation. For example, the
mean equation can be written with an ARMA(1, 1) disturbance as

yt = xtβ+ ρ(yt−1 − xt−1β) + θεt−1 + εt

with an obvious generalization to ARMA(p, q) by adding terms; see [TS] arima for more discussion
of this specification. This change affects only the conditional-variance specification in that ε2t now
results from a different specification of the conditional mean.

Much of the literature on ARCH models focuses on alternative specifications of the variance equation.
arch allows many of these specifications to be requested using the saarch() through pgarch()
options, which imply that one or more terms may be changed or added to the specification of the
variance equation.

These alternative specifications also address asymmetry. Both the ARCH and GARCH specifications
imply a symmetric impact of innovations. Whether an innovation ε2t is positive or negative makes
no difference to the expected variance σ2

t in the ensuing periods; only the size of the innovation
matters—good news and bad news have the same effect. Many theories, however, suggest that positive
and negative innovations should vary in their impact. For risk-averse investors, a large unanticipated
drop in the market is more likely to lead to higher volatility than a large unanticipated increase (see
Black [1976], Nelson [1991]). saarch(), tarch(), aarch(), abarch(), earch(), aparch(), and
tparch() allow various specifications of asymmetric effects.

narch(), narchk(), nparch(), and nparchk() imply an asymmetric impact of a specific form.
All the models considered so far have a minimum conditional variance when the lagged innovations
are all zero. “No news is good news” when it comes to keeping the conditional variance small.
narch(), narchk(), nparch(), and nparchk() also have a symmetric response to innovations,
but they are not centered at zero. The entire news-response function (response to innovations) is
shifted horizontally so that minimum variance lies at some specific positive or negative value for prior
innovations.

ARCH-in-mean models allow the conditional variance of the series to influence the conditional
mean. This is particularly convenient for modeling the risk–return relationship in financial series; the
riskier an investment, with all else equal, the lower its expected return. ARCH-in-mean models modify
the specification of the conditional mean equation to be

yt = xtβ+ ψσ2
t + εt (ARCH-in-mean)

Although this linear form in the current conditional variance has dominated the literature, arch allows
the conditional variance to enter the mean equation through a nonlinear transformation g() and for
this transformed term to be included contemporaneously or lagged.

yt = xtβ+ ψ0g(σ2
t) + ψ1g(σ2

t−1) + ψ2g(σ2
t−2) + · · ·+ εt

Square root is the most commonly used g() transformation because researchers want to include a
linear term for the conditional standard deviation, but any transform g() is allowed.

Example 1: ARCH model

Consider a simple model of the U.S. Wholesale Price Index (WPI) (Enders 2004, 87–93), which
we also consider in [TS] arima. The data are quarterly over the period 1960q1 through 1990q4.

In [TS] arima, we fit a model of the continuously compounded rate of change in the WPI,
ln(WPIt)− ln(WPIt−1). The graph of the differenced series—see [TS] arima—clearly shows periods
of high volatility and other periods of relative tranquility. This makes the series a good candidate for
ARCH modeling. Indeed, price indices have been a common target of ARCH models. Engle (1982)
presented the original ARCH formulation in an analysis of U.K. inflation rates.

30 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

First, we fit a constant-only model by OLS and test ARCH effects by using Engle’s Lagrange
multiplier test (estat archlm).

. use http://www.stata-press.com/data/r14/wpi1

. regress D.ln_wpi

Source SS df MS Number of obs = 123
F(0, 122) = 0.00

Model 0 0 . Prob > F = .
Residual .02521709 122 .000206697 R-squared = 0.0000

Adj R-squared = 0.0000
Total .02521709 122 .000206697 Root MSE = .01438

D.ln_wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons .0108215 .0012963 8.35 0.000 .0082553 .0133878

. estat archlm, lags(1)
LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p) chi2 df Prob > chi2

1 8.366 1 0.0038

H0: no ARCH effects vs. H1: ARCH(p) disturbance

Because the LM test shows a p-value of 0.0038, which is well below 0.05, we reject the null hypothesis
of no ARCH(1) effects. Thus we can further estimate the ARCH(1) parameter by specifying arch(1).
See [R] regress postestimation time series for more information on Engle’s LM test.

The first-order generalized ARCH model (GARCH, Bollerslev 1986) is the most commonly used
specification for the conditional variance in empirical work and is typically written GARCH(1, 1). We
can estimate a GARCH(1, 1) process for the log-differenced series by typing

. arch D.ln_wpi, arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 355.23458
Iteration 1: log likelihood = 365.64586

(output omitted)
Iteration 10: log likelihood = 373.23397

ARCH family regression

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 373.234 Prob > chi2 = .

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0061167 .0010616 5.76 0.000 .0040361 .0081974

ARCH
arch
L1. .4364123 .2437428 1.79 0.073 -.0413147 .9141394

garch
L1. .4544606 .1866606 2.43 0.015 .0886127 .8203086

_cons .0000269 .0000122 2.20 0.028 2.97e-06 .0000508

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 31

We have estimated the ARCH(1) parameter to be 0.436 and the GARCH(1) parameter to be 0.454, so
our fitted GARCH(1, 1) model is

yt = 0.0061 + εt

σ2
t = 0.436 ε2t−1 + 0.454σ2

t−1

where yt = ln(wpit)− ln(wpit−1).

The model Wald test and probability are both reported as missing (.). By convention, Stata reports
the model test for the mean equation. Here and fairly often for ARCH models, the mean equation
consists only of a constant, and there is nothing to test.

Example 2: ARCH model with ARMA process

We can retain the GARCH(1, 1) specification for the conditional variance and model the mean as
an ARMA process with AR(1) and MA(1) terms as well as a fourth-lag MA term to control for quarterly
seasonal effects by typing

32 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

. arch D.ln_wpi, ar(1) ma(1 4) arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 380.9997
Iteration 1: log likelihood = 388.57823
Iteration 2: log likelihood = 391.34143
Iteration 3: log likelihood = 396.36991
Iteration 4: log likelihood = 398.01098
(switching optimization to BFGS)
Iteration 5: log likelihood = 398.23668
BFGS stepping has contracted, resetting BFGS Hessian (0)
Iteration 6: log likelihood = 399.21497
Iteration 7: log likelihood = 399.21537 (backed up)

(output omitted)
(switching optimization to BHHH)
Iteration 15: log likelihood = 399.51441
Iteration 16: log likelihood = 399.51443
Iteration 17: log likelihood = 399.51443

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 153.56
Log likelihood = 399.5144 Prob > chi2 = 0.0000

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0069541 .0039517 1.76 0.078 -.000791 .0146992

ARMA
ar

L1. .7922674 .1072225 7.39 0.000 .5821153 1.00242

ma
L1. -.341774 .1499943 -2.28 0.023 -.6357574 -.0477905
L4. .2451724 .1251131 1.96 0.050 -.0000447 .4903896

ARCH
arch
L1. .2040449 .1244991 1.64 0.101 -.0399688 .4480587

garch
L1. .6949687 .1892176 3.67 0.000 .3241091 1.065828

_cons .0000119 .0000104 1.14 0.253 -8.52e-06 .0000324

To clarify exactly what we have estimated, we could write our model as

yt = 0.007 + 0.792 (yt−1 − 0.007)− 0.342 εt−1 + 0.245 εt−4 + εt

σ2
t = 0.204 ε2t−1 + .695σ2

t−1

where yt = ln(wpit)− ln(wpit−1).

The ARCH(1) coefficient, 0.204, is not significantly different from zero, but the ARCH(1) and
GARCH(1) coefficients are significant collectively. If you doubt this, you can check with test.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 33

. test [ARCH]L1.arch [ARCH]L1.garch

(1) [ARCH]L.arch = 0
(2) [ARCH]L.garch = 0

chi2(2) = 84.92
Prob > chi2 = 0.0000

(For comparison, we fit the model over the same sample used in example 1 of [TS] arima; Enders
fits this GARCH model but over a slightly different sample.)

Technical note
The rather ugly iteration log on the previous result is typical, as difficulty in converging is common

in ARCH models. This is actually a fairly well-behaved likelihood for an ARCH model. The “switching
optimization to . . . ” messages are standard messages from the default optimization method for arch.
The “backed up” messages are typical of BFGS stepping as the BFGS Hessian is often overoptimistic,
particularly during early iterations. These messages are nothing to be concerned about.

Nevertheless, watch out for the messages “BFGS stepping has contracted, resetting BFGS Hessian”
and “backed up”, which can flag problems that may result in an iteration log that goes on and on.
Stata will never report convergence and will never report final results. The question is, when do you
give up and press Break, and if you do, what then?

If the “BFGS stepping has contracted” message occurs repeatedly (more than, say, five times), it
often indicates that convergence will never be achieved. Literally, it means that the BFGS algorithm
was stuck and reset its Hessian and take a steepest-descent step.

The “backed up” message, if it occurs repeatedly, also indicates problems, but only if the likelihood
value is simultaneously not changing. If the message occurs repeatedly but the likelihood value is
changing, as it did above, all is going well; it is just going slowly.

If you have convergence problems, you can specify options to assist the current maximization
method or try a different method. Or, your model specification and data may simply lead to a likelihood
that is not concave in the allowable region and thus cannot be maximized.

If you see the “backed up” message with no change in the likelihood, you can reset the gradient
tolerance to a larger value. Specifying the gtolerance(999) option disables gradient checking,
allowing convergence to be declared more easily. This does not guarantee that convergence will be
declared, and even if it is, the global maximum likelihood may not have been found.

You can also try to specify initial values.

Finally, you can try a different maximization method; see options discussed under the Maximization
tab above.

ARCH models are notorious for having convergence difficulties. Unlike in most estimators in Stata,
it is common for convergence to require many steps or even to fail. This is particularly true of the
explicitly nonlinear terms such as aarch(), narch(), aparch(), or archm (ARCH-in-mean), and of
any model with several lags in the ARCH terms. There is not always a solution. You can try other
maximization methods or different starting values, but if your data do not support your assumed ARCH
structure, convergence simply may not be possible.

ARCH models can be susceptible to irrelevant regressors or unnecessary lags, whether in the
specification of the conditional mean or in the conditional variance. In these situations, arch will
often continue to iterate, making little to no improvement in the likelihood. We view this conservative
approach as better than declaring convergence prematurely when the likelihood has not been fully

34 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

maximized. arch is estimating the conditional form of second sample moments, often with flexible
functions, and that is asking much of the data.

Technical note
if exp and in range are interpreted differently with commands accepting time-series operators.

The time-series operators are resolved before the conditions are tested, which may lead to some
confusion. Note the results of the following list commands:

. use http://www.stata-press.com/data/r14/archxmpl

. list t y l.y in 5/10

L.
t y y

5. 1961q1 30.8 30.7
6. 1961q2 30.5 30.8
7. 1961q3 30.5 30.5
8. 1961q4 30.6 30.5
9. 1962q1 30.7 30.6

10. 1962q2 30.6 30.7

. keep in 5/10
(118 observations deleted)

. list t y l.y

L.
t y y

1. 1961q1 30.8 .
2. 1961q2 30.5 30.8
3. 1961q3 30.5 30.5
4. 1961q4 30.6 30.5
5. 1962q1 30.7 30.6

6. 1962q2 30.6 30.7

We have one more lagged observation for y in the first case: l.y was resolved before the in
restriction was applied. In the second case, the dataset no longer contains the value of y to compute
the first lag. This means that

. use http://www.stata-press.com/data/r14/archxmpl, clear

. arch y l.x if twithin(1962q2, 1990q3), arch(1)

is not the same as

. keep if twithin(1962q2, 1990q3)

. arch y l.x, arch(1)

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 35

Example 3: Asymmetric effects—EGARCH model

Continuing with the WPI data, we might be concerned that the economy as a whole responds
differently to unanticipated increases in wholesale prices than it does to unanticipated decreases.
Perhaps unanticipated increases lead to cash flow issues that affect inventories and lead to more
volatility. We can see if the data support this supposition by specifying an ARCH model that allows an
asymmetric effect of “news”—innovations or unanticipated changes. One of the most popular such
models is EGARCH (Nelson 1991). The full first-order EGARCH model for the WPI can be specified
as follows:

. use http://www.stata-press.com/data/r14/wpi1, clear

. arch D.ln_wpi, ar(1) ma(1 4) earch(1) egarch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 227.5251
Iteration 1: log likelihood = 381.68426

(output omitted)
Iteration 23: log likelihood = 405.31453

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 156.02
Log likelihood = 405.3145 Prob > chi2 = 0.0000

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0087342 .0034004 2.57 0.010 .0020695 .0153989

ARMA
ar

L1. .7692139 .0968393 7.94 0.000 .5794124 .9590154

ma
L1. -.3554623 .1265721 -2.81 0.005 -.6035391 -.1073855
L4. .2414626 .0863834 2.80 0.005 .0721543 .4107709

ARCH
earch

L1. .4063939 .11635 3.49 0.000 .1783521 .6344358

earch_a
L1. .2467327 .1233357 2.00 0.045 .0049993 .4884662

egarch
L1. .8417332 .0704074 11.96 0.000 .7037372 .9797291

_cons -1.488366 .6604354 -2.25 0.024 -2.782795 -.1939363

Our result for the variance is

ln(σ2
t) = −1.49 + .406 zt−1 + .247 (

∣∣zt−1

∣∣−√2/π) + .842 ln(σ2
t−1)

where zt = εt/σt, which is distributed as N(0, 1).

This is a strong indication for a leverage effect. The positive L1.earch coefficient implies that
positive innovations (unanticipated price increases) are more destabilizing than negative innovations.
The effect appears strong (0.406) and is substantially larger than the symmetric effect (0.247). In fact,
the relative scales of the two coefficients imply that the positive leverage completely dominates the
symmetric effect.

36 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

This can readily be seen if we plot what is often referred to as the news-response or news-impact
function. This curve shows the resulting conditional variance as a function of unanticipated news,
in the form of innovations, that is, the conditional variance σ2

t as a function of εt. Thus we must
evaluate σ2

t for various values of εt—say, −4 to 4—and then graph the result.

Example 4: Asymmetric power ARCH model

As an example of a frequently sampled, long-run series, consider the daily closing indices of the
Dow Jones Industrial Average, variable dowclose. To avoid the first half of the century, when the
New York Stock Exchange was open for Saturday trading, only data after 1jan1953 are used. The
compound return of the series is used as the dependent variable and is graphed below.

−
.3

−
.2

−
.1

0
.1

01jan1950 01jan1960 01jan1970 01jan1980 01jan1990
date

DOW, compound return on DJIA

We formed this difference by referring to D.ln dow, but only after playing a trick. The series is
daily, and each observation represents the Dow closing index for the day. Our data included a time
variable recorded as a daily date. We wanted, however, to model the log differences in the series,
and we wanted the span from Friday to Monday to appear as a single-period difference. That is, the
day before Monday is Friday. Because our dataset was tsset with date, the span from Friday to
Monday was 3 days. The solution was to create a second variable that sequentially numbered the
observations. By tsseting the data with this new variable, we obtained the desired differences.

. generate t = _n

. tsset t

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 37

Now our data look like this:

. use http://www.stata-press.com/data/r14/dow1, clear

. generate dayofwk = dow(date)

. list date dayofwk t ln_dow D.ln_dow in 1/8

D.
date dayofwk t ln_dow ln_dow

1. 02jan1953 5 1 5.677096 .
2. 05jan1953 1 2 5.682899 .0058026
3. 06jan1953 2 3 5.677439 -.0054603
4. 07jan1953 3 4 5.672636 -.0048032
5. 08jan1953 4 5 5.671259 -.0013762

6. 09jan1953 5 6 5.661223 -.0100365
7. 12jan1953 1 7 5.653191 -.0080323
8. 13jan1953 2 8 5.659134 .0059433

. list date dayofwk t ln_dow D.ln_dow in -8/l

D.
date dayofwk t ln_dow ln_dow

9334. 08feb1990 4 9334 7.880188 .0016198
9335. 09feb1990 5 9335 7.881635 .0014472
9336. 12feb1990 1 9336 7.870601 -.011034
9337. 13feb1990 2 9337 7.872665 .0020638
9338. 14feb1990 3 9338 7.872577 -.0000877

9339. 15feb1990 4 9339 7.88213 .009553
9340. 16feb1990 5 9340 7.876863 -.0052676
9341. 20feb1990 2 9341 7.862054 -.0148082

The difference operator D spans weekends because the specified time variable, t, is not a true date
and has a difference of 1 for all observations. We must leave this contrived time variable in place
during estimation, or arch will be convinced that our dataset has gaps. If we were using calendar
dates, we would indeed have gaps.

Ding, Granger, and Engle (1993) fit an A-PARCH model of daily returns of the Standard and Poor’s
500 (S&P 500) for 3jan1928–30aug1991. We will fit the same model for the Dow data shown above.
The model includes an AR(1) term as well as the A-PARCH specification of conditional variance.

38 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

. arch D.ln_dow, ar(1) aparch(1) pgarch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 31139.547
Iteration 1: log likelihood = 31350.751

(output omitted)
Iteration 68: log likelihood = 32273.555 (backed up)
Iteration 69: log likelihood = 32273.555

ARCH family regression -- AR disturbances

Sample: 2 - 9341 Number of obs = 9,340
Distribution: Gaussian Wald chi2(1) = 175.46
Log likelihood = 32273.56 Prob > chi2 = 0.0000

OPG
D.ln_dow Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_dow
_cons .0001786 .0000875 2.04 0.041 7.15e-06 .00035

ARMA
ar

L1. .1410944 .0106519 13.25 0.000 .1202171 .1619716

ARCH
aparch

L1. .0626323 .0034307 18.26 0.000 .0559082 .0693564

aparch_e
L1. -.3645093 .0378485 -9.63 0.000 -.4386909 -.2903277

pgarch
L1. .9299015 .0030998 299.99 0.000 .923826 .935977

_cons 7.19e-06 2.53e-06 2.84 0.004 2.23e-06 .0000121

POWER
power 1.585187 .0629186 25.19 0.000 1.461869 1.708505

In the iteration log, the final iteration reports the message “backed up”. For most estimators,
ending on a “backed up” message would be a cause for great concern, but not with arch or, for that
matter, arima, as long as you do not specify the gtolerance() option. arch and arima, by default,
monitor the gradient and declare convergence only if, in addition to everything else, the gradient is
small enough.

The fitted model demonstrates substantial asymmetry, with the large negative L1.aparch e
coefficient indicating that the market responds with much more volatility to unexpected drops in
returns (bad news) than it does to increases in returns (good news).

Example 5: ARCH model with nonnormal errors

Stock returns tend to be leptokurtotic, meaning that large returns (either positive or negative) occur
more frequently than one would expect if returns were in fact normally distributed. Here we refit the
previous A-PARCH model assuming the errors follow the generalized error distribution, and we let
arch estimate the shape parameter of the distribution.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 39

. use http://www.stata-press.com/data/r14/dow1, clear

. arch D.ln_dow, ar(1) aparch(1) pgarch(1) distribution(ged)

(setting optimization to BHHH)
Iteration 0: log likelihood = 31139.547
Iteration 1: log likelihood = 31348.13

(output omitted)
Iteration 74: log likelihood = 32486.461

ARCH family regression -- AR disturbances

Sample: 2 - 9341 Number of obs = 9,340
Distribution: GED Wald chi2(1) = 178.22
Log likelihood = 32486.46 Prob > chi2 = 0.0000

OPG
D.ln_dow Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_dow
_cons .0002735 .000078 3.51 0.000 .0001207 .0004264

ARMA
ar

L1. .1337479 .0100187 13.35 0.000 .1141116 .1533842

ARCH
aparch

L1. .0641772 .0049401 12.99 0.000 .0544949 .0738595

aparch_e
L1. -.405225 .0573059 -7.07 0.000 -.5175426 -.2929074

pgarch
L1. .9341739 .0045668 204.56 0.000 .9252231 .9431247

_cons .0000216 .0000117 1.84 0.066 -1.39e-06 .0000446

POWER
power 1.32524 .1030699 12.86 0.000 1.123227 1.527253

/lnshape .3527019 .0094819 37.20 0.000 .3341177 .371286

shape 1.422907 .0134919 1.396707 1.449598

The ARMA and ARCH coefficients are similar to those we obtained when we assumed normally
distributed errors, though we do note that the power term is now closer to 1. The estimated shape
parameter for the generalized error distribution is shown at the bottom of the output. Here the shape
parameter is 1.42; because it is less than 2, the distribution of the errors has tails that are fatter than
they would be if the errors were normally distributed.

Example 6: ARCH model with constraints

Engle’s (1982) original model, which sparked the interest in ARCH, provides an example requiring
constraints. Most current ARCH specifications use GARCH terms to provide flexible dynamic properties
without estimating an excessive number of parameters. The original model was limited to ARCH
terms, and to help cope with the collinearity of the terms, a declining lag structure was imposed in
the parameters. The conditional variance equation was specified as

σ2
t = α0 + α(.4 εt−1 + .3 εt−2 + .2 εt−3 + .1 εt−4)

= α0 + .4αεt−1 + .3αεt−2 + .2αεt−3 + .1αεt−4

40 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

From the earlier arch output, we know how the coefficients will be named. In Stata, the formula is

σ2
t = [ARCH] cons + .4 [ARCH]L1.arch εt−1 + .3 [ARCH]L2.arch εt−2

+ .2 [ARCH]L3.arch εt−3 + .1 [ARCH]L4.arch εt−4

We could specify these linear constraints many ways, but the following seems fairly intuitive; see
[R] constraint for syntax.

. use http://www.stata-press.com/data/r14/wpi1, clear

. constraint 1 (3/4)*[ARCH]l1.arch = [ARCH]l2.arch

. constraint 2 (2/4)*[ARCH]l1.arch = [ARCH]l3.arch

. constraint 3 (1/4)*[ARCH]l1.arch = [ARCH]l4.arch

The original model was fit on U.K. inflation; we will again use the WPI data and retain our earlier
specification of the mean equation, which differs from Engle’s U.K. inflation model. With our
constraints, we type

. arch D.ln_wpi, ar(1) ma(1 4) arch(1/4) constraints(1/3)

(setting optimization to BHHH)
Iteration 0: log likelihood = 396.80198
Iteration 1: log likelihood = 399.07809

(output omitted)
Iteration 9: log likelihood = 399.46243

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 123.32
Log likelihood = 399.4624 Prob > chi2 = 0.0000

(1) .75*[ARCH]L.arch - [ARCH]L2.arch = 0
(2) .5*[ARCH]L.arch - [ARCH]L3.arch = 0
(3) .25*[ARCH]L.arch - [ARCH]L4.arch = 0

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0077204 .0034531 2.24 0.025 .0009525 .0144883

ARMA
ar

L1. .7388168 .1126811 6.56 0.000 .5179659 .9596676

ma
L1. -.2559691 .1442861 -1.77 0.076 -.5387646 .0268264
L4. .2528923 .1140185 2.22 0.027 .02942 .4763645

ARCH
arch
L1. .2180138 .0737787 2.95 0.003 .0734101 .3626174
L2. .1635103 .055334 2.95 0.003 .0550576 .2719631
L3. .1090069 .0368894 2.95 0.003 .0367051 .1813087
L4. .0545034 .0184447 2.95 0.003 .0183525 .0906544

_cons .0000483 7.66e-06 6.30 0.000 .0000333 .0000633

L1.arch, L2.arch, L3.arch, and L4.arch coefficients have the constrained relative sizes.

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 41

Stored results
arch stores the following in e():
Scalars

e(N) number of observations
e(N gaps) number of gaps
e(condobs) number of conditioning observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(archi) σ2

0=ε20, priming values
e(archany) 1 if model contains ARCH terms, 0 otherwise
e(tdf) degrees of freedom for Student’s t distribution
e(shape) shape parameter for generalized error distribution
e(tmin) minimum time
e(tmax) maximum time
e(power) ϕ for power ARCH terms
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) arch
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(eqnames) names of equations
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian, t, or ged
e(mhet) 1 if multiplicative heteroskedasticity
e(dfopt) yes if degrees of freedom for t distribution or shape parameter for GED distribution

was estimated; no otherwise
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(ma) lags for moving-average terms
e(ar) lags for autoregressive terms
e(arch) lags for ARCH terms
e(archm) ARCH-in-mean lags
e(archmexp) ARCH-in-mean exp
e(earch) lags for EARCH terms
e(egarch) lags for EGARCH terms
e(aarch) lags for AARCH terms
e(narch) lags for NARCH terms
e(aparch) lags for A-PARCH terms
e(nparch) lags for NPARCH terms
e(saarch) lags for SAARCH terms
e(parch) lags for PARCH terms
e(tparch) lags for TPARCH terms
e(abarch) lags for ABARCH terms
e(tarch) lags for TARCH terms

42 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

e(atarch) lags for ATARCH terms
e(sdgarch) lags for SDGARCH terms
e(pgarch) lags for PGARCH terms
e(garch) lags for GARCH terms
e(opt) type of optimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(tech) maximization technique, including number of iterations
e(tech steps) number of iterations performed before switching techniques
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
The mean equation for the model fit by arch and with ARMA terms can be written as

yt = xtβ+

p∑
i=1

ψig(σ2
t−i) +

p∑
j=1

ρj

{
yt−j − xt−jβ−

p∑
i=1

ψig(σ2
t−j−i)

}

+

q∑
k=1

θkεt−k + εt (conditional mean)

where
β are the regression parameters,

ψ are the ARCH-in-mean parameters,

ρ are the autoregression parameters,

θ are the moving-average parameters, and

g() is a general function, see the archmexp() option.

Any of the parameters in this full specification of the conditional mean may be zero. For example,
the model need not have moving-average parameters (θ = 0) or ARCH-in-mean parameters (ψ = 0).

The variance equation will be one of the following:

σ2 = γ0 +A(σ, ε) +B(σ, ε)2 (1)

lnσ2
t = γ0 + C(lnσ, z) +A(σ, ε) +B(σ, ε)2 (2)

σϕt = γ0 +D(σ, ε) +A(σ, ε) +B(σ, ε)2 (3)

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 43

where A(σ, ε), B(σ, ε), C(lnσ, z), and D(σ, ε) are linear sums of the appropriate ARCH terms; see
Details of syntax for more information. Equation (1) is used if no EGARCH or power ARCH terms
are included in the model, (2) if EGARCH terms are included, and (3) if any power ARCH terms are
included; see Details of syntax.

Methods and formulas are presented under the following headings:

Priming values
Likelihood from prediction error decomposition
Missing data

Priming values

The above model is recursive with potentially long memory. It is necessary to assume preestimation
sample values for εt, ε2t , and σ2

t to begin the recursions, and the remaining computations are therefore
conditioned on these priming values, which can be controlled using the arch0() and arma0()
options. See options discussed under the Priming tab above.

The arch0(xb0wt) and arch0(xbwt) options compute a weighted sum of estimated disturbances
with more weight on the early observations. With either of these options,

σ2
t0−i = ε2t0−i = (1− 0.7)

T−1∑
t=0

0.7T−t−1 ε2T−t ∀i

where t0 is the first observation for which the likelihood is computed; see options discussed under the
Priming tab above. The ε2t are all computed from the conditional mean equation. If arch0(xb0wt)
is specified, β, ψi, ρj , and θk are taken from initial regression estimates and held constant during
optimization. If arch0(xbwt) is specified, the current estimates of β, ψi, ρj , and θk are used to
compute ε2t on every iteration. If any ψi is in the mean equation (ARCH-in-mean is specified), the
estimates of ε2t from the initial regression estimates are not consistent.

Likelihood from prediction error decomposition

The likelihood function for ARCH has a particularly simple form. Given priming (or conditioning)
values of εt, ε2t , and σ2

t , the mean equation above can be solved recursively for every εt (prediction error
decomposition). Likewise, the conditional variance can be computed recursively for each observation
by using the variance equation. Using these predicted errors, their associated variances, and the
assumption that εt ∼ N(0, σ2

t), we find that the log likelihood for each observation t is

lnLt = −1

2

{
ln(2πσ2

t) +
ε2t
σ2
t

}

If we assume that εt ∼ t(df), then as given in Hamilton (1994, 662),

lnLt = ln Γ

(
df + 1

2

)
− ln Γ

(
df
2

)
− 1

2

[
ln
{

(df− 2)πσ2
t

}
+ (df + 1) ln

{
1 +

ε2t
(df− 2)σ2

t

}]
The likelihood is not defined for df ≤ 2, so instead of estimating df directly, we estimatem = ln(df−2).
Then df = exp(m) + 2 > 2 for any m.

44 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Following Bollerslev, Engle, and Nelson (1994, 2978), the log likelihood for the tth observation,
assuming εt ∼ GED(s), is

lnLt = ln s− lnλ− s+ 1

s
ln 2− ln Γ

(
s−1
)
− 1

2

∣∣∣∣ εtλσt
∣∣∣∣s

where

λ =

{
Γ
(
s−1
)

22/sΓ (3s−1)

}1/2

To enforce the restriction that s > 0, we estimate r = ln s.

This command supports the Huber/White/sandwich estimator of the variance using vce(robust).
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

Missing data

ARCH allows missing data or missing observations but does not attempt to condition on the
surrounding data. If a dynamic component cannot be computed—εt, ε2t , and/or σ2

t —its priming
value is substituted. If a covariate, the dependent variable, or the entire observation is missing, the
observation does not enter the likelihood, and its dynamic components are set to their priming values
for that observation. This is acceptable only asymptotically and should not be used with a great deal
of missing data.

� �
Robert Fry Engle (1942–) was born in Syracuse, New York. He earned degrees in physics
and economics at Williams College and Cornell and then worked at MIT and the University of
California, San Diego, before moving to New York University Stern School of Business in 2000.
He was awarded the 2003 Nobel Prize in Economics for research on autoregressive conditional
heteroskedasticity and is a leading expert in time-series analysis, especially the analysis of
financial markets.� �

References
Adkins, L. C., and R. C. Hill. 2011. Using Stata for Principles of Econometrics. 4th ed. Hoboken, NJ: Wiley.

Baum, C. F. 2000. sts15: Tests for stationarity of a time series. Stata Technical Bulletin 57: 36–39. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 356–360. College Station, TX: Stata Press.

Baum, C. F., and R. I. Sperling. 2000. sts15.1: Tests for stationarity of a time series: Update. Stata Technical Bulletin
58: 35–36. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 360–362. College Station, TX: Stata Press.

Baum, C. F., and V. L. Wiggins. 2000. sts16: Tests for long memory in a time series. Stata Technical Bulletin 57:
39–44. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 362–368. College Station, TX: Stata Press.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman. 1974. Estimation and inference in nonlinear structural
models. Annals of Economic and Social Measurement 3/4: 653–665.

Black, F. 1976. Studies of stock price volatility changes. Proceedings of the American Statistical Association, Business
and Economics Statistics 177–181.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–327.

Bollerslev, T., R. Y. Chou, and K. F. Kroner. 1992. ARCH modeling in finance. Journal of Econometrics 52: 5–59.

http://www.stata.com/bookstore/uspe.html
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata.com/products/stb/journals/stb58.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-press.com/books/introduction-to-time-series-using-stata/

arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 45

Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. ARCH models. In Vol. 4 of Handbook of Econometrics, ed.
R. F. Engle and D. L. McFadden. Amsterdam: Elsevier.

Bollerslev, T., and J. M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models
with time-varying covariances. Econometric Reviews 11: 143–172.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

Diebold, F. X. 2003. The ET Interview: Professor Robert F. Engle. Econometric Theory 19: 1159–1193.

Ding, Z., C. W. J. Granger, and R. F. Engle. 1993. A long memory property of stock market returns and a new
model. Journal of Empirical Finance 1: 83–106.

Enders, W. 2004. Applied Econometric Time Series. 2nd ed. New York: Wiley.

Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom
inflation. Econometrica 50: 987–1007.

. 1990. Discussion: Stock volatility and the crash of ’87. Review of Financial Studies 3: 103–106.

Engle, R. F., D. M. Lilien, and R. P. Robins. 1987. Estimating time varying risk premia in the term structure: The
ARCH-M model. Econometrica 55: 391–407.

Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. On the relation between the expected value and the volatility
of the nominal excess return on stocks. Journal of Finance 48: 1779–1801.

Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1990. The Econometric Analysis of Time Series. 2nd ed. Cambridge, MA: MIT Press.

Higgins, M. L., and A. K. Bera. 1992. A class of nonlinear ARCH models. International Economic Review 33:
137–158.

Hill, R. C., W. E. Griffiths, and G. C. Lim. 2011. Principles of Econometrics. 4th ed. Hoboken, NJ: Wiley.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. 1985. The Theory and Practice of Econometrics.
2nd ed. New York: Wiley.

Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press.

Mandelbrot, B. B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370.

Pickup, M. 2015. Introduction to Time Series Analysis. Thousand Oaks, CA: Sage.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Stock, J. H., and M. W. Watson. 2011. Introduction to Econometrics. 3rd ed. Boston: Addison–Wesley.

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.

Zakoian, J. M. 1994. Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18: 931–955.

Also see
[TS] arch postestimation — Postestimation tools for arch

[TS] tsset — Declare data to be time-series data

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] mgarch — Multivariate GARCH models

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/eie.html
http://www.stata.com/bookstore/ea.html
http://www.stata.com/bookstore/poe.html
http://www.stata.com/bookstore/introduction-time-series-analysis/
http://www.stata.com/bookstore/ite.html
http://www.stata.com/bookstore/ie.html

Title

arch postestimation — Postestimation tools for arch

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are available after arch:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

46

arch postestimation — Postestimation tools for arch 47

predict

Description for predict

predict creates a new variable containing predictions such as expected values and residuals. All
predictions are available as static one-step-ahead predictions or as dynamic multistep predictions, and
you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb predicted values for mean equation—the differenced series; the default
y predicted values for the mean equation in y—the undifferenced series
variance predicted values for the conditional variance
het predicted values of the variance, considering only the multiplicative

heteroskedasticity
residuals residuals or predicted innovations
yresiduals residuals or predicted innovations in y—the undifferenced series

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

options Description

Options

dynamic(time constant) how to handle the lags of yt
at(varnameε | #ε varnameσ2 | #σ2) make static predictions
t0(time constant) set starting point for the recursions to time constant
structural calculate considering the structural component only

time constant is a # or a time literal, such as td(1jan1995) or tq(1995q1), etc.; see
Conveniently typing SIF values in [D] datetime.

48 arch postestimation — Postestimation tools for arch

Options for predict
Six statistics can be computed by using predict after arch: the predictions of the mean equation
(option xb, the default), the undifferenced predictions of the mean equation (option y), the predictions
of the conditional variance (option variance), the predictions of the multiplicative heteroskedasticity
component of variance (option het), the predictions of residuals or innovations (option residuals),
and the predictions of residuals or innovations in terms of y (option yresiduals). Given the dynamic
nature of ARCH models and because the dependent variable might be differenced, there are other
ways of computing each statistic. We can use all the data on the dependent variable available right
up to the time of each prediction (the default, which is often called a one-step prediction), or we
can use the data up to a particular time, after which the predicted value of the dependent variable
is used recursively to make later predictions (option dynamic()). Either way, we can consider or
ignore the ARMA disturbance component, which is considered by default and is ignored if you specify
the structural option. We might also be interested in predictions at certain fixed points where we
specify the prior values of εt and σ2

t (option at()).

� � �
Main �

xb, the default, calculates the predictions from the mean equation. If D.depvar is the dependent
variable, these predictions are of D.depvar and not of depvar itself.

y specifies that predictions of depvar are to be made even if the model was specified for, say,
D.depvar.

variance calculates predictions of the conditional variance σ̂2
t .

het calculates predictions of the multiplicative heteroskedasticity component of variance.

residuals calculates the residuals. If no other options are specified, these are the predicted innovations
εt; that is, they include any ARMA component. If the structural option is specified, these are
the residuals from the mean equation, ignoring any ARMA terms; see structural below. The
residuals are always from the estimated equation, which may have a differenced dependent variable;
if depvar is differenced, they are not the residuals of the undifferenced depvar.

yresiduals calculates the residuals for depvar, even if the model was specified for, say, D.depvar. As
with residuals, the yresiduals are computed from the model, including any ARMA component.
If the structural option is specified, any ARMA component is ignored and yresiduals are the
residuals from the structural equation; see structural below.

� � �
Options �

dynamic(time constant) specifies how lags of yt in the model are to be handled. If dynamic()
is not specified, actual values are used everywhere lagged values of yt appear in the model to
produce one-step-ahead forecasts.

dynamic(time constant) produces dynamic (also known as recursive) forecasts. time constant
specifies when the forecast is to switch from one step ahead to dynamic. In dynamic forecasts,
references to yt evaluate to the prediction of yt for all periods at or after time constant; they
evaluate to the actual value of yt for all prior periods.

dynamic(10), for example, would calculate predictions where any reference to yt with t < 10
evaluates to the actual value of yt and any reference to yt with t ≥ 10 evaluates to the prediction
of yt. This means that one-step-ahead predictions would be calculated for t < 10 and dynamic
predictions would be calculated thereafter. Depending on the lag structure of the model, the dynamic
predictions might still refer to some actual values of yt.

You may also specify dynamic(.) to have predict automatically switch from one-step-ahead to
dynamic predictions at p+ q, where p is the maximum AR lag and q is the maximum MA lag.

arch postestimation — Postestimation tools for arch 49

at(varnameε | #ε varnameσ2 | #σ2) makes static predictions. at() and dynamic() may not be
specified together.

Specifying at() allows static evaluation of results for a given set of disturbances. This is useful,
for instance, in generating the news response function. at() specifies two sets of values to be
used for εt and σ2

t , the dynamic components in the model. These specified values are treated as
given. Also, any lagged values of depvar in the model are obtained from the real values of the
dependent variable. All computations are based on actual data and the given values.

at() requires that you specify two arguments, which can be either a variable name or a number.
The first argument supplies the values to be used for εt; the second supplies the values to be used
for σ2

t . If σ2
t plays no role in your model, the second argument may be specified as ‘.’ to indicate

missing.

t0(time constant) specifies the starting point for the recursions to compute the predicted statistics;
disturbances are assumed to be 0 for t < t0(). The default is to set t0() to the minimum t
observed in the estimation sample, meaning that observations before that are assumed to have
disturbances of 0.

t0() is irrelevant if structural is specified because then all observations are assumed to have
disturbances of 0.

t0(5), for example, would begin recursions at t = 5. If your data were quarterly, you might
instead type t0(tq(1961q2)) to obtain the same result.

Any ARMA component in the mean equation or GARCH term in the conditional-variance equation
makes arch recursive and dependent on the starting point of the predictions. This includes
one-step-ahead predictions.

structural makes the calculation considering the structural component only, ignoring any ARMA
terms, and producing the steady-state equilibrium predictions.

50 arch postestimation — Postestimation tools for arch

margins

Description for margins

margins estimates margins of response for expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

xb predicted values for mean equation—the differenced series; the default
y predicted values for the mean equation in y—the undifferenced series
variance predicted values for the conditional variance
het predicted values of the variance, considering only the multiplicative

heteroskedasticity
residuals not allowed with margins

yresiduals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1

Continuing with our EGARCH model example (example 3) in [TS] arch, we can see that predict,
at() calculates σ2

t given a set of specified innovations (εt, εt−1, . . .) and prior conditional variances
(σ2
t−1, σ

2
t−2, . . .). The syntax is

. predict newvar, variance at(epsilon sigma2)

epsilon and sigma2 are either variables or numbers. Using sigma2 is a little tricky because you specify
values of σ2

t , which predict is supposed to predict. predict does not simply copy variable sigma2
into newvar but uses the lagged values contained in sigma2 to produce the predicted value of σ2

t . It
does this for all t, and those results are saved in newvar. (If you are interested in dynamic predictions
of σ2

t , see Options for predict.)

We will generate predictions for σ2
t , assuming that the lagged values of σ2

t are 1, and we will
vary εt from −4 to 4. First, we will create variable et containing εt, and then we will create and
graph the predictions:

arch postestimation — Postestimation tools for arch 51

. generate et = (_n-64)/15

. predict sigma2, variance at(et 1)

. line sigma2 et in 2/l, m(i) c(l) title(News response function)

0
.5

1
1

.5
2

2
.5

C
o

n
d

it
io

n
a

l
v
a

ri
a

n
c
e

,
o

n
e

−
s
te

p

−4 −2 0 2 4
et

News response function

The positive asymmetry does indeed dominate the shape of the news response function. In fact, the
response is a monotonically increasing function of news. The form of the response function shows
that, for our simple model, only positive, unanticipated price increases have the destabilizing effect
that we observe as larger conditional variances.

Example 2

Continuing with our ARCH model with constraints example (example 6) in [TS] arch, using lincom
we can recover the α parameter from the original specification.

. lincom [ARCH]l1.arch/.4

(1) 2.5*[ARCH]L.arch = 0

D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .5450344 .1844468 2.95 0.003 .1835253 .9065436

Any arch parameter could be used to produce an identical estimate.

Also see
[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[U] 20 Estimation and postestimation commands

Title

arfima — Autoregressive fractionally integrated moving-average models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

arfima estimates the parameters of autoregressive fractionally integrated moving-average (ARFIMA)
models.

Long-memory processes are stationary processes whose autocorrelation functions decay more
slowly than short-memory processes. The ARFIMA model provides a parsimonious parameterization of
long-memory processes that nests the autoregressive moving-average (ARMA) model, which is widely
used for short-memory processes. By allowing for fractional degrees of integration, the ARFIMA model
also generalizes the autoregressive integrated moving-average (ARIMA) model with integer degrees of
integration. See [TS] arima for ARMA and ARIMA parameter estimation.

Quick start
Autoregressive fractionally integrated moving-average model for y with regressor x using tsset data

arfima y x

Add autoregressive components of orders 1 and 2 and a moving-average component of order 4
arfima y x, ar(1 2) ma(4)

ARIMA for y with autoregressive components of orders 1 and 2
arfima y, ar(1 2) smemory

Menu
Statistics > Time series > ARFIMA models

52

arfima — Autoregressive fractionally integrated moving-average models 53

Syntax

arfima depvar
[

indepvars
] [

if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
ar(numlist) autoregressive terms
ma(numlist) moving-average terms
smemory estimate short-memory model without fractional integration
mle maximum likelihood estimates; the default
mpl maximum modified-profile-likelihood estimates
constraints(numlist) apply specified linear constraints
collinear do not drop collinear variables

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

You must tsset your data before using arfima; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

ar(numlist) specifies the autoregressive (AR) terms to be included in the model. An AR(p), p ≥ 1,
specification would be ar(1/p). This model includes all lags from 1 to p, but not all lags need
to be included. For example, the specification ar(1 p) would specify an AR(p) with only lags 1
and p included, setting all the other AR lag parameters to 0.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for
the lagged innovations (white-noise disturbances). ma(1/q), q ≥ 1, specifies an MA(q) model, but
like the ar() option, not all lags need to be included.

54 arfima — Autoregressive fractionally integrated moving-average models

smemory causes arfima to fit a short-memory model with d = 0. This option causes arfima to
estimate the parameters of an ARMA model by a method that is asymptotically equivalent to that
produced by arima; see [TS] arima.

mle causes arfima to estimate the parameters by maximum likelihood. This method is the default.

mpl causes arfima to estimate the parameters by maximum modified profile likelihood (MPL). The
MPL estimator of the fractional-difference parameter has less small-sample bias than the maximum
likelihood estimator when there are covariates in the model. mpl may only be specified when there
is a constant term or indepvars in the model, and it may not be combined with the mle option.

constraints(numlist), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that are derived from asymptotic theory (oim); see
[R] vce option.

Options vce(robust) and mpl may not be combined.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), gtolerance(#), nonrtolerance(#), and from(init specs); see [R] maxi-
mize for all options.

Some special points for arfima’s maximize options are listed below.

technique(algorithm spec) sets the optimization algorithm. The default algorithm is BFGS and
BHHH is not allowed. See [R] maximize for a description of the available optimization algorithms.

You can specify multiple optimization methods. For example, technique(bfgs 10 nr) requests
that the optimizer perform 10 BFGS iterations and then switch to Newton–Raphson until convergence.

iterate(#) sets the maximum number of iterations. When the maximization is not going well,
set the maximum number of iterations to the point where the optimizer appears to be stuck and
inspect the estimation results at that point.

from(matname) allows you to specify starting values for the model parameters in a row vector.
We recommend that you use the iterate(0) option, retrieve the initial estimates from e(b),
and modify these elements.

The following option is available with arfima but is not shown in the dialog box:

coeflegend; see [R] estimation options.

arfima — Autoregressive fractionally integrated moving-average models 55

Remarks and examples
Long-memory processes are stationary processes whose autocorrelation functions decay more

slowly than short-memory processes. Because the autocorrelations die out so slowly, long-memory
processes display a type of long-run dependence. The autoregressive fractionally integrated moving-
average (ARFIMA) model provides a parsimonious parameterization of long-memory processes. This
parameterization nests the autoregressive moving-average (ARMA) model, which is widely used for
short-memory processes.

The ARFIMA model also generalizes the autoregressive integrated moving-average (ARIMA) model
with integer degrees of integration. ARFIMA models provide a solution for the tendency to overdifference
stationary series that exhibit long-run dependence. In the ARIMA approach, a nonstationary time series
is differenced d times until the differenced series is stationary, where d is an integer. Such series
are said to be integrated of order d, denoted I(d), with not differencing, I(0), being the option for
stationary series. Many series exhibit too much dependence to be I(0) but are not I(1), and ARFIMA
models are designed to represent these series.

The ARFIMA model allows for a continuum of fractional differences, −0.5 < d < 0.5. The
generalization to fractional differences allows the ARFIMA model to handle processes that are neither
I(0) nor I(1), to test for overdifferencing, and to model long-run effects that only die out at long
horizons.

Technical note

An ARIMA model for the series yt is given by

ρ(L)(1− L)dyt = θ(L)εt (1)

where ρ(L) = (1 − ρ1L − ρ2L
2 − · · · − ρpLp) is the autoregressive (AR) polynomial in the lag

operator L; Lyt = yt−1; θ(L) = (1 + θ1L + θ2L
2 + · · · + θpL

p) is the moving-average (MA) lag
polynomial; εt is the independent and identically distributed innovation term; and d is the integer
number of differences required to make the yt stationary. An ARFIMA model is also specified by (1)
with the generalization that −0.5 < d < 0.5. Series with d ≥ 0.5 are handled by differencing and
subsequent ARFIMA modeling.

Because long-memory processes are stationary, one might be tempted to approximate the processes
with many terms in an ARMA model. But these approximate models are difficult to fit and to interpret
because ARMA models with many terms are difficult to estimate and the ARMA parameterization has
an inherent short-run nature. In contrast, the ARFIMA model has the d parameter for the long-run
dependence and ARMA parameters for short-run dependence. Using different parameters for different
types of dependence facilitates estimation and interpretation, as discussed by Sowell (1992a).

Technical note

An ARFIMA model specifies a fractionally integrated ARMA process. Formally, the ARFIMA model
specifies that

yt = (1− L)−d{ρ(L)}−1θ(L)εt

The short-run ARMA process ρ(L)−1θ(L)εt captures the short-run effects, and the long-run effects
are captured by fractionally integrating the short-run ARMA process.

56 arfima — Autoregressive fractionally integrated moving-average models

Essentially, the fractional-integration parameter d captures the long-run effects, and the ARMA
parameters capture the short-run effects. Having separate parameters for short-run and long-run
effects makes the ARFIMA model more flexible and easier to interpret than the ARMA model. After
estimating the ARFIMA parameters, the short-run effects are obtained by setting d = 0, whereas the
long-run effects use the estimated value for d. The short-run effects describe the behavior of the
fractionally differenced process (1−L)dyt, whereas the long-run effects describe the behavior of the
fractionally integrated yt.

ARFIMA models have been useful in fields as diverse as hydrology and economics. Long-memory
processes were first introduced in hydrology by Hurst (1951). Hosking (1981), in hydrology, and
Granger and Joyeux (1980), in economics, independently discovered the ARFIMA representation of
long-memory processes. Beran (1994), Baillie (1996), and Palma (2007) provide good introductions
to long-memory processes and ARFIMA models.

Example 1: Mount Campito tree ring data

Baillie (1996) discusses a time series of measurements of the widths of the annual rings of a
Mount Campito Bristlecone pine. The series contains measurements on rings formed in the tree from
3436 BC to 1969 AD. Essentially, larger widths were good years for the tree and narrower widths
were harsh years.

We begin by plotting the time series.

. use http://www.stata-press.com/data/r14/campito
(Campito Mnt. tree ring data from 3435BC to 1969AD)

. tsline width, xlabel(-3435(500)1969) ysize(2)

0
2

0
4

0
6

0
8

0
1

0
0

tr
e

e
 r

in
g

 w
id

th
 i
n

 0
.0

1
m

m

−3435 −2935 −2435 −1935 −1435 −935 −435 65 565 1065 1565 2065
year

Good years and bad years seem to run together, causing the appearance of local trends. The local
trends are evidence of dependence, but they are not as pronounced as those in a nonstationary series.

arfima — Autoregressive fractionally integrated moving-average models 57

We plot the autocorrelations for another view:

. ac width, ysize(2)

−
0
.2

0
0

.0
0

0
.2

0
0

.4
0

0
.6

0
0

.8
0

A
u

to
c
o

rr
e

la
ti
o

n
s
 o

f
w

id
th

0 10 20 30 40
Lag

Bartlett’s formula for MA(q) 95% confidence bands

The autocorrelations do not start below 1 but decay very slowly.

Granger and Joyeux (1980) show that the autocorrelations from an ARMA model decay exponentially,
whereas the autocorrelations from an ARFIMA process decay at the much slower hyperbolic rate. Box,
Jenkins, and Reinsel (2008) define short-memory processes as those whose autocorrelations decay
exponentially fast and long-memory processes as those whose autocorrelations decay at the hyperbolic
rate. The above plot of autocorrelations looks closer to hyperbolic than exponential.

Together, the above plots make us suspect that the series was generated by a long-memory process.
We see evidence that the series is stationary but that the autocorrelations die out much slower than a
short-memory process would predict.

58 arfima — Autoregressive fractionally integrated moving-average models

Given that we believe the data was generated by a stationary process, we begin by fitting the data
to an ARMA model. We begin by using a short-memory model because a comparison of the results
highlights the advantages of using an ARFIMA model for a long-memory process.

. arima width, ar(1/2) ma(1) technique(bhhh 4 nr)

(setting optimization to BHHH)
Iteration 0: log likelihood = -18934.593
Iteration 1: log likelihood = -18914.337
Iteration 2: log likelihood = -18913.407
Iteration 3: log likelihood = -18913.24
(switching optimization to Newton-Raphson)
Iteration 4: log likelihood = -18913.214
Iteration 5: log likelihood = -18913.208
Iteration 6: log likelihood = -18913.208

ARIMA regression

Sample: -3435 - 1969 Number of obs = 5405
Wald chi2(3) = 133686.46

Log likelihood = -18913.21 Prob > chi2 = 0.0000

OIM
width Coef. Std. Err. z P>|z| [95% Conf. Interval]

width
_cons 42.45055 1.02142 41.56 0.000 40.44861 44.4525

ARMA
ar

L1. 1.264367 .0253199 49.94 0.000 1.214741 1.313993
L2. -.2848827 .0227534 -12.52 0.000 -.3294785 -.240287

ma
L1. -.8066007 .0189699 -42.52 0.000 -.8437811 -.7694204

/sigma 8.005814 .0770004 103.97 0.000 7.854896 8.156732

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimated coefficients seem high in magnitude. We use estat aroots to investigate further.
. estat aroots

Eigenvalue stability condition

Eigenvalue Modulus

.9709661 .970966

.2934013 .293401

All the eigenvalues lie inside the unit circle.
AR parameters satisfy stability condition.

Eigenvalue stability condition

Eigenvalue Modulus

.8066007 .806601

All the eigenvalues lie inside the unit circle.
MA parameters satisfy invertibility condition.

The roots of the AR polynomial are 0.971 and 0.293, and the root of the MA polynomial is −0.807;
all of these are less than one in magnitude, indicating that the series is stationary and invertible

arfima — Autoregressive fractionally integrated moving-average models 59

but has a high level of persistence. See Hamilton (1994, 59) and [TS] estat aroots for details about
computing and interpreting the roots of the polynomials from the estimated ARIMA coefficients.

Below we estimate the parameters of an ARFIMA model with only the fractional difference parameter
and a constant.

. arfima width
Iteration 0: log likelihood = -18918.219
Iteration 1: log likelihood = -18916.84
Iteration 2: log likelihood = -18908.508
Iteration 3: log likelihood = -18908.508 (backed up)
Iteration 4: log likelihood = -18907.29
Iteration 5: log likelihood = -18907.286
Iteration 6: log likelihood = -18907.279
Iteration 7: log likelihood = -18907.279
Refining estimates:
Iteration 0: log likelihood = -18907.279
Iteration 1: log likelihood = -18907.279

ARFIMA regression

Sample: -3435 - 1969 Number of obs = 5,405
Wald chi2(1) = 1864.43

Log likelihood = -18907.279 Prob > chi2 = 0.0000

OIM
width Coef. Std. Err. z P>|z| [95% Conf. Interval]

width
_cons 44.01432 9.174318 4.80 0.000 26.03299 61.99565

ARFIMA
d .4468888 .0103497 43.18 0.000 .4266038 .4671737

/sigma2 63.92927 1.229754 51.99 0.000 61.519 66.33955

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimate of d is large and statistically significant. The relative parsimony of the ARFIMA model
is illustrated by the fact that the estimates of the standard deviation of the idiosyncratic errors are
about the same in the 5-parameter ARMA model and the 3-parameter ARFIMA model.

60 arfima — Autoregressive fractionally integrated moving-average models

Let’s add an AR parameter to the above ARFIMA model:
. arfima width, ar(1)
Iteration 0: log likelihood = -18910.997
Iteration 1: log likelihood = -18910.949 (backed up)
Iteration 2: log likelihood = -18908.158 (backed up)
Iteration 3: log likelihood = -18907.248
Iteration 4: log likelihood = -18907.233
Iteration 5: log likelihood = -18907.233
Iteration 6: log likelihood = -18907.233
Refining estimates:
Iteration 0: log likelihood = -18907.233
Iteration 1: log likelihood = -18907.233

ARFIMA regression

Sample: -3435 - 1969 Number of obs = 5,405
Wald chi2(2) = 1875.34

Log likelihood = -18907.233 Prob > chi2 = 0.0000

OIM
width Coef. Std. Err. z P>|z| [95% Conf. Interval]

width
_cons 43.98774 8.685171 5.06 0.000 26.96512 61.01036

ARFIMA
ar

L1. .0063323 .0209987 0.30 0.763 -.0348244 .047489

d .4432471 .0158937 27.89 0.000 .412096 .4743981

/sigma2 63.92915 1.229755 51.99 0.000 61.51887 66.33942

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

That the estimated AR term is tiny and statistically insignificant indicates that the d parameter has
accounted for all the dependence in the series.

As mentioned above, there is a sense in which the main advantages of an ARFIMA model over an
ARMA model for long-memory processes are the relative parsimony of the ARFIMA parameterization
and the ability of the ARFIMA parameterization to separate out the long-run effects from the short-run
effects. If the true process was generated from an ARFIMA model, an ARMA model with many terms
can approximate the process, but the terms make estimation difficult and the lack of separate long-run
and short-run parameters complicates interpretation.

This example highlights the relative parsimony of the ARFIMA model. In the examples below, we
illustrate the advantages of having separate parameters for long-run and short-run effects.

Technical note
You may be wondering what long-run effects can be produced by a model for stationary processes.

Because the autocorrelations of a long-memory process die out so slowly, the spectral density becomes
infinite as the frequency goes to 0 and the impulse–response functions die out at a much slower rate.

The spectral density of a process describes the relative contributions of random components at
different frequencies to the variance of the process, with the low-frequency components corresponding
to long-run effects. See [TS] psdensity for an introduction to estimating and interpreting spectral
densities implied by the estimated parameters of parametric models.

arfima — Autoregressive fractionally integrated moving-average models 61

Granger and Joyeux (1980) motivate ARFIMA models by noting that their implied spectral densities
are finite except at frequency 0 with 0 < d < 0.5, whereas stationary ARMA models have finite spectral
densities at all frequencies. Granger and Joyeux (1980) argue that the ability of ARFIMA models to
capture this long-range dependence, which cannot be captured by stationary ARMA models, is an
important advantage of ARFIMA models over ARMA models when modeling long-memory processes.

Impulse–response functions are the coefficients on the infinite-order MA representation of a process,
and they describe how a shock feeds though the dynamic system. If the process is stationary, the
coefficients decay to 0 and they sum to a finite constant. As expected, the coefficients from an ARFIMA
model die out at a slower rate than those from an ARMA model. Because the ARMA terms model
the short-run effects and the d parameter models the long-run effects, an ARFIMA model specifies
both a short-run impulse–response function and a long-run impulse–response function. When an
ARMA model is used to approximate a long-memory model, the ARMA impulse–response-function
coefficients confound the two effects.

Example 2

In this example, we model the log of the monthly levels of carbon dioxide above Mauna Loa,
Hawaii. To remove the seasonality, we model the twelfth seasonal difference of the log of the series.
This example illustrates that the ARFIMA model parameterizes long-run and short-run effects, whereas
the ARMA model confounds the two effects. (Sowell [1992a] discusses this point in greater depth.)

We begin by fitting the series to an ARMA model with an AR(1) term and an MA(2).

. use http://www.stata-press.com/data/r14/mloa, clear

. arima S12.log, ar(1) ma(2)

(setting optimization to BHHH)
Iteration 0: log likelihood = 2000.9262
Iteration 1: log likelihood = 2001.5484
Iteration 2: log likelihood = 2001.5637
Iteration 3: log likelihood = 2001.5641
Iteration 4: log likelihood = 2001.5641

ARIMA regression

Sample: 1960m1 - 1990m12 Number of obs = 372
Wald chi2(2) = 500.41

Log likelihood = 2001.564 Prob > chi2 = 0.0000

OPG
S12.log Coef. Std. Err. z P>|z| [95% Conf. Interval]

log
_cons .0036754 .0002475 14.85 0.000 .0031903 .0041605

ARMA
ar

L1. .7354346 .0357715 20.56 0.000 .6653237 .8055456

ma
L2. .1353086 .0513156 2.64 0.008 .0347319 .2358853

/sigma .0011129 .0000401 27.77 0.000 .0010344 .0011914

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

62 arfima — Autoregressive fractionally integrated moving-average models

All the parameters are statistically significant, and they indicate a high degree of dependence.

Below we nest the previously fit ARMA model into an ARFIMA model.

. arfima S12.log, ar(1) ma(2)
Iteration 0: log likelihood = 2006.0757
Iteration 1: log likelihood = 2006.0774 (backed up)
Iteration 2: log likelihood = 2006.0775 (backed up)
Iteration 3: log likelihood = 2006.0804
Iteration 4: log likelihood = 2006.0805
Refining estimates:
Iteration 0: log likelihood = 2006.0805
Iteration 1: log likelihood = 2006.0805

ARFIMA regression

Sample: 1960m1 - 1990m12 Number of obs = 372
Wald chi2(3) = 248.88

Log likelihood = 2006.0805 Prob > chi2 = 0.0000

OIM
S12.log Coef. Std. Err. z P>|z| [95% Conf. Interval]

S12.log
_cons .003616 .0012968 2.79 0.005 .0010743 .0061578

ARFIMA
ar

L1. .2160894 .1015547 2.13 0.033 .0170458 .415133

ma
L2. .1633916 .0516905 3.16 0.002 .0620801 .2647031

d .4042573 .0805417 5.02 0.000 .2463985 .562116

/sigma2 1.20e-06 8.84e-08 13.63 0.000 1.03e-06 1.38e-06

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant at the 5% level. That the confidence interval for the
fractional-difference parameter d includes numbers greater than 0.5 is evidence that the series may be
nonstationary. Alternatively, we proceed as if the series is stationary, and the wide confidence interval
for d reflects the difficulty of fitting a complicated dynamic model with only 372 observations.

With the above caveat, we can now proceed to compare the interpretations of the ARMA and ARFIMA
estimates. We compare these estimates in terms of their implied spectral densities. The spectral density
of a stationary time series describes the relative importance of components at different frequencies.
See [TS] psdensity for an introduction to spectral densities.

Below we quietly refit the ARMA model and use psdensity to estimate the parametric spectral
density implied by the ARMA parameter estimates.

. quietly arima S12.log, ar(1) ma(2)

. psdensity d_arma omega1

The psdensity command above put the estimated ARMA spectral density into the new variable
d arma at the frequencies stored in the new variable omega1.

Below we quietly refit the ARFIMA model and use psdensity to estimate the long-run parametric
spectral density and then the short-run parametric spectral density implied by the ARFIMA parameter
estimates. The long-run estimates use the estimated d, and the short-run estimates set d to 0 (as is

arfima — Autoregressive fractionally integrated moving-average models 63

implied by specifying the smemory option). The long-run estimates describe the fractionally integrated
series, and the short-run estimates describe the fractionally differenced series.

. quietly arfima S12.log, ar(1) ma(2)

. psdensity d_arfima omega2

. psdensity ds_arfima omega3, smemory

Now that we have the ARMA estimates, the long-run ARFIMA estimates, and the short-run ARFIMA
estimates, we graph them below.

. line d_arma d_arfima omega1, name(lmem) nodraw

. line d_arma ds_arfima omega1, name(smem) nodraw

. graph combine lmem smem, cols(1) xcommon

0
1

2
3

4
5

0 1 2 3
Frequency

ARMA spectral density ARFIMA long−memory spectral density

0
.5

1
1

.5

0 1 2 3
Frequency

ARMA spectral density ARFIMA short−memory spectral density

The top graph contains a plot of the spectral densities implied by the ARMA parameter estimates
and by the long-run ARFIMA parameter estimates. As discussed by Granger and Joyeux (1980), the
two models imply different spectral densities for frequencies close to 0 when d > 0. When d > 0,
the spectral density implied by the ARFIMA estimates diverges to infinity, whereas the spectral density
implied by the ARMA estimates remains finite at frequency 0 for stable ARMA processes. This difference
reflects the ability of ARFIMA models to capture long-run effects that ARMA models only capture as
the parameters approach those of an unstable model.

The bottom graph contains a plot of the spectral densities implied by the ARMA parameter estimates
and by the short-run ARFIMA parameter estimates, which are the ARMA parameters for the fractionally
differenced process. Comparing the two plots illustrates the ability of the short-run ARFIMA parameters
to capture both low-frequency and high-frequency components in the fractionally differenced series. In
contrast, the ARMA parameters captured only low-frequency components in the fractionally integrated
series.

Comparing the ARFIMA and ARMA spectral densities in the two graphs illustrates that the additional
fractional-difference parameter allows the ARFIMA model to identify both long-run and short-run
effects, which the ARMA model confounds.

64 arfima — Autoregressive fractionally integrated moving-average models

Technical note
As noted above, the spectral density of an ARFIMA process with d > 0 diverges to infinity as

the frequency goes to 0. In contrast, the spectral density of an ARFIMA process with d < 0 is 0 at
frequency 0.

The autocorrelation function of an ARFIMA process with d < 0 also decays at the slower hyperbolic
rate. ARFIMA processes with d < 0 are sometimes called antipersistent because all the autocorrelations
for lags greater than 0 are negative.

Hosking (1981), Baillie (1996), and others refer to ARFIMA processes with d < 0 as “intermediate
memory” processes and ARFIMA processes with d > 0 as long-memory processes. Box, Jenkins, and
Reinsel (2008, 429) define long-memory processes as those with the slower hyperbolic rate of decay,
which includes ARFIMA processes with d < 0. We follow Box, Jenkins, and Reinsel (2008) and thus
call ARFIMA processes for −0.5 < d < 0 and 0 < d < 0.5 long-memory processes.

Sowell (1992a) uses the properties of ARFIMA processes with d < 0 to derive tests for whether a
series was generated by an I(1) process or an I(d) process with d < 1.

Example 3

In this example, we use arfima to test whether a series is nonstationary. More specifically, we
test whether the series was generated by an I(1) process by testing whether the first difference of
the series is overdifferenced.

We have monthly data on the log of the number of reported cases of mumps in New York City
between January 1928 and December 1972. We believe that the series is stationary, after accounting
for the monthly seasonal effects. We use an ARFIMA model for differenced series to test the null
hypothesis of nonstationarity. We use the confidence interval for the d parameter from an ARFIMA
model for the first difference of the log of the series to perform the test. If the right-hand end of the
95% CI is less than 0, we conclude that the differenced series was overdifferenced, which implies
that the original series was not nonstationary.

More formally, if yt is I(1), then ∆yt = yt − yt−1 must be I(0). If ∆yt is I(d) with d < 0,
then ∆yt is overdifferenced and yt is I(d) with d < 1.

We use seasonal indicators to account for the seasonal effects. In the output below, we specify the
mpl option to use the MPL estimator that is less biased in the presence of covariates.

arfima computes the maximum likelihood estimates (MLE) for the parameters of this stationary
and invertible Gaussian process. Alternatively, the maximum MPL estimates may be computed. See
Methods and formulas for a description of these two estimation techniques, but suffice it to say
that the MLE estimates for d are biased in the presence of exogenous variables, even the constant
term, for small samples. The MPL estimator reduces this bias; see Hauser (1999) and Doornik and
Ooms (2004).

arfima — Autoregressive fractionally integrated moving-average models 65

. use http://www.stata-press.com/data/r14/mumps2, clear
(Hipel and Mcleod (1994), http://robjhyndman.com/tsdldata/epi/mumps.dat)

. arfima D.log i.month, ma(1 2) mpl
Iteration 0: log modified profile likelihood = 53.766763
Iteration 1: log modified profile likelihood = 54.388641
Iteration 2: log modified profile likelihood = 54.934726 (backed up)
Iteration 3: log modified profile likelihood = 54.937524 (backed up)
Iteration 4: log modified profile likelihood = 55.002186
Iteration 5: log modified profile likelihood = 55.20462
Iteration 6: log modified profile likelihood = 55.205939
Iteration 7: log modified profile likelihood = 55.205949
Iteration 8: log modified profile likelihood = 55.205949
Refining estimates:
Iteration 0: log modified profile likelihood = 55.205949
Iteration 1: log modified profile likelihood = 55.205949

ARFIMA regression

Sample: 1928m2 - 1972m6 Number of obs = 533
Wald chi2(14) = 1360.28

Log modified profile likelihood = 55.205949 Prob > chi2 = 0.0000

OIM
D.log Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.log
month

February -.220719 .0428112 -5.16 0.000 -.3046275 -.1368105
March .0314683 .0424718 0.74 0.459 -.0517749 .1147115
April -.2800296 .0460084 -6.09 0.000 -.3702043 -.1898548

May -.3703179 .0449932 -8.23 0.000 -.4585029 -.2821329
June -.4722035 .0446764 -10.57 0.000 -.5597676 -.3846394
July -.9613239 .0448375 -21.44 0.000 -1.049204 -.873444

August -1.063042 .0449272 -23.66 0.000 -1.151098 -.9749868
September -.7577301 .0452529 -16.74 0.000 -.8464242 -.669036

October -.3024251 .0462887 -6.53 0.000 -.3931494 -.2117009
November -.0115317 .0426911 -0.27 0.787 -.0952046 .0721413
December .0247135 .0430401 0.57 0.566 -.0596435 .1090705

_cons .3656807 .0303215 12.06 0.000 .3062517 .4251096

ARFIMA
ma

L1. .258056 .0684414 3.77 0.000 .1239133 .3921986
L2. .1972011 .0506439 3.89 0.000 .0979409 .2964612

d -.2329426 .067336 -3.46 0.001 -.3649187 -.1009664

We interpret the fact that the estimated 95% CI is strictly less than 0 to mean that the differenced
series is overdifferenced, which implies that the original series is stationary.

66 arfima — Autoregressive fractionally integrated moving-average models

Stored results
arfima stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(s2) idiosyncratic error variance estimate, if e(method) = mpl
e(tmin) minimum time
e(tmax) maximum time
e(ar max) maximum AR lag
e(ma max) maximum MA lag
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
e(constant) 0 if noconstant, 1 otherwise

Macros
e(cmd) arfima
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(method) mle or mpl
e(eqnames) names of equations
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(ma) lags for MA terms
e(ar) lags for AR terms
e(technique) maximization technique
e(tech steps) number of iterations performed before switching techniques
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

arfima — Autoregressive fractionally integrated moving-average models 67

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
The likelihood function
The autocovariance function
The profile likelihood
The MPL

Introduction

We model an observed second-order stationary time-series yt, t = 1, . . . , T , using the
ARFIMA(p, d, q) model defined as

ρ(Lp)(1− L)d(yt − xtβ) = θ(Lq)εt

where
ρ(Lp) = 1− ρ1L− ρ2L

2 − · · · − ρpLp

θ(Lq) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

(1− L)d =

∞∑
j=0

(−1)j
Γ(j + d)

Γ(j + 1)Γ(d)
Lj

and the lag operator is defined as Ljyt = yt−j , t = 1, . . . , T and j = 1, . . . , t− 1; εt ∼ N(0, σ2);
Γ() is the gamma function; and −0.5 < d < 0.5, d 6= 0. The row vector xt contains the exogenous
variables specified as indepvars in the arfima syntax.

The process is stationary and invertible for−0.5 < d < 0.5; the roots of the AR polynomial, ρ(z) =
1− ρ1z− ρ2z

2−· · ·−ρpzp = 0, and the MA polynomial, θ(z) = 1 + θ1z+ θ2z
2 + · · ·+ θqz

q = 0,
lie outside the unit circle and there are no common roots. When 0 < d < 0.5, the process has
long memory in that the autocovariance function, γh, decays to 0 at a hyperbolic rate, such that∑∞
h=−∞ |γh| =∞. When−0.5 < d < 0, the process also has long memory in that the autocovariance

function, γh, decays to 0 at a hyperbolic rate such that
∑∞
h=−∞ |γh| < ∞. (As discussed in the

text, some authors refer to ARFIMA processes with −0.5 < d < 0 as having intermediate memory,
but we follow Box, Jenkins, and Reinsel [2008] and refer to them as long-memory processes.)

Granger and Joyeux (1980), Hosking (1981), Sowell (1992b), Sowell (1992a), Baillie (1996), and
Palma (2007) provide overviews of long-memory processes, fractional integration, and introductions
to ARFIMA models.

The likelihood function

Estimation of the ARFIMA parameters ρ, θ, d, β and σ2 is done by the method of maximum
likelihood. The log Gaussian likelihood of y given parameter estimates η̂ = (ρ̂′, θ̂

′
, d̂, β̂

′
, σ̂2) is

`(y|η̂) = −1

2

{
T log(2π) + log |V̂|+ (y −Xβ̂)′V̂−1(y −Xβ̂)

}
(2)

68 arfima — Autoregressive fractionally integrated moving-average models

where the covariance matrix V has a Toeplitz structure

V =

γ0 γ1 γ2 . . . γT−1

γ1 γ0 γ1 . . . γT−2

...
...

...
. . .

...
γT−1 γT−2 γT−3 . . . γ0

Var(yt) = γ0, Cov(yt, yt−h) = γh (for h = 1, . . . , t− 1), and t = 1, . . . , T (Sowell 1992b).

We use the Durbin–Levinson algorithm (Palma 2007; Golub and Van Loan 2013) to factor and
invert V. Using only the vector of autocovariances γ, the Durbin–Levinson algorithm will compute
ε̂ = D̂−0.5L̂−1(y − Xβ̂), where L is lower triangular and V = LDL′ and D = Diag(ν),
νt = Var(yt). The algorithm performs these computations without generating the T ×T matrix L−1.

During optimization, we restrict the fractional-integration parameter to (−0.5, 0.5) using a logistic
transform, d∗ = log {(x+ 0.5)/(0.5− x)}, so that the range of d∗ encompasses the real line. During
the “Refining estimates” step, the fractional-integration parameter is transformed back to the restricted
space, where we obtain its standard error from the observed information matrix.

The autocovariance function
Computation of the autocovariances γh is given by Sowell (1992b) with numerical enhancements

by Doornik and Ooms (2003) and is reviewed by Palma (2007, sec. 3.2.4). We reproduce it here.
The autocovariance of an ARFIMA(0, d, 0) process is

γ∗h = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(1 + h− d)

where h = 0, 1, For ARFIMA(p, d, q), we have

γh = σ2

q∑
i=−q

p∑
j=1

ψ(i)ξjC(d, p+ i− h, ρj) (3)

where

ψ(i) =

min(q,q+i)∑
k= max(0,i)

θkθk−i

ξj =

ρj
p∏
i=1

(1− ρiρj)
∏
m6=j

(ρj − ρm)

−1

and

C(d, h, ρ) =
γ∗h
σ2

{
ρ2pF (d+ h, 1, 1− d+ h, ρ) + F (d− h, 1, 1− d− h, ρ)− 1

}
F (·) is the hypergeometric series (Gradshteyn and Ryzhik 2007)

F (a, b, c, x) = 1 +
ab

c · 1
x+

a(a+ 1)b(b+ 1)

c(c+ 1) · 1 · 2
x2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2) · 1 · 2 · 3
x3 + · · ·

The series recursions are evaluated backward as Doornik and Ooms (2003) emphasize. Doornik and
Ooms (2003) also provide other computational enhancements, such as not dividing by ρj in (3).

arfima — Autoregressive fractionally integrated moving-average models 69

The profile likelihood

Doornik and Ooms (2003) show that the parameters σ2 and β can be concentrated out of the
likelihood. Using (2), the MLE for σ2 is

σ̂2 =
1

T
(y −Xβ̂)′R̂−1(y −Xβ̂) (4)

where R = 1
σ2 V and

β̂ = (X′R̂−1X)−1X′R̂−1y (5)

is the weighted least-squares estimates for β. Substituting (4) into (2) results in the profile likelihood

`p(y|η̂r) = −T
2

{
1 + log(2π) +

1

T
log |R̂|+ log σ̂2

}

We compute the MLEs using the profile likelihood for the reduced parameter set ηr = (ρ′, θ′, d).
Equations (4) and (5) provide MLEs for σ2 and β to create the full parameter vector η =
(β′,ρ′, θ′, d, σ2). We follow with the “Refining estimates” step, optimizing on the log likelihood
(1). The refining step does not change the estimates; it produces the coefficient variance–covariance
matrix from the observed information matrix.

Using this profile likelihood prevents the use of the BHHH optimization method because there are
no observation-level scores.

The MPL

The small-sample MLE for d can be biased when there are exogenous variables in the model. The
MPL reduces this bias (Hauser 1999; Doornik and Ooms 2004). The mpl option will direct arfima
to use this optimization criterion. The MPL is expressed as

`m(y|η̂r) = −T
2
{1 + log(2π)} −

(
1

T
− 1

2

)
log |R̂| −

(
T − k − 2

2

)
log σ̂2 − 1

2
log |X′R̂−1X|

where k = rank(X) (An and Bloomfield 1993).

There is no MPL estimator for σ2, and you will notice its absence from the coefficient table.
However, the unbiased estimate assuming ARFIMA(0, 0, 0),

σ̃2 =
(y −Xβ̂)′R̂−1(y −Xβ̂)

T − k

is stored in e() for postestimation computation of the forecast and residual root mean squared errors.

References
An, S., and P. Bloomfield. 1993. Cox and Reid’s modification in regression models with correlated errors. Technical

report, Department of Statistics, North Carolina State University, Raleigh, NC.

Baillie, R. T. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73:
5–59.

70 arfima — Autoregressive fractionally integrated moving-average models

Beran, J. 1994. Statistics for Long-Memory Processes. Boca Raton: Chapman & Hall/CRC.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.
Hoboken, NJ: Wiley.

Doornik, J. A., and M. Ooms. 2003. Computational aspects of maximum likelihood estimation of autoregressive
fractionally integrated moving average models. Computational Statistics & Data Analysis 42: 333–348.

. 2004. Inference and forecasting for ARFIMA models with an application to US and UK inflation. Studies in
Nonlinear Dynamics & Econometrics 8: 1–23.

Golub, G. H., and C. F. Van Loan. 2013. Matrix Computations. 4th ed. Baltimore: Johns Hopkins University Press.

Gradshteyn, I. S., and I. M. Ryzhik. 2007. Table of Integrals, Series, and Products. 7th ed. San Diego: Elsevier.

Granger, C. W. J., and R. Joyeux. 1980. An introduction to long-memory time series models and fractional differencing.
Journal of Time Series Analysis 1: 15–29.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Hauser, M. A. 1999. Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study. Journal
of Statistical Planning and Inference 80: 229–255.

Hosking, J. R. M. 1981. Fractional differencing. Biometrika 68: 165–176.

Hurst, H. E. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers
116: 770–779.

Palma, W. 2007. Long-Memory Time Series: Theory and Methods. Hoboken, NJ: Wiley.

Sowell, F. 1992a. Modeling long-run behavior with the fractional ARIMA model. Journal of Monetary Economics
29: 277–302.

. 1992b. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal
of Econometrics 53: 165–188.

Also see
[TS] arfima postestimation — Postestimation tools for arfima

[TS] tsset — Declare data to be time-series data

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[U] 20 Estimation and postestimation commands

Title

arfima postestimation — Postestimation tools for arfima

Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after arfima:

Command Description

estat acplot estimate autocorrelations and autocovariances
irf create and analyze IRFs
psdensity estimate the spectral density

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
∗margins marginal means, predictive margins, marginal effects, and average marginal

effects
∗marginsplot graph the results from margins (profile plots, interaction plots, etc.)
∗nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
∗predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ estat ic, margins, marginsplot, nlcom, and predictnl are not appropriate after arfima, mpl.

71

72 arfima postestimation — Postestimation tools for arfima

predict

Description for predict

predict creates a new variable containing predictions such as expected values, fractionally
differenced series, and innovations. All predictions are available as static one-step-ahead predictions,
and the dependent variable is also available as a dynamic multistep prediction.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb predicted values; the default
residuals predicted innovations
rstandard standardized innovations
fdifference fractionally differenced series

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

rmse(
[

type
]

newvar) put the estimated root mean squared error of the predicted statistic
in a new variable; only permitted with options xb and residuals

dynamic(datetime) forecast the time series starting at datetime; only permitted with
option xb

datetime is a # or a time literal, such as td(1jan1995) or tq(1995q1); see [D] datetime.

Options for predict

� � �
Main �

xb, the default, calculates the predictions for the level of depvar.

residuals calculates the predicted innovations.

rstandard calculates the standardized innovations.

fdifference calculates the fractionally differenced predictions of depvar.

arfima postestimation — Postestimation tools for arfima 73

� � �
Options �

rmse(
[

type
]

newvar) puts the root mean squared errors of the predicted statistics into the specified
new variables. The root mean squared errors measure the variances due to the disturbances but do
not account for estimation error. rmse() is only permitted with the xb and residuals options.

dynamic(datetime) specifies when predict starts producing dynamic forecasts. The specified date-
time must be in the scale of the time variable specified in tsset, and the datetime must be
inside a sample for which observations on the dependent variables are available. For example, dy-
namic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of 2008, assuming
that your time variable is quarterly; see [D] datetime. If the model contains exogenous variables,
they must be present for the whole predicted sample. dynamic() may only be specified with xb.

margins

Description for margins

margins estimates margins of response for expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
options

]
statistic Description

xb predicted values; the default
residuals not allowed with margins

rstandard not allowed with margins

fdifference not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Forecasting after ARFIMA
IRF results for ARFIMA

74 arfima postestimation — Postestimation tools for arfima

Forecasting after ARFIMA

We assume that you have already read [TS] arfima. In this section, we illustrate some of the
features of predict after fitting an ARFIMA model using arfima.

Example 1

We have monthly data on the one-year Treasury bill secondary market rate imported from the
Federal Reserve Bank (FRED) database using freduse; see Drukker (2006) and Stata YouTube video:
Using freduse to download time-series data from the Federal Reserve for an introduction to freduse.
Below we fit an ARFIMA model with two autoregressive terms and one moving-average term to the
data.

. use http://www.stata-press.com/data/r14/tb1yr
(FRED, 1-year treasury bill; secondary market rate, monthly 1959-2001)

. arfima tb1yr, ar(1/2) ma(1)
Iteration 0: log likelihood = -235.31856
Iteration 1: log likelihood = -235.26104 (backed up)
Iteration 2: log likelihood = -235.25974 (backed up)
Iteration 3: log likelihood = -235.2544 (backed up)
Iteration 4: log likelihood = -235.13353
Iteration 5: log likelihood = -235.13063
Iteration 6: log likelihood = -235.12108
Iteration 7: log likelihood = -235.11917
Iteration 8: log likelihood = -235.11869
Iteration 9: log likelihood = -235.11868
Refining estimates:
Iteration 0: log likelihood = -235.11868
Iteration 1: log likelihood = -235.11868

ARFIMA regression

Sample: 1959m7 - 2001m8 Number of obs = 506
Wald chi2(4) = 1864.15

Log likelihood = -235.11868 Prob > chi2 = 0.0000

OIM
tb1yr Coef. Std. Err. z P>|z| [95% Conf. Interval]

tb1yr
_cons 5.496709 2.920357 1.88 0.060 -.2270864 11.2205

ARFIMA
ar

L1. .2326107 .1136655 2.05 0.041 .0098304 .4553911
L2. .3885212 .0835665 4.65 0.000 .2247337 .5523086

ma
L1. .7755848 .0669562 11.58 0.000 .6443531 .9068166

d .4606489 .0646542 7.12 0.000 .333929 .5873688

/sigma2 .1466495 .009232 15.88 0.000 .1285551 .1647439

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant at the 5% level, and they indicate a high degree of
dependence in the series. In fact, the confidence interval for the fractional-difference parameter d
indicates that the series may be nonstationary. We will proceed as if the series is stationary and
suppose that it is fractionally integrated of order 0.46.

http://www.youtube.com/watch?v=iiizhsX-I00
http://www.youtube.com/watch?v=iiizhsX-I00

arfima postestimation — Postestimation tools for arfima 75

We begin our postestimation analysis by predicting the series in sample:

. predict ptb
(option xb assumed)

We continue by using the estimated fractional-difference parameter to fractionally difference the
original series and by plotting the original series, the predicted series, and the fractionally differenced
series. See [TS] arfima for a definition of the fractional-difference operator.

. predict fdtb, fdifference

. twoway tsline tb1yr ptb fdtb, legend(cols(1))

0
5

1
0

1
5

1960m1 1970m1 1980m1 1990m1 2000m1
month

1−Year Treasury Bill: Secondary Market Rate

xb prediction

tb1yr fractionally differenced

The above graph shows that the in-sample predictions appear to track the original series well and
that the fractionally differenced series looks much more like a stationary series than does the original.

Example 2

In this example, we use the above estimates to produce a dynamic forecast and a confidence
interval for the forecast for the one-year treasury bill rate and plot them.

We begin by extending the dataset and using predict to put the dynamic forecast in the new
ftb variable and the root mean squared error of the forecast in the new rtb variable. (As discussed
in Methods and formulas, the root mean squared error of the forecast accounts for the idiosyncratic
error but not for the estimation error.)

. tsappend, add(12)

. predict ftb, xb dynamic(tm(2001m9)) rmse(rtb)

Now we compute a 90% confidence interval around the dynamic forecast and plot the original
series, the in-sample forecast, the dynamic forecast, and the confidence interval of the dynamic
forecast.

. scalar z = invnormal(0.95)

. generate lb = ftb - z*rtb if month>=tm(2001m9)
(506 missing values generated)

. generate ub = ftb + z*rtb if month>=tm(2001m9)
(506 missing values generated)

76 arfima postestimation — Postestimation tools for arfima

. twoway tsline tb1yr ftb if month>tm(1998m12) ||
> tsrline lb ub if month>=tm(2001m9),
> legend(cols(1) label(3 "90% prediction interval"))

2
3

4
5

6
7

1999m1 2000m1 2001m1 2002m1
month

1−Year Treasury Bill: Secondary Market Rate

xb prediction, dynamic(tm(2001m9))

90% prediction interval

IRF results for ARFIMA
We assume that you have already read [TS] irf and [TS] irf create. In this section, we illustrate

how to calculate the impulse–response function (IRF) of an ARFIMA model.

Example 3

Here we use the estimates obtained in example 1 to calculate the IRF of the ARFIMA model; see
[TS] irf and [TS] irf create for more details about IRFs.

arfima postestimation — Postestimation tools for arfima 77

. irf create arfima, step(50) set(myirf)
(file myirf.irf created)
(file myirf.irf now active)
(file myirf.irf updated)

. irf graph irf

0

.5

1

1.5

0 50

arfima, tb1yr, tb1yr

95% CI impulse−response function (irf)

step

Graphs by irfname, impulse variable, and response variable

The figure shows that a shock to tb1yr causes an initial spike in tb1yr, after which the impact
of the shock starts decaying slowly. This behavior is characteristic of long-memory processes.

Methods and formulas
Denote γh, h = 1, . . . , t, to be the autocovariance function of the ARFIMA(p, d, q) process for

two observations, yt and yt−h, h time periods apart. The covariance matrix V of the process of
length T has a Toeplitz structure of

V =

γ0 γ1 γ2 . . . γT−1

γ1 γ0 γ1 . . . γT−2

...
...

...
. . .

...
γT−1 γT−2 γT−3 . . . γ0

where the process variance is γ0 = Var(yt). We factor V = LDL′, where L is lower triangular and
D = Diag(νt). The structure of L−1 is of importance.

L−1 =

1 0 0 . . . 0 0
−τ1,1 1 0 . . . 0 0
−τ2,2 −τ2,1 1 . . . 0 0

...
...

...
. . .

...
...

−τT−1,T−1 −τT−1,T−2 −τT−1,T−2 . . . −τT−1,1 1

Let zt = yt − xtβ. The best linear predictor of zt+1 based on z1, z2, . . . , zt is ẑt+1 =∑t
k=1 τt,kzt−k+1. Define −τt = (−τt,t,−τt,t−1, . . . ,−τt−1,1) to be the tth row of L−1 up to, but

not including, the diagonal. Then τt = V−1
t γt, where Vt is the t × t upper left submatrix of V and

γt = (γ1, γ2, . . . , γt)
′. Hence, the best linear predictor of the innovations is computed as ε̂ = L−1z,

and the one-step predictions are ŷ = ε̂+ Xβ̂. In practice, the computation is

78 arfima postestimation — Postestimation tools for arfima

ŷ = L̂−1
(
y −Xβ̂

)
+ Xβ̂

where L̂ and V̂ are computed from the maximum likelihood estimates. We use the Durbin–Levinson
algorithm (Palma 2007; Golub and Van Loan 2013) to factor V̂, invert L̂, and scale y −Xβ̂ using
only the vector of estimated autocovariances γ̂.

The prediction error variances of the one-step predictions are computed recursively in the Durbin–
Levinson algorithm. They are the νt elements in the diagonal matrix D computed from the Cholesky
factorization of V. The recursive formula is ν0 = γ0, and νt = νt−1(1− τ2

t,t).

Forecasting is carried out as described by Beran (1994, sec. 8.7), ẑT+k = γ̃′kV̂
−1ẑ, where

γ̃′k = (γ̂T+k−1, γ̂T+k−2, . . . , γ̂k). The forecast mean squared error is computed as MSE(ẑT+k) = γ̂0−
γ̃′kV̂

−1γ̃k. Computation of V̂−1γ̃k is carried out efficiently using algorithm 4.7.2 of Golub and Van
Loan (2013).

References
Beran, J. 1994. Statistics for Long-Memory Processes. Boca Raton: Chapman & Hall/CRC.

Drukker, D. M. 2006. Importing Federal Reserve economic data. Stata Journal 6: 384–386.

Golub, G. H., and C. F. Van Loan. 2013. Matrix Computations. 4th ed. Baltimore: Johns Hopkins University Press.

Palma, W. 2007. Long-Memory Time Series: Theory and Methods. Hoboken, NJ: Wiley.

Also see
[TS] arfima — Autoregressive fractionally integrated moving-average models

[TS] estat acplot — Plot parametric autocorrelation and autocovariance functions

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] psdensity — Parametric spectral density estimation after arima, arfima, and ucm

[U] 20 Estimation and postestimation commands

http://www.stata-journal.com/sjpdf.html?articlenum=st0110

Title

arima — ARIMA, ARMAX, and other dynamic regression models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

arima fits univariate models for a time series, where the disturbances are allowed to follow a
linear autoregressive moving-average (ARMA) specification. When independent variables are included
in the specification, such models are often called ARMAX models; and when independent variables are
not specified, they reduce to Box–Jenkins autoregressive integrated moving-average (ARIMA) models
in the dependent variable.

Quick start
AR(1) model using tsset data

arima y, ar(1)

MA(1) model
arima y, ma(1)

ARMA(2,1) model
arima y, ar(1/2) ma(1)

Same as above
arima y, arima(2,0,1)

As above, and take first difference of y and restrict estimation to years 1990 to 2010
arima D.y if tin(1990,2010), ar(1/2) ma(1)

Same as above
arima y if tin(1990,2010), arima(2,1,1)

Multiplicative SARIMA model with quarterly data
arima y, arima(2,1,1) sarima(2,1,0,4)

ARMAX model with covariates x1 and x2, an AR(1) process, and robust standard errors
arima y x, ar(1) vce(robust)

Menu
Statistics > Time series > ARIMA and ARMAX models

79

80 arima — ARIMA, ARMAX, and other dynamic regression models

Syntax

Basic syntax for a regression model with ARMA disturbances

arima depvar
[

indepvars
]
, ar(numlist) ma(numlist)

Basic syntax for an ARIMA(p, d, q) model

arima depvar , arima(#p,#d,#q)

Basic syntax for a multiplicative seasonal ARIMA(p, d, q)× (P,D,Q)s model

arima depvar , arima(#p,#d,#q) sarima(#P ,#D,#Q,#s)

Full syntax

arima depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
arima(#p,#d,#q) specify ARIMA(p, d, q) model for dependent variable
ar(numlist) autoregressive terms of the structural model disturbance
ma(numlist) moving-average terms of the structural model disturbance
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

sarima(#P ,#D,#Q,#s) specify period-#s multiplicative seasonal ARIMA term
mar(numlist, #s) multiplicative seasonal autoregressive term; may be repeated
mma(numlist, #s) multiplicative seasonal moving-average term; may be repeated

Model 3

condition use conditional MLE instead of full MLE
savespace conserve memory during estimation
diffuse use diffuse prior for starting Kalman filter recursions
p0(# |matname) use alternate prior for starting Kalman recursions; seldom used
state0(# |matname) use alternate state vector for starting Kalman filter recursions

SE/Robust

vce(vcetype) vcetype may be opg, robust, or oim

Reporting

level(#) set confidence level; default is level(95)

detail report list of gaps in time series
nocnsreport do not display constraints
display options control columns and column formats, row spacing, and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

arima — ARIMA, ARMAX, and other dynamic regression models 81

You must tsset your data before using arima; see [TS] tsset.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

arima(#p,#d,#q) is an alternative, shorthand notation for specifying models with ARMA disturbances.
The dependent variable and any independent variables are differenced #d times, and 1 through #p
lags of autocorrelations and 1 through #q lags of moving averages are included in the model. For
example, the specification

. arima D.y, ar(1/2) ma(1/3)

is equivalent to

. arima y, arima(2,1,3)

The latter is easier to write for simple ARMAX and ARIMA models, but if gaps in the AR or MA
lags are to be modeled, or if different operators are to be applied to independent variables, the
first syntax is required.

ar(numlist) specifies the autoregressive terms of the structural model disturbance to be included in
the model. For example, ar(1/3) specifies that lags of 1, 2, and 3 of the structural disturbance
be included in the model; ar(1 4) specifies that lags 1 and 4 be included, perhaps to account for
additive quarterly effects.

If the model does not contain regressors, these terms can also be considered autoregressive terms
for the dependent variable.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for
the lagged innovations (white-noise disturbances).

constraints(constraints), collinear; see [R] estimation options.

If constraints are placed between structural model parameters and ARMA terms, the first few
iterations may attempt steps into nonstationary areas. This process can be ignored if the final
solution is well within the bounds of stationary solutions.

� � �
Model 2 �

sarima(#P ,#D,#Q,#s) is an alternative, shorthand notation for specifying the multiplicative seasonal
components of models with ARMA disturbances. The dependent variable and any independent
variables are lag-#s seasonally differenced #D times, and 1 through #P seasonal lags of autoregressive
terms and 1 through #Q seasonal lags of moving-average terms are included in the model. For
example, the specification

. arima DS12.y, ar(1/2) ma(1/3) mar(1/2,12) mma(1/2,12)

is equivalent to

. arima y, arima(2,1,3) sarima(2,1,2,12)

82 arima — ARIMA, ARMAX, and other dynamic regression models

mar(numlist, #s) specifies the lag-#s multiplicative seasonal autoregressive terms. For example,
mar(1/2,12) requests that the first two lag-12 multiplicative seasonal autoregressive terms be
included in the model.

mma(numlist, #s) specified the lag-#s multiplicative seasonal moving-average terms. For example,
mma(1 3,12) requests that the first and third (but not the second) lag-12 multiplicative seasonal
moving-average terms be included in the model.

� � �
Model 3 �

condition specifies that conditional, rather than full, maximum likelihood estimates be produced.
The presample values for εt and µt are taken to be their expected value of zero, and the estimate
of the variance of εt is taken to be constant over the entire sample; see Hamilton (1994, 132).
This estimation method is not appropriate for nonstationary series but may be preferable for long
series or for models that have one or more long AR or MA lags. diffuse, p0(), and state0()
have no meaning for models fit from the conditional likelihood and may not be specified with
condition.

If the series is long and stationary and the underlying data-generating process does not have a long
memory, estimates will be similar, whether estimated by unconditional maximum likelihood (the
default), conditional maximum likelihood (condition), or maximum likelihood from a diffuse
prior (diffuse).

In small samples, however, results of conditional and unconditional maximum likelihood may
differ substantially; see Ansley and Newbold (1980). Whereas the default unconditional maximum
likelihood estimates make the most use of sample information when all the assumptions of the model
are met, Harvey (1989) and Ansley and Kohn (1985) argue for diffuse priors often, particularly in
ARIMA models corresponding to an underlying structural model.

The condition or diffuse options may also be preferred when the model contains one or more
long AR or MA lags; this avoids inverting potentially large matrices (see diffuse below).

When condition is specified, estimation is performed by the arch command (see [TS] arch),
and more control of the estimation process can be obtained using arch directly.

condition cannot be specified if the model contains any multiplicative seasonal terms.

savespace specifies that memory use be conserved by retaining only those variables required for
estimation. The original dataset is restored after estimation. This option is rarely used and should
be used only if there is not enough space to fit a model without the option. However, arima
requires considerably more temporary storage during estimation than most estimation commands
in Stata.

diffuse specifies that a diffuse prior (see Harvey 1989 or 1993) be used as a starting point for the
Kalman filter recursions. Using diffuse, nonstationary models may be fit with arima (see the
p0() option below; diffuse is equivalent to specifying p0(1e9)).

By default, arima uses the unconditional expected value of the state vector ξt (see Methods and
formulas) and the mean squared error (MSE) of the state vector to initialize the filter. When the
process is stationary, this corresponds to the expected value and expected variance of a random draw
from the state vector and produces unconditional maximum likelihood estimates of the parameters.
When the process is not stationary, however, this default is not appropriate, and the unconditional
MSE cannot be computed. For a nonstationary process, another starting point must be used for the
recursions.

In the absence of nonsample or presample information, diffuse may be specified to start the
recursions from a state vector of zero and a state MSE matrix corresponding to an effectively

arima — ARIMA, ARMAX, and other dynamic regression models 83

infinite variance on this initial state. This method amounts to an uninformative and improper prior
that is updated to a proper MSE as data from the sample become available; see Harvey (1989).

Nonstationary models may also correspond to models with infinite variance given a particular
specification. This and other problems with nonstationary series make convergence difficult and
sometimes impossible.

diffuse can also be useful if a model contains one or more long AR or MA lags. Computation
of the unconditional MSE of the state vector (see Methods and formulas) requires construction
and inversion of a square matrix that is of dimension {max(p, q + 1)}2, where p and q are the
maximum AR and MA lags, respectively. If q = 27, for example, we would require a 784-by-784
matrix. Estimation with diffuse does not require this matrix.

For large samples, there is little difference between using the default starting point and the diffuse
starting point. Unless the series has a long memory, the initial conditions affect the likelihood of
only the first few observations.

p0(# |matname) is a rarely specified option that can be used for nonstationary series or when an
alternate prior for starting the Kalman recursions is desired (see diffuse above for a discussion
of the default starting point and Methods and formulas for background).

matname specifies a matrix to be used as the MSE of the state vector for starting the Kalman filter
recursions—P1|0. Instead, one number, #, may be supplied, and the MSE of the initial state vector
P1|0 will have this number on its diagonal and all off-diagonal values set to zero.

This option may be used with nonstationary series to specify a larger or smaller diagonal for P1|0
than that supplied by diffuse. It may also be used with state0() when you believe that you
have a better prior for the initial state vector and its MSE.

state0(# |matname) is a rarely used option that specifies an alternate initial state vector, ξ1|0 (see
Methods and formulas), for starting the Kalman filter recursions. If # is specified, all elements of
the vector are taken to be #. The default initial state vector is state0(0).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that are derived from asymptotic theory (oim, opg);
see [R] vce option.

For state-space models in general and ARMAX and ARIMA models in particular, the robust or
quasi–maximum likelihood estimates (QMLEs) of variance are robust to symmetric nonnormality
in the disturbances, including, as a special case, heteroskedasticity. The robust variance estimates
are not generally robust to functional misspecification of the structural or ARMA components of
the model; see Hamilton (1994, 389) for a brief discussion.

� � �
Reporting �

level(#); see [R] estimation options.

detail specifies that a detailed list of any gaps in the series be reported, including gaps due to
missing observations or missing data for the dependent variable or independent variables.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] estimation options.

84 arima — ARIMA, ARMAX, and other dynamic regression models

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), gtolerance(#), nonrtolerance(#), and from(init specs); see [R] maxi-
mize for all options except gtolerance(), and see below for information on gtolerance().

These options are sometimes more important for ARIMA models than most maximum likelihood
models because of potential convergence problems with ARIMA models, particularly if the specified
model and the sample data imply a nonstationary model.

Several alternate optimization methods, such as Berndt–Hall–Hall–Hausman (BHHH) and Broyden–
Fletcher–Goldfarb–Shanno (BFGS), are provided for ARIMA models. Although ARIMA models are
not as difficult to optimize as ARCH models, their likelihoods are nevertheless generally not quadratic
and often pose optimization difficulties; this is particularly true if a model is nonstationary or
nearly nonstationary. Because each method approaches optimization differently, some problems
can be successfully optimized by an alternate method when one method fails.

Setting technique() to something other than the default or BHHH changes the vcetype to vce(oim).

The following options are all related to maximization and are either particularly important in fitting
ARIMA models or not available for most other estimators.

technique(algorithm spec) specifies the optimization technique to use to maximize the
likelihood function.

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

You can specify multiple optimization methods. For example,

technique(bhhh 10 nr 20)

requests that the optimizer perform 10 BHHH iterations, switch to Newton–Raphson for 20
iterations, switch back to BHHH for 10 more iterations, and so on.

The default for arima is technique(bhhh 5 bfgs 10).

gtolerance(#) specifies the tolerance for the gradient relative to the coefficients. When
|gi bi| ≤ gtolerance() for all parameters bi and the corresponding elements of the
gradient gi, the gradient tolerance criterion is met. The default gradient tolerance for arima
is gtolerance(.05).

gtolerance(999) may be specified to disable the gradient criterion. If the optimizer becomes
stuck with repeated “(backed up)” messages, the gradient probably still contains substantial
values, but an uphill direction cannot be found for the likelihood. With this option, results can
often be obtained, but whether the global maximum likelihood has been found is unclear.

When the maximization is not going well, it is also possible to set the maximum number of
iterations (see [R] maximize) to the point where the optimizer appears to be stuck and to inspect
the estimation results at that point.

from(init specs) allows you to set the starting values of the model coefficients; see [R] maximize
for a general discussion and syntax options.

The standard syntax for from() accepts a matrix, a list of values, or coefficient name value
pairs; see [R] maximize. arima also accepts from(armab0), which sets the starting value for
all ARMA parameters in the model to zero prior to optimization.

arima — ARIMA, ARMAX, and other dynamic regression models 85

ARIMA models may be sensitive to initial conditions and may have coefficient values that
correspond to local maximums. The default starting values for arima are generally good,
particularly in large samples for stationary series.

The following option is available with arima but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
ARIMA models
Multiplicative seasonal ARIMA models
ARMAX models
Dynamic forecasting
Video example

Introduction
arima fits both standard ARIMA models that are autoregressive in the dependent variable and

structural models with ARMA disturbances. Good introductions to the former models can be found in
Box, Jenkins, and Reinsel (2008); Hamilton (1994); Harvey (1993); Newton (1988); Diggle (1990);
and many others. The latter models are developed fully in Hamilton (1994) and Harvey (1989), both of
which provide extensive treatment of the Kalman filter (Kalman 1960) and the state-space form used
by arima to fit the models. Becketti (2013) discusses ARIMA models and Stata’s arima command,
and he devotes an entire chapter explaining how the principles of ARIMA models are applied to real
datasets in practice.

Consider a first-order autoregressive moving-average process. Then arima estimates all the pa-
rameters in the model

yt = xtβ+ µt structural equation
µt = ρµt−1 + θεt−1 + εt disturbance, ARMA(1, 1)

where
ρ is the first-order autocorrelation parameter
θ is the first-order moving-average parameter
εt ∼ i.i.d. N(0, σ2), meaning that εt is a white-noise disturbance

You can combine the two equations and write a general ARMA(p, q) in the disturbances process as

yt = xtβ+ ρ1(yt−1 − xt−1β) + ρ2(yt−2 − xt−2β) + · · ·+ ρp(yt−p − xt−pβ)

+ θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt

It is also common to write the general form of the ARMA model more succinctly using lag operator
notation as

ρ(Lp)(yt − xtβ) = θ(Lq)εt ARMA(p, q)

where
ρ(Lp) = 1− ρ1L− ρ2L

2 − · · · − ρpLp

θ(Lq) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

and Ljyt = yt−j .

Multiplicative seasonal ARMAX and ARIMA models can also be fit.

86 arima — ARIMA, ARMAX, and other dynamic regression models

For stationary series, full or unconditional maximum likelihood estimates are obtained via the
Kalman filter. For nonstationary series, if some prior information is available, you can specify initial
values for the filter by using state0() and p0() as suggested by Hamilton (1994) or assume an
uninformative prior by using the diffuse option as suggested by Harvey (1989).

Missing data are allowed and are handled using the Kalman filter and methods suggested by Harvey
(1989 and 1993); see Methods and formulas.

ARIMA models

Pure ARIMA models without a structural component do not have regressors and are often written
as autoregressions in the dependent variable, rather than autoregressions in the disturbances from a
structural equation. For example, an ARMA(1, 1) model can be written as

yt = α+ ρyt−1 + θεt−1 + εt (1a)

Other than a scale factor for the constant term α, these models are equivalent to the ARMA in the
disturbances formulation estimated by arima, though the latter are more flexible and allow a wider
class of models.

To see this effect, replace xtβ in the structural equation above with a constant term β0 so that

yt = β0 + µt

= β0 + ρµt−1 + θεt−1 + εt

= β0 + ρ(yt−1 − β0) + θεt−1 + εt

= (1− ρ)β0 + ρyt−1 + θεt−1 + εt (1b)

Equations (1a) and (1b) are equivalent, with α = (1−ρ)β0, so whether we consider an ARIMA model
as autoregressive in the dependent variable or disturbances is immaterial. Our illustration can easily
be extended from the ARMA(1, 1) case to the general ARIMA(p, d, q) case.

arima — ARIMA, ARMAX, and other dynamic regression models 87

Example 1: ARIMA model

Enders (2004, 87–93) considers an ARIMA model of the U.S. Wholesale Price Index (WPI)
using quarterly data over the period 1960q1 through 1990q4. The simplest ARIMA model that includes
differencing and both autoregressive and moving-average components is the ARIMA(1,1,1) specification.
We can fit this model with arima by typing

. use http://www.stata-press.com/data/r14/wpi1

. arima wpi, arima(1,1,1)

(setting optimization to BHHH)
Iteration 0: log likelihood = -139.80133
Iteration 1: log likelihood = -135.6278
Iteration 2: log likelihood = -135.41838
Iteration 3: log likelihood = -135.36691
Iteration 4: log likelihood = -135.35892
(switching optimization to BFGS)
Iteration 5: log likelihood = -135.35471
Iteration 6: log likelihood = -135.35135
Iteration 7: log likelihood = -135.35132
Iteration 8: log likelihood = -135.35131

ARIMA regression

Sample: 1960q2 - 1990q4 Number of obs = 123
Wald chi2(2) = 310.64

Log likelihood = -135.3513 Prob > chi2 = 0.0000

OPG
D.wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

wpi
_cons .7498197 .3340968 2.24 0.025 .0950019 1.404637

ARMA
ar

L1. .8742288 .0545435 16.03 0.000 .7673256 .981132

ma
L1. -.4120458 .1000284 -4.12 0.000 -.6080979 -.2159938

/sigma .7250436 .0368065 19.70 0.000 .6529042 .7971829

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

Examining the estimation results, we see that the AR(1) coefficient is 0.874, the MA(1) coefficient
is −0.412, and both are highly significant. The estimated standard deviation of the white-noise
disturbance ε is 0.725.

This model also could have been fit by typing

. arima D.wpi, ar(1) ma(1)

The D. placed in front of the dependent variable wpi is the Stata time-series operator for differencing.
Thus we would be modeling the first difference in WPI from the second quarter of 1960 through
the fourth quarter of 1990 because the first observation is lost because of differencing. This second
syntax allows a richer choice of models.

88 arima — ARIMA, ARMAX, and other dynamic regression models

Example 2: ARIMA model with additive seasonal effects

After examining first-differences of WPI, Enders chose a model of differences in the natural
logarithms to stabilize the variance in the differenced series. The raw data and first-difference of the
logarithms are graphed below.

2
5

5
0

7
5

1
0

0
1

2
5

1960q1 1970q1 1980q1 1990q1
quarterly date

US Wholesale Price Index

−
.0

4
−

.0
2

0
.0

2
.0

4
.0

6
.0

8

1960q1 1970q1 1980q1 1990q1
quarterly date

US Wholesale Price Index −− difference of logs

On the basis of the autocorrelations, partial autocorrelations (see graphs below), and the results of
preliminary estimations, Enders identified an ARMA model in the log-differenced series.

. ac D.ln_wpi, ylabels(-.4(.2).6)

. pac D.ln_wpi, ylabels(-.4(.2).6)

−
0

.4
0

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

A
u

to
c
o

rr
e

la
ti
o

n
s
 o

f
D

.l
n

_
w

p
i

0 10 20 30 40
Lag

Bartlett’s formula for MA(q) 95% confidence bands

−
0

.4
0

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

P
a

rt
ia

l
a

u
to

c
o

rr
e

la
ti
o

n
s
 o

f
D

.l
n

_
w

p
i

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

In addition to an autoregressive term and an MA(1) term, an MA(4) term is included to account
for a remaining quarterly effect. Thus the model to be fit is

∆ ln(wpit) = β0 + ρ1{∆ ln(wpit−1)− β0}+ θ1εt−1 + θ4εt−4 + εt

arima — ARIMA, ARMAX, and other dynamic regression models 89

We can fit this model with arima and Stata’s standard difference operator:

. arima D.ln_wpi, ar(1) ma(1 4)

(setting optimization to BHHH)
Iteration 0: log likelihood = 382.67447
Iteration 1: log likelihood = 384.80754
Iteration 2: log likelihood = 384.84749
Iteration 3: log likelihood = 385.39213
Iteration 4: log likelihood = 385.40983
(switching optimization to BFGS)
Iteration 5: log likelihood = 385.9021
Iteration 6: log likelihood = 385.95646
Iteration 7: log likelihood = 386.02979
Iteration 8: log likelihood = 386.03326
Iteration 9: log likelihood = 386.03354
Iteration 10: log likelihood = 386.03357

ARIMA regression

Sample: 1960q2 - 1990q4 Number of obs = 123
Wald chi2(3) = 333.60

Log likelihood = 386.0336 Prob > chi2 = 0.0000

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0110493 .0048349 2.29 0.022 .0015731 .0205255

ARMA
ar

L1. .7806991 .0944946 8.26 0.000 .5954931 .965905

ma
L1. -.3990039 .1258753 -3.17 0.002 -.6457149 -.1522928
L4. .3090813 .1200945 2.57 0.010 .0737003 .5444622

/sigma .0104394 .0004702 22.20 0.000 .0095178 .0113609

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

In this final specification, the log-differenced series is still highly autocorrelated at a level of 0.781,
though innovations have a negative impact in the ensuing quarter (−0.399) and a positive seasonal
impact of 0.309 in the following year.

Technical note
In one way, the results differ from most of Stata’s estimation commands: the standard error of

the coefficients is reported as OPG Std. Err. The default standard errors and covariance matrix
for arima estimates are derived from the outer product of gradients (OPG). This is one of three
asymptotically equivalent methods of estimating the covariance matrix of the coefficients (only two of
which are usually tractable to derive). Discussions and derivations of all three estimates can be found
in Davidson and MacKinnon (1993), Greene (2012), and Hamilton (1994). Bollerslev, Engle, and
Nelson (1994) suggest that the OPG estimates are more numerically stable in time-series regressions
when the likelihood and its derivatives depend on recursive computations, which is certainly the case
for the Kalman filter. To date, we have found no numerical instabilities in either estimate of the
covariance matrix—subject to the stability and convergence of the overall model.

90 arima — ARIMA, ARMAX, and other dynamic regression models

Most of Stata’s estimation commands provide covariance estimates derived from the Hessian of
the likelihood function. These alternate estimates can also be obtained from arima by specifying the
vce(oim) option.

Multiplicative seasonal ARIMA models

Many time series exhibit a periodic seasonal component, and a seasonal ARIMA model, often
abbreviated SARIMA, can then be used. For example, monthly sales data for air conditioners have a
strong seasonal component, with sales high in the summer months and low in the winter months.

In the previous example, we accounted for quarterly effects by fitting the model

(1− ρ1L){∆ ln(wpit)− β0} = (1 + θ1L+ θ4L
4)εt

This is an additive seasonal ARIMA model, in the sense that the first- and fourth-order MA terms work
additively: (1 + θ1L+ θ4L

4).

Another way to handle the quarterly effect would be to fit a multiplicative seasonal ARIMA model.
A multiplicative SARIMA model of order (1, 1, 1)× (0, 0, 1)4 for the ln(wpit) series is

(1− ρ1L){∆ ln(wpit)− β0} = (1 + θ1L)(1 + θ4,1L
4)εt

or, upon expanding terms,

∆ ln(wpit) = β0 + ρ1{∆ ln(wpit)− β0}+ θ1εt−1 + θ4,1εt−4 + θ1θ4,1εt−5 + εt (2)

In the notation (1, 1, 1)× (0, 0, 1)4, the (1, 1, 1) means that there is one nonseasonal autoregressive
term (1 − ρ1L) and one nonseasonal moving-average term (1 + θ1L) and that the time series is
first-differenced one time. The (0, 0, 1)4 indicates that there is no lag-4 seasonal autoregressive term,
that there is one lag-4 seasonal moving-average term (1 + θ4,1L

4), and that the series is seasonally
differenced zero times. This is known as a multiplicative SARIMA model because the nonseasonal
and seasonal factors work multiplicatively: (1 + θ1L)(1 + θ4,1L

4). Multiplying the terms imposes
nonlinear constraints on the parameters of the fifth-order lagged values; arima imposes these constraints
automatically.

To further clarify the notation, consider a (2, 1, 1)× (1, 1, 2)4 multiplicative SARIMA model:

(1− ρ1L− ρ2L
2)(1− ρ4,1L

4)∆∆4zt = (1 + θ1L)(1 + θ4,1L
4 + θ4,2L

8)εt (3)

where ∆ denotes the difference operator ∆yt = yt − yt−1 and ∆s denotes the lag-s seasonal
difference operator ∆syt = yt − yt−s. Expanding (3), we have

z̃t = ρ1z̃t−1 + ρ2z̃t−2 + ρ4,1z̃t−4 − ρ1ρ4,1z̃t−5 − ρ2ρ4,1z̃t−6

+ θ1εt−1 + θ4,1εt−4 + θ1θ4,1εt−5 + θ4,2εt−8 + θ1θ4,2εt−9 + εt

where
z̃t = ∆∆4zt = ∆(zt − zt−4) = zt − zt−1 − (zt−4 − zt−5)

and zt = yt − xtβ if regressors are included in the model, zt = yt − β0 if just a constant term is
included, and zt = yt otherwise.

arima — ARIMA, ARMAX, and other dynamic regression models 91

More generally, a (p, d, q)× (P,D,Q)s multiplicative SARIMA model is

ρ(Lp)ρs(L
P)∆d∆D

s zt = θ(Lq)θs(L
Q)εt

where
ρs(L

P) = (1− ρs,1Ls − ρs,2L2s − · · · − ρs,PLPs)
θs(L

Q) = (1 + θs,1L
s + θs,2L

2s + · · ·+ θs,QL
Qs)

ρ(Lp) and θ(Lq) were defined previously, ∆d means apply the ∆ operator d times, and similarly
for ∆D

s . Typically, d and D will be 0 or 1; and p, q, P , and Q will seldom be more than 2 or 3. s
will typically be 4 for quarterly data and 12 for monthly data. In fact, the model can be extended to
include both monthly and quarterly seasonal factors, as we explain below.

If a plot of the data suggests that the seasonal effect is proportional to the mean of the series, then
the seasonal effect is probably multiplicative and a multiplicative SARIMA model may be appropriate.
Box, Jenkins, and Reinsel (2008, sec. 9.3.1) suggest starting with a multiplicative SARIMA model with
any data that exhibit seasonal patterns and then exploring nonmultiplicative SARIMA models if the
multiplicative models do not fit the data well. On the other hand, Chatfield (2004, 14) suggests that
taking the logarithm of the series will make the seasonal effect additive, in which case an additive
SARIMA model as fit in the previous example would be appropriate. In short, the analyst should
probably try both additive and multiplicative SARIMA models to see which provides better fits and
forecasts.

Unless diffuse is used, arima must create square matrices of dimension {max(p, q+1)}2, where
p and q are the maximum AR and MA lags, respectively; and the inclusion of long seasonal terms can
make this dimension rather large. For example, with monthly data, you might fit a (0, 1, 1)×(0, 1, 2)12

SARIMA model. The maximum MA lag is 2× 12 + 1 = 25, requiring a matrix with 262 = 676 rows
and columns.

Example 3: Multiplicative SARIMA model

One of the most common multiplicative SARIMA specifications is the (0, 1, 1)×(0, 1, 1)12 “airline”
model of Box, Jenkins, and Reinsel (2008, sec. 9.2). The dataset airline.dta contains monthly
international airline passenger data from January 1949 through December 1960. After first- and
seasonally differencing the data, we do not suspect the presence of a trend component, so we use the
noconstant option with arima:

92 arima — ARIMA, ARMAX, and other dynamic regression models

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. generate lnair = ln(air)

. arima lnair, arima(0,1,1) sarima(0,1,1,12) noconstant

(setting optimization to BHHH)
Iteration 0: log likelihood = 223.8437
Iteration 1: log likelihood = 239.80405

(output omitted)
Iteration 8: log likelihood = 244.69651

ARIMA regression

Sample: 14 - 144 Number of obs = 131
Wald chi2(2) = 84.53

Log likelihood = 244.6965 Prob > chi2 = 0.0000

OPG
DS12.lnair Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ma

L1. -.4018324 .0730307 -5.50 0.000 -.5449698 -.2586949

ARMA12
ma

L1. -.5569342 .0963129 -5.78 0.000 -.745704 -.3681644

/sigma .0367167 .0020132 18.24 0.000 .0327708 .0406625

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

Thus our model of the monthly number of international airline passengers is

∆∆12lnairt = −0.402εt−1 − 0.557εt−12 + 0.224εt−13 + εt

σ̂ = 0.037

In (2), for example, the coefficient on εt−13 is the product of the coefficients on the εt−1 and εt−12

terms (0.224 ≈ −0.402 × −0.557). arima labeled the dependent variable DS12.lnair to indicate
that it has applied the difference operator ∆ and the lag-12 seasonal difference operator ∆12 to
lnair; see [U] 11.4.4 Time-series varlists for more information.

We could have fit this model by typing
. arima DS12.lnair, ma(1) mma(1, 12) noconstant

For simple multiplicative models, using the sarima() option is easier, though this second syntax
allows us to incorporate more complicated seasonal terms.

The mar() and mma() options can be repeated, allowing us to control for multiple seasonal
patterns. For example, we may have monthly sales data that exhibit a quarterly pattern as businesses
purchase our product at the beginning of calendar quarters when new funds are budgeted, and our
product is purchased more frequently in a few months of the year than in most others, even after we
control for quarterly fluctuations. Thus we might choose to fit the model

(1−ρL)(1−ρ4,1L
4)(1−ρ12,1L

12)(∆∆4∆12salest−β0) = (1+θL)(1+θ4,1L
4)(1+θ12,1L

12)εt

Although this model looks rather complicated, estimating it using arima is straightforward:
. arima DS4S12.sales, ar(1) mar(1, 4) mar(1, 12) ma(1) mma(1, 4) mma(1, 12)

arima — ARIMA, ARMAX, and other dynamic regression models 93

If we instead wanted to include two lags in the lag-4 seasonal AR term and the first and third (but
not the second) term in the lag-12 seasonal MA term, we would type

. arima DS4S12.sales, ar(1) mar(1 2, 4) mar(1, 12) ma(1) mma(1, 4) mma(1 3, 12)

However, models with multiple seasonal terms can be difficult to fit. Usually, one seasonal factor
with just one or two AR or MA terms is adequate.

ARMAX models
Thus far all our examples have been pure ARIMA models in which the dependent variable was

modeled solely as a function of its past values and disturbances. Also, arima can fit ARMAX models,
which model the dependent variable in terms of a linear combination of independent variables, as
well as an ARMA disturbance process. The prais command (see [TS] prais), for example, allows
you to control for only AR(1) disturbances, whereas arima allows you to control for a much richer
dynamic error structure. arima allows for both nonseasonal and seasonal ARMA components in the
disturbances.

Example 4: ARMAX model

For a simple example of a model including covariates, we can estimate an update of Friedman and
Meiselman’s (1963) equation representing the quantity theory of money. They postulate a straight-
forward relationship between personal-consumption expenditures (consump) and the money supply
as measured by M2 (m2).

consumpt = β0 + β1m2t + µt

Friedman and Meiselman fit the model over a period ending in 1956; we will refit the model over
the period 1959q1 through 1981q4. We restrict our attention to the period prior to 1982 because the
Federal Reserve manipulated the money supply extensively in the later 1980s to control inflation, and
the relationship between consumption and the money supply becomes much more complex during
the later part of the decade.

To demonstrate arima, we will include both an autoregressive term and a moving-average term for
the disturbances in the model; the original estimates included neither. Thus we model the disturbance
of the structural equation as

µt = ρµt−1 + θεt−1 + εt

As per the original authors, the relationship is estimated on seasonally adjusted data, so there is no
need to include seasonal effects explicitly. Obtaining seasonally unadjusted data and simultaneously
modeling the structural and seasonal effects might be preferable.

We will restrict the estimation to the desired sample by using the tin() function in an if
expression; see [FN] Selecting time-span functions. By leaving the first argument of tin() blank,
we are including all available data through the second date (1981q4). We fit the model by typing

94 arima — ARIMA, ARMAX, and other dynamic regression models

. use http://www.stata-press.com/data/r14/friedman2, clear

. arima consump m2 if tin(, 1981q4), ar(1) ma(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = -344.67575
Iteration 1: log likelihood = -341.57248

(output omitted)
Iteration 10: log likelihood = -340.50774

ARIMA regression

Sample: 1959q1 - 1981q4 Number of obs = 92
Wald chi2(3) = 4394.80

Log likelihood = -340.5077 Prob > chi2 = 0.0000

OPG
consump Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
m2 1.122029 .0363563 30.86 0.000 1.050772 1.193286

_cons -36.09872 56.56703 -0.64 0.523 -146.9681 74.77062

ARMA
ar

L1. .9348486 .0411323 22.73 0.000 .8542308 1.015467

ma
L1. .3090592 .0885883 3.49 0.000 .1354293 .4826891

/sigma 9.655308 .5635157 17.13 0.000 8.550837 10.75978

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

We find a relatively small money velocity with respect to consumption (1.122) over this period,
although consumption is only one facet of the income velocity. We also note a very large first-order
autocorrelation in the disturbances, as well as a statistically significant first-order moving average.

arima — ARIMA, ARMAX, and other dynamic regression models 95

We might be concerned that our specification has led to disturbances that are heteroskedastic or
non-Gaussian. We refit the model by using the vce(robust) option.

. arima consump m2 if tin(, 1981q4), ar(1) ma(1) vce(robust)

(setting optimization to BHHH)
Iteration 0: log pseudolikelihood = -344.67575
Iteration 1: log pseudolikelihood = -341.57248

(output omitted)
Iteration 10: log pseudolikelihood = -340.50774

ARIMA regression

Sample: 1959q1 - 1981q4 Number of obs = 92
Wald chi2(3) = 1176.26

Log pseudolikelihood = -340.5077 Prob > chi2 = 0.0000

Semirobust
consump Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
m2 1.122029 .0433302 25.89 0.000 1.037103 1.206954

_cons -36.09872 28.10478 -1.28 0.199 -91.18308 18.98564

ARMA
ar

L1. .9348486 .0493428 18.95 0.000 .8381385 1.031559

ma
L1. .3090592 .1605359 1.93 0.054 -.0055854 .6237038

/sigma 9.655308 1.082639 8.92 0.000 7.533375 11.77724

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

We note a substantial increase in the estimated standard errors, and our once clearly significant
moving-average term is now only marginally significant.

Dynamic forecasting

Another feature of the arima command is the ability to use predict afterward to make dynamic
forecasts. Suppose that we wish to fit the regression model

yt = β0 + β1xt + ρyt−1 + εt

by using a sample of data from t = 1 . . . T and make forecasts beginning at time f .

If we use regress or prais to fit the model, then we can use predict to make one-step-ahead
forecasts. That is, predict will compute

ŷf = β̂0 + β̂1xf + ρ̂yf−1

Most importantly, here predict will use the actual value of y at period f − 1 in computing the
forecast for time f . Thus, if we use regress or prais, we cannot make forecasts for any periods
beyond f = T + 1 unless we have observed values for y for those periods.

96 arima — ARIMA, ARMAX, and other dynamic regression models

If we instead fit our model with arima, then predict can produce dynamic forecasts by using
the Kalman filter. If we use the dynamic(f) option, then for period f predict will compute

ŷf = β̂0 + β̂1xf + ρ̂yf−1

by using the observed value of yf−1 just as predict after regress or prais. However, for period
f + 1 predict newvar, dynamic(f) will compute

ŷf+1 = β̂0 + β̂1xf+1 + ρ̂ŷf

using the predicted value of yf instead of the observed value. Similarly, the period f + 2 forecast
will be

ŷf+2 = β̂0 + β̂1xf+2 + ρ̂ŷf+1

Of course, because our model includes the regressor xt, we can make forecasts only through periods
for which we have observations on xt. However, for pure ARIMA models, we can compute dynamic
forecasts as far beyond the final period of our dataset as desired.

For more information on predict after arima, see [TS] arima postestimation.

Video example

Time series, part 5: Introduction to ARMA/ARIMA models

Stored results
arima stores the following in e():

Scalars
e(N) number of observations
e(N gaps) number of gaps
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k1) number of variables in first equation
e(df m) model degrees of freedom
e(ll) log likelihood
e(sigma) sigma
e(chi2) χ2

e(p) significance
e(tmin) minimum time
e(tmax) maximum time
e(ar max) maximum AR lag
e(ma max) maximum MA lag
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

http://www.youtube.com/watch?v=8xt4q7KHfBs

arima — ARIMA, ARMAX, and other dynamic regression models 97

Macros
e(cmd) arima
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(eqnames) names of equations
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(ma) lags for moving-average terms
e(ar) lags for autoregressive terms
e(mari) multiplicative AR terms and lag i=1... (# seasonal AR terms)
e(mmai) multiplicative MA terms and lag i=1... (# seasonal MA terms)
e(seasons) seasonal lags in model
e(unsta) unstationary or blank
e(opt) type of optimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(tech steps) number of iterations performed before switching techniques
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
Estimation is by maximum likelihood using the Kalman filter via the prediction error decomposition;

see Hamilton (1994), Gourieroux and Monfort (1997), or, in particular, Harvey (1989). Any of these
sources will serve as excellent background for the fitting of these models with the state-space form;
each source also provides considerable detail on the method outlined below.

Methods and formulas are presented under the following headings:

ARIMA model
Kalman filter equations
Kalman filter or state-space representation of the ARIMA model
Kalman filter recursions
Kalman filter initial conditions
Likelihood from prediction error decomposition
Missing data

98 arima — ARIMA, ARMAX, and other dynamic regression models

ARIMA model

The model to be fit is

yt = xtβ+ µt

µt =

p∑
i=1

ρiµt−i +

q∑
j=1

θjεt−j + εt

which can be written as the single equation

yt = xtβ+

p∑
i=1

ρi(yt−i − xt−iβ) +

q∑
j=1

θjεt−j + εt

Some of the ρs and θs may be constrained to zero or, for multiplicative seasonal models, the products
of other parameters.

Kalman filter equations

We will roughly follow Hamilton’s (1994) notation and write the Kalman filter

ξt = Fξt−1 + vt (state equation)

yt = A′xt + H′ξt + wt (observation equation)

and (
vt
wt

)
∼ N

{
0,

(
Q 0
0 R

)}
We maintain the standard Kalman filter matrix and vector notation, although for univariate models
yt, wt, and R are scalars.

Kalman filter or state-space representation of the ARIMA model

A univariate ARIMA model can be cast in state-space form by defining the Kalman filter matrices
as follows (see Hamilton [1994], or Gourieroux and Monfort [1997], for details):

arima — ARIMA, ARMAX, and other dynamic regression models 99

F =

ρ1 ρ2 . . . ρp−1 ρp
1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 1 0

vt =

εt−1

0
. . .
. . .
. . .
0

A′ = β

H′ = [1 θ1 θ2 . . . θq]

wt = 0

The Kalman filter representation does not require the moving-average terms to be invertible.

Kalman filter recursions
To demonstrate how missing data are handled, the updating recursions for the Kalman filter will

be left in two steps. Writing the updating equations as one step using the gain matrix K is common.
We will provide the updating equations with little justification; see the sources listed above for details.

As a linear combination of a vector of random variables, the state ξt can be updated to its expected
value on the basis of the prior state as

ξt|t−1 = Fξt−1 + vt−1 (4)

This state is a quadratic form that has the covariance matrix

Pt|t−1 = FPt−1F
′ + Q (5)

The estimator of yt is
ŷt|t−1 = xtβ+ H′ξt|t−1

which implies an innovation or prediction error

ι̂t = yt − ŷt|t−1

This value or vector has mean squared error (MSE)

Mt = H′Pt|t−1H + R

Now the expected value of ξt conditional on a realization of yt is

ξt = ξt|t−1 + Pt|t−1HM−1
t ι̂t (6)

with MSE
Pt = Pt|t−1 −Pt|t−1HM−1

t H′Pt|t−1 (7)

This expression gives the full set of Kalman filter recursions.

100 arima — ARIMA, ARMAX, and other dynamic regression models

Kalman filter initial conditions
When the series is stationary, conditional on xtβ, the initial conditions for the filter can be

considered a random draw from the stationary distribution of the state equation. The initial values of
the state and the state MSE are the expected values from this stationary distribution. For an ARIMA
model, these can be written as

ξ1|0 = 0

and
vec(P1|0) = (Ir2 − F⊗ F)−1vec(Q)

where vec() is an operator representing the column matrix resulting from stacking each successive
column of the target matrix.

If the series is not stationary, the initial state conditions do not constitute a random draw from a
stationary distribution, and some other values must be chosen. Hamilton (1994) suggests that they be
chosen based on prior expectations, whereas Harvey suggests a diffuse and improper prior having a
state vector of 0 and an infinite variance. This method corresponds to P1|0 with diagonal elements of
∞. Stata allows either approach to be taken for nonstationary series—initial priors may be specified
with state0() and p0(), and a diffuse prior may be specified with diffuse.

Likelihood from prediction error decomposition

Given the outputs from the Kalman filter recursions and assuming that the state and observation
vectors are Gaussian, the likelihood for the state-space model follows directly from the resulting
multivariate normal in the predicted innovations. The log likelihood for observation t is

lnLt = −1

2

{
ln(2π) + ln(|Mt|)− ι̂′tM−1

t ι̂t
}

This command supports the Huber/White/sandwich estimator of the variance using vce(robust).
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

Missing data

Missing data, whether a missing dependent variable yt, one or more missing covariates xt, or
completely missing observations, are handled by continuing the state-updating equations without any
contribution from the data; see Harvey (1989 and 1993). That is, (4) and (5) are iterated for every
missing observation, whereas (6) and (7) are ignored. Thus, for observations with missing data,
ξt = ξt|t−1 and Pt = Pt|t−1. Without any information from the sample, this effectively assumes
that the prediction error for the missing observations is 0. Other methods of handling missing data
on the basis of the EM algorithm have been suggested, for example, Shumway (1984, 1988).

arima — ARIMA, ARMAX, and other dynamic regression models 101� �
George Edward Pelham Box (1919–2013) was born in Kent, England, and earned degrees
in statistics at the University of London. After work in the chemical industry, he taught and
researched at Princeton and the University of Wisconsin. His many major contributions to statistics
include papers and books in Bayesian inference, robustness (a term he introduced to statistics),
modeling strategy, experimental design and response surfaces, time-series analysis, distribution
theory, transformations, and nonlinear estimation.

Gwilym Meirion Jenkins (1933–1982) was a British mathematician and statistician who spent
his career in industry and academia, working for extended periods at Imperial College London
and the University of Lancaster before running his own company. His interests were centered on
time series and he collaborated with G. E. P. Box on what are often called Box–Jenkins models.
The last years of Jenkins’s life were marked by a slowly losing battle against Hodgkin’s disease.� �

References
Ansley, C. F., and R. J. Kohn. 1985. Estimation, filtering, and smoothing in state space models with incompletely

specified initial conditions. Annals of Statistics 13: 1286–1316.

Ansley, C. F., and P. Newbold. 1980. Finite sample properties of estimators for autoregressive moving average models.
Journal of Econometrics 13: 159–183.

Baum, C. F. 2000. sts15: Tests for stationarity of a time series. Stata Technical Bulletin 57: 36–39. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 356–360. College Station, TX: Stata Press.

Baum, C. F., and T. Room. 2001. sts18: A test for long-range dependence in a time series. Stata Technical Bulletin
60: 37–39. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 370–373. College Station, TX: Stata Press.

Baum, C. F., and R. I. Sperling. 2000. sts15.1: Tests for stationarity of a time series: Update. Stata Technical Bulletin
58: 35–36. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 360–362. College Station, TX: Stata Press.

Baum, C. F., and V. L. Wiggins. 2000. sts16: Tests for long memory in a time series. Stata Technical Bulletin 57:
39–44. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 362–368. College Station, TX: Stata Press.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman. 1974. Estimation and inference in nonlinear structural
models. Annals of Economic and Social Measurement 3/4: 653–665.

Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. ARCH models. In Vol. 4 of Handbook of Econometrics, ed.
R. F. Engle and D. L. McFadden. Amsterdam: Elsevier.

Box, G. E. P. 1983. Obituary: G. M. Jenkins, 1933–1982. Journal of the Royal Statistical Society, Series A 146:
205–206.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.
Hoboken, NJ: Wiley.

Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the
Social Science. New York: Cambridge University Press.

Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

David, J. S. 1999. sts14: Bivariate Granger causality test. Stata Technical Bulletin 51: 40–41. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 350–351. College Station, TX: Stata Press.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

DeGroot, M. H. 1987. A conversation with George Box. Statistical Science 2: 239–258.

Diggle, P. J. 1990. Time Series: A Biostatistical Introduction. Oxford: Oxford University Press.

Enders, W. 2004. Applied Econometric Time Series. 2nd ed. New York: Wiley.

Friedman, M., and D. Meiselman. 1963. The relative stability of monetary velocity and the investment multiplier in
the United States, 1897–1958. In Stabilization Policies, Commission on Money and Credit, 123–126. Englewood
Cliffs, NJ: Prentice Hall.

http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata.com/products/stb/journals/stb58.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/bookstore/eie.html

102 arima — ARIMA, ARMAX, and other dynamic regression models

Gourieroux, C. S., and A. Monfort. 1997. Time Series and Dynamic Models. Trans. ed. G. M. Gallo. Cambridge:
Cambridge University Press.

Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1993. Time Series Models. 2nd ed. Cambridge, MA: MIT Press.

Hipel, K. W., and A. I. McLeod. 1994. Time Series Modelling of Water Resources and Environmental Systems.
Amsterdam: Elsevier.

Holan, S. H., R. Lund, and G. Davis. 2010. The ARMA alphabet soup: A tour of ARMA model variants. Statistics
Surveys 4: 232–274.

Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal
of Basic Engineering, Series D 82: 35–45.

McDowell, A. W. 2002. From the help desk: Transfer functions. Stata Journal 2: 71–85.

. 2004. From the help desk: Polynomial distributed lag models. Stata Journal 4: 180–189.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Pickup, M. 2015. Introduction to Time Series Analysis. Thousand Oaks, CA: Sage.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Sánchez, G. 2012. Comparing predictions after arima with manual computations. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2012/02/16/comparing-predictions-after-arima-with-manual-computations/.

Shumway, R. H. 1984. Some applications of the EM algorithm to analyzing incomplete time series data. In Time
Series Analysis of Irregularly Observed Data, ed. E. Parzen, 290–324. New York: Springer.

. 1988. Applied Statistical Time Series Analysis. Upper Saddle River, NJ: Prentice Hall.

Wang, Q., and N. Wu. 2012. Menu-driven X-12-ARIMA seasonal adjustment in Stata. Stata Journal 12: 214–241.

Also see
[TS] arima postestimation — Postestimation tools for arima

[TS] tsset — Declare data to be time-series data

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] dfactor — Dynamic-factor models

[TS] forecast — Econometric model forecasting

[TS] mgarch — Multivariate GARCH models

[TS] mswitch — Markov-switching regression models

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression

[TS] sspace — State-space models

[TS] ucm — Unobserved-components model

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/ea.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0009
http://www.stata-journal.com/sjpdf.html?articlenum=st0065
http://www.stata.com/bookstore/introduction-time-series-analysis/
http://blog.stata.com/2012/02/16/comparing-predictions-after-arima-with-manual-computations/
http://www.stata-journal.com/article.html?article=st0255

Title

arima postestimation — Postestimation tools for arima

Postestimation commands predict margins Remarks and examples
Reference Also see

Postestimation commands
The following postestimation commands are of special interest after arima:

Command Description

estat acplot estimate autocorrelations and autocovariances
estat aroots check stability condition of estimates
irf create and analyze IRFs
psdensity estimate the spectral density

The following standard postestimation commands are also available:
Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

103

104 arima postestimation — Postestimation tools for arima

predict

Description for predict

predict creates a new variable containing predictions such as expected values and mean squared
errors. All predictions are available as static one-step-ahead predictions or as dynamic multistep
predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb predicted values for mean equation—the differenced series; the default
stdp standard error of the linear prediction
y predicted values for the mean equation in y—the undifferenced series
mse mean squared error of the predicted values
residuals residuals or predicted innovations
yresiduals residuals or predicted innovations in y, reversing any time-series operators

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Predictions are not available for conditional ARIMA models fit to panel data.

options Description

Options

dynamic(time constant) how to handle the lags of yt
t0(time constant) set starting point for the recursions to time constant
structural calculate considering the structural component only

time constant is a # or a time literal, such as td(1jan1995) or tq(1995q1); see
Conveniently typing SIF values in [D] datetime.

Options for predict

Six statistics can be computed using predict after arima: the predictions from the model (the
default also given by xb), the standard error of the linear prediction (stdp), the predictions after
reversing any time-series operators applied to the dependent variable (y), the MSE of xb (mse), the
predictions of residuals or innovations (residual), and the predicted residuals or innovations in terms
of y (yresiduals). Given the dynamic nature of the ARMA component and because the dependent
variable might be differenced, there are other ways of computing each. We can use all the data on
the dependent variable that is available right up to the time of each prediction (the default, which is

arima postestimation — Postestimation tools for arima 105

often called a one-step prediction), or we can use the data up to a particular time, after which the
predicted value of the dependent variable is used recursively to make later predictions (dynamic()).
Either way, we can consider or ignore the ARMA disturbance component (the component is considered
by default and is ignored if you specify structural).

All calculations can be made in or out of sample.

� � �
Main �

xb, the default, calculates the predictions from the model. If D.depvar is the dependent variable,
these predictions are of D.depvar and not of depvar itself.

stdp calculates the standard error of the linear prediction xb. stdp does not include the variation
arising from the disturbance equation; use mse to calculate standard errors and confidence bands
around the predicted values.

y specifies that predictions of depvar be made, even if the model was specified in terms of, say,
D.depvar.

mse calculates the MSE of the predictions.

residuals calculates the residuals. If no other options are specified, these are the predicted innovations
εt; that is, they include the ARMA component. If structural is specified, these are the residuals
µt from the structural equation; see structural below.

yresiduals calculates the residuals in terms of depvar, even if the model was specified in terms of,
say, D.depvar. As with residuals, the yresiduals are computed from the model, including any
ARMA component. If structural is specified, any ARMA component is ignored, and yresiduals
are the residuals from the structural equation; see structural below.

� � �
Options �

dynamic(time constant) specifies how lags of yt in the model are to be handled. If dynamic() is
not specified, actual values are used everywhere that lagged values of yt appear in the model to
produce one-step-ahead forecasts.

dynamic(time constant) produces dynamic (also known as recursive) forecasts. time constant
specifies when the forecast is to switch from one step ahead to dynamic. In dynamic forecasts,
references to yt evaluate to the prediction of yt for all periods at or after time constant; they
evaluate to the actual value of yt for all prior periods.

For example, dynamic(10) would calculate predictions in which any reference to yt with t < 10
evaluates to the actual value of yt and any reference to yt with t ≥ 10 evaluates to the prediction of
yt. This means that one-step-ahead predictions are calculated for t < 10 and dynamic predictions
thereafter. Depending on the lag structure of the model, the dynamic predictions might still refer
some actual values of yt.

You may also specify dynamic(.) to have predict automatically switch from one-step-ahead to
dynamic predictions at p+ q, where p is the maximum AR lag and q is the maximum MA lag.

t0(time constant) specifies the starting point for the recursions to compute the predicted statistics;
disturbances are assumed to be 0 for t < t0(). The default is to set t0() to the minimum t
observed in the estimation sample, meaning that observations before that are assumed to have
disturbances of 0.

t0() is irrelevant if structural is specified because then all observations are assumed to have
disturbances of 0.

t0(5) would begin recursions at t = 5. If the data were quarterly, you might instead type
t0(tq(1961q2)) to obtain the same result.

106 arima postestimation — Postestimation tools for arima

The ARMA component of ARIMA models is recursive and depends on the starting point of the
predictions. This includes one-step-ahead predictions.

structural specifies that the calculation be made considering the structural component only, ignoring
the ARMA terms, producing the steady-state equilibrium predictions.

margins

Description for margins

margins estimates margins of response for expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

xb predicted values for mean equation—the differenced series; the default
y predicted values for the mean equation in y—the undifferenced series
stdp not allowed with margins

mse not allowed with margins

residuals not allowed with margins

yresiduals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Forecasting after ARIMA
IRF results for ARIMA

Forecasting after ARIMA

We assume that you have already read [TS] arima. In this section, we illustrate some of the features
of predict after fitting ARIMA, ARMAX, and other dynamic models by using arima. In example 2
of [TS] arima, we fit the model

∆ ln(wpit) = β0 + ρ1{∆ ln(wpit−1)− β0}+ θ1εt−1 + θ4εt−4 + εt

arima postestimation — Postestimation tools for arima 107

by typing

. use http://www.stata-press.com/data/r14/wpi1

. arima D.ln_wpi, ar(1) ma(1 4)

(output omitted)

If we use the command

. predict xb, xb

then Stata computes xbt as

xbt = β̂0 + ρ̂1{∆ ln(wpit−1)− β̂0}+ θ̂1ε̂t−1 + θ̂4ε̂t−4

where
ε̂t−j =

{
∆ ln(wpit−j)− xbt−j t− j > 0
0 otherwise

meaning that predict newvar, xb calculates predictions by using the metric of the dependent variable.
In this example, the dependent variable represented changes in ln(wpit), and so the predictions are
likewise for changes in that variable.

If we instead use

. predict y, y

Stata computes yt as yt = xbt+ ln(wpit−1) so that yt represents the predicted levels of ln(wpit). In
general, predict newvar, y will reverse any time-series operators applied to the dependent variable
during estimation.

If we want to ignore the ARMA error components when making predictions, we use the structural
option,

. predict xbs, xb structural

which generates xbst = β̂0 because there are no regressors in this model, and

. predict ys, y structural

generates yst = β̂0 + ln(wpit−1)

Example 1: Dynamic forecasts

An attractive feature of the arima command is the ability to make dynamic forecasts. In example 4
of [TS] arima, we fit the model

consumpt = β0 + β1m2t + µt

µt = ρµt−1 + θεt−1 + εt

First, we refit the model by using data up through the first quarter of 1978, and then we will evaluate
the one-step-ahead and dynamic forecasts.

. use http://www.stata-press.com/data/r14/friedman2

. keep if time<=tq(1981q4)
(67 observations deleted)

. arima consump m2 if tin(, 1978q1), ar(1) ma(1)
(output omitted)

108 arima postestimation — Postestimation tools for arima

To make one-step-ahead forecasts, we type

. predict chat, y
(52 missing values generated)

(Because our dependent variable contained no time-series operators, we could have instead used
predict chat, xb and accomplished the same thing.) We will also make dynamic forecasts,
switching from observed values of consump to forecasted values at the first quarter of 1978:

. predict chatdy, dynamic(tq(1978q1)) y
(52 missing values generated)

The following graph compares the forecasted values to the observed values for the first few years
following the estimation sample:

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

B
ill

io
n

s
 o

f
d

o
lla

rs

1977q1 1978q1 1979q1 1980q1 1981q1 1982q1
Quarter

Observed One−step−ahead forecast

Dynamic forecast (1978q1)

Personal consumption

The one-step-ahead forecasts never deviate far from the observed values, though over time the
dynamic forecasts have larger errors. To understand why that is the case, rewrite the model as

consumpt = β0 + β1m2t + ρµt−1 + θεt−1 + εt

= β0 + β1m2t + ρ
(
consumpt−1 − β0 − β1m2t−1

)
+ θεt−1 + εt

This form shows that the forecasted value of consumption at time t depends on the value of consumption
at time t − 1. When making the one-step-ahead forecast for period t, we know the actual value of
consumption at time t−1. On the other hand, with the dynamic(tq(1978q1)) option, the forecasted
value of consumption for period 1978q1 is based on the observed value of consumption in period
1977q4, but the forecast for 1978q2 is based on the forecast value for 1978q1, the forecast for 1978q3
is based on the forecast value for 1978q2, and so on. Thus, with dynamic forecasts, prior forecast
errors accumulate over time. The following graph illustrates this effect.

arima postestimation — Postestimation tools for arima 109

−
2

0
0

−
1

5
0

−
1

0
0

−
5

0
0

F
o

re
c
a

s
t

−
 A

c
tu

a
l

1978q1 1979q1 1980q1 1981q1 1982q1
Quarter

One−step−ahead forecast Dynamic forecast (1978q1)

Forecast error

IRF results for ARIMA
We assume that you have already read [TS] irf and [TS] irf create. In this section, we illustrate

how to calculate the impulse–response function (IRF) of an ARIMA model.

Example 2

Consider a model of the quarterly U.S. money supply, as measured by M1, from Enders (2004).
Enders (2004, 93–97) discusses why seasonal shopping patterns cause seasonal effects in M1. The
variable lnm1 contains data on the natural log of the money supply. We fit seasonal and nonseasonal
ARIMA models and compare the IRFs calculated from both models.

We fit the following nonseasonal ARIMA model

∆∆4lnm1t = ρ1(∆∆4lnm1t−1) + ρ4(∆∆4lnm1t−4) + εt

The code below fits the above model and saves a set of IRF results to a file called myirf.irf.

110 arima postestimation — Postestimation tools for arima

. use http://www.stata-press.com/data/r14/m1nsa, clear
(U.S. money supply (M1) from Enders (2004), 95-99.)

. arima DS4.lnm1, ar(1 4) noconstant nolog

ARIMA regression

Sample: 1961q2 - 2008q2 Number of obs = 189
Wald chi2(2) = 78.34

Log likelihood = 579.3036 Prob > chi2 = 0.0000

OPG
DS4.lnm1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. .3551862 .0503011 7.06 0.000 .2565979 .4537745
L4. -.3275808 .0594953 -5.51 0.000 -.4441895 -.210972

/sigma .0112678 .0004882 23.08 0.000 .0103109 .0122246

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. irf create nonseasonal, set(myirf) step(30)
(file myirf.irf created)
(file myirf.irf now active)
(file myirf.irf updated)

We fit the following seasonal ARIMA model

(1− ρ1L)(1− ρ4,1L
4)∆∆4lnm1t = εt

The code below fits this nonseasonal ARIMA model and saves a set of IRF results to the active IRF
file, which is myirf.irf.

. arima DS4.lnm1, ar(1) mar(1,4) noconstant nolog

ARIMA regression

Sample: 1961q2 - 2008q2 Number of obs = 189
Wald chi2(2) = 119.78

Log likelihood = 588.6689 Prob > chi2 = 0.0000

OPG
DS4.lnm1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. .489277 .0538033 9.09 0.000 .3838245 .5947296

ARMA4
ar

L1. -.4688653 .0601248 -7.80 0.000 -.5867076 -.3510229

/sigma .0107075 .0004747 22.56 0.000 .0097771 .0116379

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. irf create seasonal, step(30)
(file myirf.irf updated)

We now have two sets of IRF results in the file myirf.irf. We can graph both IRF functions side
by side by calling irf graph.

arima postestimation — Postestimation tools for arima 111

. irf graph irf

−.5

0

.5

1

0 10 20 30 0 10 20 30

nonseasonal, DS4.lnm1, DS4.lnm1 seasonal, DS4.lnm1, DS4.lnm1

95% CI impulse−response function (irf)

step

Graphs by irfname, impulse variable, and response variable

The trajectories of the IRF functions are similar: each figure shows that a shock to lnm1 causes a
temporary oscillation in lnm1 that dies out after about 15 time periods. This behavior is characteristic
of short-memory processes.

See [TS] psdensity for an introduction to estimating spectral densities using the parameters estimated
by arima.

Reference
Enders, W. 2004. Applied Econometric Time Series. 2nd ed. New York: Wiley.

Also see
[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] estat acplot — Plot parametric autocorrelation and autocovariance functions

[TS] estat aroots — Check the stability condition of ARIMA estimates

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] psdensity — Parametric spectral density estimation after arima, arfima, and ucm

[U] 20 Estimation and postestimation commands

Title

corrgram — Tabulate and graph autocorrelations

Description Quick start Menu
Syntax Options for corrgram Options for ac and pac
Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
corrgram produces a table of the autocorrelations, partial autocorrelations, and portmanteau (Q)

statistics. It also displays a character-based plot of the autocorrelations and partial autocorrelations.
See [TS] wntestq for more information on the Q statistic.

ac produces a correlogram (a graph of autocorrelations) with pointwise confidence intervals that
is based on Bartlett’s formula for MA(q) processes.

pac produces a partial correlogram (a graph of partial autocorrelations) with confidence intervals
calculated using a standard error of 1/

√
n. The residual variances for each lag may optionally be

included on the graph.

Quick start
Produce correlogram for y using tsset data

corrgram y

As above, but limit the number of computed autocorrelations to 10
corrgram y, lags(10)

Plot the autocorrelation function for y
ac y

As above, and generate newv to hold the autocorrelations
ac y, generate(newv)

Plot partial autocorrelation function for y and include standardized residual variances in the graph
pac y, srv

Menu
corrgram

Statistics > Time series > Graphs > Autocorrelations & partial autocorrelations

ac

Statistics > Time series > Graphs > Correlogram (ac)

pac

Statistics > Time series > Graphs > Partial correlogram (pac)

112

corrgram — Tabulate and graph autocorrelations 113

Syntax
Autocorrelations, partial autocorrelations, and portmanteau (Q) statistics

corrgram varname
[

if
] [

in
] [

, corrgram options
]

Graph autocorrelations with confidence intervals

ac varname
[

if
] [

in
] [

, ac options
]

Graph partial autocorrelations with confidence intervals

pac varname
[

if
] [

in
] [

, pac options
]

corrgram options Description

Main

lags(#) calculate # autocorrelations
noplot suppress character-based plots
yw calculate partial autocorrelations by using Yule–Walker equations

ac options Description

Main

lags(#) calculate # autocorrelations
generate(newvar) generate a variable to hold the autocorrelations
level(#) set confidence level; default is level(95)

fft calculate autocorrelation by using Fourier transforms

Plot

line options change look of dropped lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

CI plot

ciopts(area options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

114 corrgram — Tabulate and graph autocorrelations

pac options Description

Main

lags(#) calculate # partial autocorrelations
generate(newvar) generate a variable to hold the partial autocorrelations
yw calculate partial autocorrelations by using Yule–Walker equations
level(#) set confidence level; default is level(95)

Plot

line options change look of dropped lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

CI plot

ciopts(area options) affect rendition of the confidence bands

SRV plot

srv include standardized residual variances in graph
srvopts(marker options) affect rendition of the plotted standardized residual variances (SRVs)

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

You must tsset your data before using corrgram, ac, or pac; see [TS] tsset. Also, the time series
must be dense (nonmissing and no gaps in the time variable) in the sample if you specify the fft option.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options for corrgram

� � �
Main �

lags(#) specifies the number of autocorrelations to calculate. The default is to use min(bn/2c−2, 40),
where bn/2c is the greatest integer less than or equal to n/2.

noplot prevents the character-based plots from being in the listed table of autocorrelations and partial
autocorrelations.

yw specifies that the partial autocorrelations be calculated using the Yule–Walker equations instead
of using the default regression-based technique. yw cannot be used if srv is used.

Options for ac and pac

� � �
Main �

lags(#) specifies the number of autocorrelations to calculate. The default is to use min(bn/2c−2, 40),
where bn/2c is the greatest integer less than or equal to n/2.

generate(newvar) specifies a new variable to contain the autocorrelation (ac command) or partial
autocorrelation (pac command) values. This option is required if the nograph option is used.

corrgram — Tabulate and graph autocorrelations 115

nograph (implied when using generate() in the dialog box) prevents ac and pac from constructing
a graph. This option requires the generate() option.

yw (pac only) specifies that the partial autocorrelations be calculated using the Yule–Walker equations
instead of using the default regression-based technique. yw cannot be used if srv is used.

level(#) specifies the confidence level, as a percentage, for the confidence bands in the ac or pac
graph. The default is level(95) or as set by set level; see [R] level.

fft (ac only) specifies that the autocorrelations be calculated using two Fourier transforms. This
technique can be faster than simply iterating over the requested number of lags.

� � �
Plot �

line options, marker options, and marker label options affect the rendition of the plotted autocor-
relations (with ac) or partial autocorrelations (with pac).

line options specify the look of the dropped lines, including pattern, width, and color; see
[G-3] line options.

marker options specify the look of markers. This look includes the marker symbol, the marker
size, and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands; see [G-3] area options.

� � �
SRV plot �

srv (pac only) specifies that the standardized residual variances be plotted with the partial autocor-
relations. srv cannot be used if yw is used.

srvopts(marker options) (pac only) affects the rendition of the plotted standardized residual
variances; see [G-3] marker options. This option implies the srv option.

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Basic examples
Video example

116 corrgram — Tabulate and graph autocorrelations

Basic examples

corrgram tabulates autocorrelations, partial autocorrelations, and portmanteau (Q) statistics and
plots the autocorrelations and partial autocorrelations. The Q statistics are the same as those produced
by [TS] wntestq. ac produces graphs of the autocorrelations, and pac produces graphs of the partial
autocorrelations. See Becketti (2013) for additional examples of how these commands are used in
practice.

Example 1

Here we use the international airline passengers dataset (Box, Jenkins, and Reinsel 2008, Series G).
This dataset has 144 observations on the monthly number of international airline passengers from
1949 through 1960. We can list the autocorrelations and partial autocorrelations by using corrgram.

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. corrgram air, lags(20)

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

1 0.9480 0.9589 132.14 0.0000
2 0.8756 -0.3298 245.65 0.0000
3 0.8067 0.2018 342.67 0.0000
4 0.7526 0.1450 427.74 0.0000
5 0.7138 0.2585 504.8 0.0000
6 0.6817 -0.0269 575.6 0.0000
7 0.6629 0.2043 643.04 0.0000
8 0.6556 0.1561 709.48 0.0000
9 0.6709 0.5686 779.59 0.0000
10 0.7027 0.2926 857.07 0.0000
11 0.7432 0.8402 944.39 0.0000
12 0.7604 0.6127 1036.5 0.0000
13 0.7127 -0.6660 1118 0.0000
14 0.6463 -0.3846 1185.6 0.0000
15 0.5859 0.0787 1241.5 0.0000
16 0.5380 -0.0266 1289 0.0000
17 0.4997 -0.0581 1330.4 0.0000
18 0.4687 -0.0435 1367 0.0000
19 0.4499 0.2773 1401.1 0.0000
20 0.4416 -0.0405 1434.1 0.0000

corrgram — Tabulate and graph autocorrelations 117

We can use ac to produce a graph of the autocorrelations.

. ac air, lags(20)

−
1

.0
0

−
0

.5
0

0
.0

0
0

.5
0

1
.0

0
A

u
to

c
o

rr
e

la
ti
o

n
s
 o

f
a

ir

0 5 10 15 20
Lag

Bartlett’s formula for MA(q) 95% confidence bands

The data probably have a trend component as well as a seasonal component. First-differencing
will mitigate the effects of the trend, and seasonal differencing will help control for seasonality. To
accomplish this goal, we can use Stata’s time-series operators. Here we graph the partial autocorrelations
after controlling for trends and seasonality. We also use srv to include the standardized residual
variances.

. pac DS12.air, lags(20) srv

−
0

.5
0

0
.0

0
0

.5
0

1
.0

0
P

a
rt

ia
l
a

u
to

c
o

rr
e

la
ti
o

n
s
 o

f
D

S
1

2
.a

ir

0 5 10 15 20
Lag

95% CI

Partial autocorrelations of DS12.air

Standardized variances

95% Confidence bands [se = 1/sqrt(n)]

See [U] 11.4.4 Time-series varlists for more information about time-series operators.

118 corrgram — Tabulate and graph autocorrelations

Video example

Time series, part 4: Correlograms and partial correlograms

Stored results
corrgram stores the following in r():

Scalars
r(lags) number of lags
r(ac#) AC for lag #
r(pac#) PAC for lag #
r(q#) Q for lag #

Matrices
r(AC) vector of autocorrelations
r(PAC) vector of partial autocorrelations
r(Q) vector of Q statistics

Methods and formulas
Box, Jenkins, and Reinsel (2008, sec. 2.1.4); Newton (1988); Chatfield (2004); and Hamilton (1994)

provide excellent descriptions of correlograms. Newton (1988) also discusses the calculation of the
various quantities.

The autocovariance function for a time series x1, x2, . . . , xn is defined for |v| < n as

R̂(v) =
1

n

n−|v|∑
i=1

(xi − x)(xi+v − x)

where x is the sample mean, and the autocorrelation function is then defined as

ρ̂v =
R̂(v)

R̂(0)

The variance of ρ̂v is given by Bartlett’s formula for MA(q) processes. From Brockwell and Davis (2002,
94), we have

Var(ρ̂v) =

1/n v = 1

1
n

{
1 + 2

v−1∑
i=1

ρ̂2(i)

}
v > 1

The partial autocorrelation at lag v measures the correlation between xt and xt+v after the effects
of xt+1, . . . , xt+v−1 have been removed. By default, corrgram and pac use a regression-based
method to estimate it. We run an OLS regression of xt on xt−1, . . . , xt−v and a constant term. The
estimated coefficient on xt−v is our estimate of the vth partial autocorrelation. The residual variance
is the estimated variance of that regression, which we then standardize by dividing by R̂(0).

If the yw option is specified, corrgram and pac use the Yule–Walker equations to estimate the
partial autocorrelations. Per Enders (2010, 66–67), let φvv denote the vth partial autocorrelation
coefficient. We then have

φ̂11 = ρ̂1

http://www.youtube.com/watch?v=uHqiTjiuL7o

corrgram — Tabulate and graph autocorrelations 119

and for v > 1

φ̂vv =

ρ̂v −
v−1∑
j=1

φ̂v−1,j ρ̂v−j

1−
v−1∑
j=1

φ̂v−1,j ρ̂j

and
φ̂vj = φ̂v−1,j − φ̂vvφ̂v−1,v−j j = 1, 2, . . . , v − 1

Unlike the regression-based method, the Yule–Walker equations-based method ensures that the first-
sample partial autocorrelation equal the first-sample autocorrelation coefficient, as must be true in the
population; see Greene (2008, 725).

McCullough (1998) discusses other methods of estimating φvv; he finds that relative to other
methods, such as linear regression, the Yule–Walker equations-based method performs poorly, in part
because it is susceptible to numerical error. Box, Jenkins, and Reinsel (2008, 69) also caution against
using the Yule–Walker equations-based method, especially with data that are nearly nonstationary.

Acknowledgment
The ac and pac commands are based on the ac and pac commands written by Sean Becketti (1992),

a past editor of the Stata Technical Bulletin and author of the Stata Press book Introduction to Time
Series Using Stata.

References
Becketti, S. 1992. sts1: Autocorrelation and partial autocorrelation graphs. Stata Technical Bulletin 5: 27–28. Reprinted

in Stata Technical Bulletin Reprints, vol. 1, pp. 221–223. College Station, TX: Stata Press.

. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.
Hoboken, NJ: Wiley.

Brockwell, P. J., and R. A. Davis. 2002. Introduction to Time Series and Forecasting. 2nd ed. New York: Springer.

Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Enders, W. 2010. Applied Econometric Time Series. 3rd ed. New York: Wiley.

Greene, W. H. 2008. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Prentice Hall.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

McCullough, B. D. 1998. Algorithm choice for (partial) autocorrelation functions. Journal of Economic and Social
Measurement 24: 265–278.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Also see
[TS] tsset — Declare data to be time-series data

[TS] pergram — Periodogram

[TS] wntestq — Portmanteau (Q) test for white noise

http://www.stata.com/products/stb/journals/
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/products/stb/journals/stb5.pdf
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/ea.html

Title

cumsp — Cumulative spectral distribution

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

cumsp plots the cumulative sample spectral-distribution function evaluated at the natural frequencies
for a (dense) time series.

Quick start
Plot cumulative sample spectral-distribution function for y using tsset data

cumsp y

As above, and create newv containing the cumulative distribution estimates
cumsp y, generate(newv)

Menu
Statistics > Time series > Graphs > Cumulative spectral distribution

120

cumsp — Cumulative spectral distribution 121

Syntax
cumsp varname

[
if
] [

in
] [

, options
]

options Description

Main

generate(newvar) create newvar holding distribution values

Plot

cline options affect rendition of the plotted points connected by lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

You must tsset your data before using cumsp; see [TS] tsset. Also, the time series must be dense
(nonmissing with no gaps in the time variable) in the sample specified.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

generate(newvar) specifies a new variable to contain the estimated cumulative spectral-distribution
values.

� � �
Plot �

cline options affect the rendition of the plotted points connected by lines; see [G-3] cline options.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

122 cumsp — Cumulative spectral distribution

Remarks and examples

Example 1

Here we use the international airline passengers dataset (Box, Jenkins, and Reinsel 2008, Series G).
This dataset has 144 observations on the monthly number of international airline passengers from
1949 through 1960. In the cumulative sample spectral distribution function for these data, we also
request a vertical line at frequency 1/12. Because the data are monthly, there will be a pronounced
jump in the cumulative sample spectral-distribution plot at the 1/12 value if there is an annual cycle
in the data.

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. cumsp air, xline(.083333333)

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

A
ir
lin

e
 P

a
s
s
e

n
g

e
rs

 (
1

9
4

9
−

1
9

6
0

)
C

u
m

u
la

ti
v
e

 s
p

e
c
tr

a
l
d

is
tr

ib
u

ti
o

n

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Points evaluated at the natural frequencies

Sample spectral distribution function

The cumulative sample spectral-distribution function clearly illustrates the annual cycle.

Methods and formulas
A time series of interest is decomposed into a unique set of sinusoids of various frequencies and

amplitudes.

A plot of the sinusoidal amplitudes versus the frequencies for the sinusoidal decomposition of a
time series gives us the spectral density of the time series. If we calculate the sinusoidal amplitudes
for a discrete set of “natural” frequencies (1/n, 2/n, . . . , q/n), we obtain the periodogram.

Let x(1), . . . , x(n) be a time series, and let ωk = (k − 1)/n denote the natural frequencies for
k = 1, . . . , bn/2c+ 1 where b c indicates the greatest integer function. Define

C2
k =

1

n2

∣∣∣∣∣
n∑
t=1

x(t)e2πi(t−1)ωk

∣∣∣∣∣
2

A plot of nC2
k versus ωk is then called the periodogram.

cumsp — Cumulative spectral distribution 123

The sample spectral density may then be defined as f̂(ωk) = nC2
k .

If we let f̂(ω1), . . . , f̂(ωQ) be the sample spectral density function of the time series evaluated
at the frequencies ωj = (j − 1)/Q for j = 1, . . . , Q and we let q = bQ/2c+ 1, then

F̂ (ωk) =

k∑
i=1

f̂(ωj)

q∑
i=1

f̂(ωj)

is the sample spectral-distribution function of the time series.

References
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.

Hoboken, NJ: Wiley.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Also see
[TS] tsset — Declare data to be time-series data

[TS] corrgram — Tabulate and graph autocorrelations

[TS] pergram — Periodogram

Title

dfactor — Dynamic-factor models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

dfactor estimates the parameters of dynamic-factor models by maximum likelihood. Dynamic-
factor models are flexible models for multivariate time series in which unobserved factors have a
vector autoregressive structure, exogenous covariates are permitted in both the equations for the latent
factors and the equations for observable dependent variables, and the disturbances in the equations
for the dependent variables may be autocorrelated.

Quick start
Dynamic-factor model with y1 and y2 a function of x and an unobserved factor that follows a

third-order autoregressive process using tsset data
dfactor (y1 y2=x) (f=, ar(1/3))

As above, but with equations for the observed variables following an autoregressive process of order 1
dfactor (y1 y2=x, ar(1)) (f=, ar(1/3))

As above, but with an unstructured covariance matrix for the errors of y1 and y2

dfactor (y1 y2=x, ar(1) covstructure(unstructured)) (f=, ar(1/3))

Menu
Statistics > Multivariate time series > Dynamic-factor models

124

dfactor — Dynamic-factor models 125

Syntax
dfactor obs eq

[
fac eq

] [
if
] [

in
] [

, options
]

obs eq specifies the equation for the observed dependent variables, and it has the form

(depvars =
[

exog d
] [

, sopts
]
)

fac eq specifies the equation for the unobserved factors, and it has the form

(facvars =
[

exog f
] [

, sopts
]
)

depvars are the observed dependent variables. exog d are the exogenous variables that enter into
the equations for the observed dependent variables. (All factors are automatically entered into the
equations for the observed dependent variables.) facvars are the names for the unobserved factors
in the model. You may specify the names of existing variables in facvars, but dfactor treats
them only as names and takes no notice that they are also variables. exog f are the exogenous
variables that enter into the equations for the factors.

options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) specify initial values for the maximization process; seldom used

Advanced

method(method) specify the method for calculating the log likelihood; seldom used

coeflegend display legend instead of statistics

126 dfactor — Dynamic-factor models

sopts Description

Model

noconstant suppress constant term from the equation; allowed only
in obs eq

ar(numlist) autoregressive terms
arstructure(arstructure) structure of autoregressive coefficient matrices
covstructure(covstructure) covariance structure

arstructure Description

diagonal diagonal matrix; the default
ltriangular lower triangular matrix
general general matrix

covstructure Description

identity identity matrix
dscalar diagonal scalar matrix
diagonal diagonal matrix
unstructured symmetric, positive-definite matrix

method Description

hybrid use the stationary Kalman filter and the De Jong diffuse Kalman
filter; the default

dejong use the stationary De Jong method and the De Jong diffuse Kalman
filter

You must tsset your data before using dfactor; see [TS] tsset.
exog d and exog f may contain factor variables; see [U] 11.4.3 Factor variables.
depvars, exog d, and exog f may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

constraints(constraints) apply linear constraints. Some specifications require linear constraints for
parameter identification.

noconstant suppresses the constant term.

ar(numlist) specifies the vector autoregressive lag structure in the equation. By default, no lags are
included in either the observable or the factor equations.

arstructure(diagonal|ltriangular|general) specifies the structure of the matrices in the vector
autoregressive lag structure.

dfactor — Dynamic-factor models 127

arstructure(diagonal) specifies the matrices to be diagonal—separate parameters for each
lag, but no cross-equation autocorrelations. arstructure(diagonal) is the default for both
the observable and the factor equations.

arstructure(ltriangular) specifies the matrices to be lower triangular—parameterizes a
recursive, or Wold causal, structure.

arstructure(general) specifies the matrices to be general matrices—separate parameters for
each possible autocorrelation and cross-correlation.

covstructure(identity | dscalar | diagonal | unstructured) specifies the covariance structure
of the errors.

covstructure(identity) specifies a covariance matrix equal to an identity matrix, and it is the
default for the errors in the factor equations.

covstructure(dscalar) specifies a covariance matrix equal to σ2 times an identity matrix.

covstructure(diagonal) specifies a diagonal covariance matrix, and it is the default for the
errors in the observable variables.

covstructure(unstructured) specifies a symmetric, positive-definite covariance matrix with
parameters for all variances and covariances.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes dfactor to use the observed information matrix estimator.

vce(robust) causes dfactor to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] maximize for all options except from(), and
see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the maximization process. from(b0) causes dfactor
to begin the maximization algorithm with the values in b0. b0 must be a row vector; the number
of columns must equal the number of parameters in the model; and the values in b0 must be
in the same order as the parameters in e(b). This option is seldom used.

� � �
Advanced �

method(method) specifies how to compute the log likelihood. dfactor writes the model in state-
space form and uses sspace to estimate the parameters; see [TS] sspace. method() offers two
methods for dealing with some of the technical aspects of the state-space likelihood. This option
is seldom used.

128 dfactor — Dynamic-factor models

method(hybrid), the default, uses the Kalman filter with model-based initial values when the
model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter when the model
is nonstationary.

method(dejong) uses the De Jong (1988) method for estimating the initial values for the Kalman
filter when the model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter
when the model is nonstationary.

The following option is available with dfactor but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

An introduction to dynamic-factor models
Some examples

An introduction to dynamic-factor models

dfactor estimates the parameters of dynamic-factor models by maximum likelihood (ML). Dynamic-
factor models represent a vector of k endogenous variables as linear functions of nf < k unobserved
factors and some exogenous covariates. The unobserved factors and the disturbances in the equations
for the observed variables may follow vector autoregressive structures.

Dynamic-factor models have been developed and applied in macroeconomics; see Geweke (1977),
Sargent and Sims (1977), Stock and Watson (1989, 1991), and Watson and Engle (1983).

Dynamic-factor models are very flexible; in a sense, they are too flexible. Constraints must be
imposed to identify the parameters of dynamic-factor and static-factor models. The parameters in the
default specifications in dfactor are identified, but other specifications require additional restrictions.
The factors are identified only up to a sign, which means that the coefficients on the unobserved factors
can flip signs and still produce the same predictions and the same log likelihood. The flexibility of
the model sometimes produces convergence problems.

dfactor is designed to handle cases in which the number of modeled endogenous variables, k,
is small. The ML estimator is implemented by writing the model in state-space form and by using
the Kalman filter to derive and implement the log likelihood. As k grows, the number of parameters
quickly exceeds the number that can be estimated.

dfactor — Dynamic-factor models 129

A dynamic-factor model has the form

yt = Pft + Qxt + ut

ft = Rwt + A1ft−1 + A2ft−2 + · · ·+ At−pft−p + νt

ut = C1ut−1 + C2ut−2 + · · ·+ Ct−qut−q + εt

where the definitions are given in the following table:

Item Dimension Definition
yt k × 1 vector of dependent variables
P k × nf matrix of parameters
ft nf × 1 vector of unobservable factors
Q k × nx matrix of parameters
xt nx × 1 vector of exogenous variables
ut k × 1 vector of disturbances
R nf × nw matrix of parameters
wt nw × 1 vector of exogenous variables
Ai nf × nf matrix of autocorrelation parameters for i ∈ {1, 2, . . . , p}
νt nf × 1 vector of disturbances
Ci k × k matrix of autocorrelation parameters for i ∈ {1, 2, . . . , q}
εt k × 1 vector of disturbances

By selecting different numbers of factors and lags, the dynamic-factor model encompasses the six
models in the table below:

Dynamic factors with vector autoregressive errors (DFAR) nf > 0 p > 0 q > 0
Dynamic factors (DF) nf > 0 p > 0 q = 0
Static factors with vector autoregressive errors (SFAR) nf > 0 p = 0 q > 0
Static factors (SF) nf > 0 p = 0 q = 0
Vector autoregressive errors (VAR) nf = 0 p = 0 q > 0
Seemingly unrelated regression (SUR) nf = 0 p = 0 q = 0

In addition to the time-series models, dfactor can estimate the parameters of SF models and SUR
models. dfactor can place equality constraints on the disturbance covariances, which sureg and
var do not allow.

Some examples

Example 1: Dynamic-factor model

Stock and Watson (1989, 1991) wrote a simple macroeconomic model as a DF model, estimated the
parameters by ML, and extracted an economic indicator. In this example, we estimate the parameters
of a DF model. In [TS] dfactor postestimation, we extend this example and extract an economic
indicator for the differenced series.

We have data on an industrial-production index, ipman; real disposable income, income; an
aggregate weekly hours index, hours; and aggregate unemployment, unemp. We believe that these
variables are first-difference stationary. We model their first-differences as linear functions of an
unobserved factor that follows a second-order autoregressive process.

130 dfactor — Dynamic-factor models

. use http://www.stata-press.com/data/r14/dfex
(St. Louis Fed (FRED) macro data)

. dfactor (D.(ipman income hours unemp) = , noconstant) (f = , ar(1/2))
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -675.19823
Iteration 1: log likelihood = -666.74344

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -662.09507
Iteration 1: log likelihood = -662.09507

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 751.95

Log likelihood = -662.09507 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .2651932 .0568663 4.66 0.000 .1537372 .3766491
L2. .4820398 .0624635 7.72 0.000 .3596136 .604466

D.ipman
f .3502249 .0287389 12.19 0.000 .2938976 .4065522

D.income
f .0746338 .0217319 3.43 0.001 .0320401 .1172276

D.hours
f .2177469 .0186769 11.66 0.000 .1811407 .254353

D.unemp
f -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816

var(De.ipman) .1383158 .0167086 8.28 0.000 .1055675 .1710641
var(De.income) .2773808 .0188302 14.73 0.000 .2404743 .3142873
var(De.hours) .0911446 .0080847 11.27 0.000 .0752988 .1069903
var(De.unemp) .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

For a discussion of the atypical iteration log, see example 1 in [TS] sspace.

The header in the output describes the estimation sample, reports the log-likelihood function at the
maximum, and gives the results of a Wald test against the null hypothesis that the coefficients on the
independent variables, the factors, and the autoregressive components are all zero. In this example,
the null hypothesis that all parameters except for the variance parameters are zero is rejected at all
conventional levels.

The results in the estimation table indicate that the unobserved factor is quite persistent and that
it is a significant predictor for each of the observed variables.

dfactor — Dynamic-factor models 131

dfactor writes the DF model as a state-space model and uses the same methods as sspace to
estimate the parameters. Example 5 in [TS] sspace writes the model considered here in state-space
form and uses sspace to estimate the parameters.

Technical note
The signs of the coefficients on the unobserved factors are not identified. They are not identified

because we can multiply the unobserved factors and the coefficients on the unobserved factors by
negative one without changing the log likelihood or any of the model predictions.

Altering either the starting values for the maximization process, the maximization technique()
used, or the platform on which the command is run can cause the signs of the estimated coefficients
on the unobserved factors to change.

Changes in the signs of the estimated coefficients on the unobserved factors do not alter the
implications of the model or the model predictions.

Example 2: Dynamic-factor model with covariates

Here we extend the previous example by allowing the errors in the equations for the observables to
be autocorrelated. This extension yields a constrained VAR model with an unobserved autocorrelated
factor.

We estimate the parameters by typing

132 dfactor — Dynamic-factor models

. dfactor (D.(ipman income hours unemp) = , noconstant ar(1)) (f = , ar(1/2))
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -659.68789
Iteration 1: log likelihood = -631.6043

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -610.28846
Iteration 1: log likelihood = -610.28846

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(10) = 990.91

Log likelihood = -610.28846 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .4058457 .0906183 4.48 0.000 .2282371 .5834544
L2. .3663499 .0849584 4.31 0.000 .1998344 .5328654

De.ipman
e.ipman

LD. -.2772149 .068808 -4.03 0.000 -.4120761 -.1423538

De.income
e.income

LD. -.2213824 .0470578 -4.70 0.000 -.3136141 -.1291508

De.hours
e.hours

LD. -.3969317 .0504256 -7.87 0.000 -.495764 -.2980994

De.unemp
e.unemp

LD. -.1736835 .0532071 -3.26 0.001 -.2779675 -.0693995

D.ipman
f .3214972 .027982 11.49 0.000 .2666535 .3763408

D.income
f .0760412 .0173844 4.37 0.000 .0419684 .110114

D.hours
f .1933165 .0172969 11.18 0.000 .1594151 .2272179

D.unemp
f -.0711994 .0066553 -10.70 0.000 -.0842435 -.0581553

var(De.ipman) .1387909 .0154558 8.98 0.000 .1084981 .1690837
var(De.income) .2636239 .0179043 14.72 0.000 .2285322 .2987157
var(De.hours) .0822919 .0071096 11.57 0.000 .0683574 .0962265
var(De.unemp) .0218056 .0016658 13.09 0.000 .0185407 .0250704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

dfactor — Dynamic-factor models 133

The autoregressive (AR) terms are displayed in error notation. e.varname stands for the error in
the equation for varname. The estimate of the pth AR term from y1 on y2 is reported as Lpe.y1 in
equation e.y2. In the above output, the estimated first-order AR term of D.ipman on D.ipman is
−0.277 and is labeled as LDe.ipman in equation De.ipman.

The previous two examples illustrate how to use dfactor to estimate the parameters of DF models.
Although the previous example indicates that the more general DFAR model fits the data well, we use
these data to illustrate how to estimate the parameters of more restrictive models.

Example 3: A VAR with constrained error variance

In this example, we use dfactor to estimate the parameters of a SUR model with constraints on the
error-covariance matrix. The model is also a constrained VAR with constraints on the error-covariance
matrix, because we include the lags of two dependent variables as exogenous variables to model the
dynamic structure of the data. Previous exploratory work suggested that we should drop the lag of
D.unemp from the model.

134 dfactor — Dynamic-factor models

. constraint 1 [cov(De.unemp,De.income)]_cons = 0

. dfactor (D.(ipman income unemp) = LD.(ipman income), noconstant
> covstructure(unstructured)), constraints(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -569.34353
Iteration 1: log likelihood = -548.7669

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -535.12973
Iteration 1: log likelihood = -535.12973

Dynamic-factor model

Sample: 1972m3 - 2008m11 Number of obs = 441
Wald chi2(6) = 88.32

Log likelihood = -535.12973 Prob > chi2 = 0.0000
(1) [cov(De.income,De.unemp)]_cons = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.ipman
ipman

LD. .206276 .0471654 4.37 0.000 .1138335 .2987185

income
LD. .1867384 .0512139 3.65 0.000 .086361 .2871158

D.income
ipman

LD. .1043733 .0434048 2.40 0.016 .0193015 .1894451

income
LD. -.1957893 .0471305 -4.15 0.000 -.2881634 -.1034153

D.unemp
ipman

LD. -.0865823 .0140747 -6.15 0.000 -.1141681 -.0589964

income
LD. -.0200749 .0152828 -1.31 0.189 -.0500285 .0098788

var(De.ipman) .3243902 .0218533 14.84 0.000 .2815584 .3672219
cov(De.ipman,

De.income) .0445794 .013696 3.25 0.001 .0177358 .071423
cov(De.ipman,

De.unemp) -.0298076 .0047755 -6.24 0.000 -.0391674 -.0204478
var(De.income) .2747234 .0185008 14.85 0.000 .2384624 .3109844
cov(De.income,

De.unemp) 0 (constrained)
var(De.unemp) .0288866 .0019453 14.85 0.000 .0250738 .0326994

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The output indicates that the model fits well, except that the lag of first-differenced income is not
a significant predictor of first-differenced unemployment.

dfactor — Dynamic-factor models 135

Technical note
The previous example shows how to use dfactor to estimate the parameters of a SUR model

with constraints on the error-covariance matrix. Neither sureg nor var allows for constraints on the
error-covariance matrix. Without the constraints on the error-covariance matrix and including the lag
of D.unemp,

. dfactor (D.(ipman income unemp) = LD.(ipman income unemp),
> noconstant covstructure(unstructured))

(output omitted)

. var D.(ipman income unemp), lags(1) noconstant
(output omitted)

and

. sureg (D.ipman LD.(ipman income unemp), noconstant)
> (D.income LD.(ipman income unemp), noconstant)
> (D.unemp LD.(ipman income unemp), noconstant)

(output omitted)

produce the same estimates after allowing for small numerical differences.

Example 4: A lower-triangular VAR with constrained error variance

The previous example estimated the parameters of a constrained VAR model with a constraint on
the error-covariance matrix. This example makes two refinements on the previous one: we use an
unconditional estimator instead of a conditional estimator, and we constrain the AR parameters to
have a lower triangular structure. (See the next technical note for a discussion of conditional and
unconditional estimators.) The results are

136 dfactor — Dynamic-factor models

. constraint 1 [cov(De.unemp,De.income)]_cons = 0

. dfactor (D.(ipman income unemp) = , ar(1) arstructure(ltriangular) noconstant
> covstructure(unstructured)), constraints(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -543.89917
Iteration 1: log likelihood = -541.47792

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -540.36159
Iteration 1: log likelihood = -540.36159

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 75.48

Log likelihood = -540.36159 Prob > chi2 = 0.0000
(1) [cov(De.income,De.unemp)]_cons = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

De.ipman
e.ipman

LD. .2297308 .0473147 4.86 0.000 .1369957 .3224659

De.income
e.ipman

LD. .1075441 .0433357 2.48 0.013 .0226077 .1924805

e.income
LD. -.2209485 .047116 -4.69 0.000 -.3132943 -.1286028

De.unemp
e.ipman

LD. -.0975759 .0151301 -6.45 0.000 -.1272304 -.0679215

e.income
LD. -.0000467 .0147848 -0.00 0.997 -.0290244 .0289309

e.unemp
LD. -.0795348 .0482213 -1.65 0.099 -.1740469 .0149773

var(De.ipman) .3335286 .0224282 14.87 0.000 .2895702 .377487
cov(De.ipman,

De.income) .0457804 .0139123 3.29 0.001 .0185127 .0730481
cov(De.ipman,

De.unemp) -.0329438 .0051423 -6.41 0.000 -.0430226 -.022865
var(De.income) .2743375 .0184657 14.86 0.000 .2381454 .3105296
cov(De.income,

De.unemp) 0 (constrained)
var(De.unemp) .0292088 .00199 14.68 0.000 .0253083 .0331092

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The estimated AR terms of D.income and D.unemp on D.unemp are −0.000047 and −0.079535,
and they are not significant at the 1% or 5% levels. The estimated AR term of D.ipman on D.income
is 0.107544 and is significant at the 5% level but not at the 1% level.

dfactor — Dynamic-factor models 137

Technical note
We obtained the unconditional estimator in example 4 by specifying the ar() option instead of

including the lags of the endogenous variables as exogenous variables, as we did in example 3. The
unconditional estimator has an additional observation and is more efficient. This change is analogous
to estimating an AR coefficient by arima instead of using regress on the lagged endogenous variable.
For example, to obtain the unconditional estimator in a univariate model, typing

. arima D.ipman, ar(1) noconstant technique(nr)
(output omitted)

will produce the same estimated AR coefficient as

. dfactor (D.ipman, ar(1) noconstant)
(output omitted)

We obtain the conditional estimator by typing either

. regress D.ipman LD.ipman, noconstant
(output omitted)

or

. dfactor (D.ipman = LD.ipman, noconstant)
(output omitted)

Example 5: A static factor model

In this example, we fit regional unemployment data to an SF model. We have data on the
unemployment levels for the four regions in the U.S. census: west for the West, south for the
South, ne for the Northeast, and midwest for the Midwest. We treat the variables as first-difference
stationary and model the first-differences of these variables. Using dfactor yields

138 dfactor — Dynamic-factor models

. use http://www.stata-press.com/data/r14/urate
(Monthly unemployment rates in US Census regions)

. dfactor (D.(west south ne midwest) = , noconstant) (z =)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 872.71993
Iteration 1: log likelihood = 873.04786

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 873.0755
Iteration 1: log likelihood = 873.0755

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(4) = 342.56

Log likelihood = 873.0755 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.west
z .0978324 .0065644 14.90 0.000 .0849664 .1106983

D.south
z .0859494 .0061762 13.92 0.000 .0738442 .0980546

D.ne
z .0918607 .0072814 12.62 0.000 .0775893 .106132

D.midwest
z .0861102 .0074652 11.53 0.000 .0714787 .1007417

var(De.west) .0036887 .0005834 6.32 0.000 .0025453 .0048322
var(De.south) .0038902 .0005228 7.44 0.000 .0028656 .0049149

var(De.ne) .0064074 .0007558 8.48 0.000 .0049261 .0078887
var(De.midw~t) .0074749 .0008271 9.04 0.000 .0058538 .009096

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The estimates indicate that we could reasonably suppose that the unobserved factor has the same
effect on the changes in unemployment in all four regions. The output below shows that we cannot
reject the null hypothesis that these coefficients are the same.

. test [D.west]z = [D.south]z = [D.ne]z = [D.midwest]z

(1) [D.west]z - [D.south]z = 0
(2) [D.west]z - [D.ne]z = 0
(3) [D.west]z - [D.midwest]z = 0

chi2(3) = 3.58
Prob > chi2 = 0.3109

Example 6: A static factor with constraints

In this example, we impose the constraint that the unobserved factor has the same impact on
changes in unemployment in all four regions. This constraint was suggested by the results of the
previous example. The previous example did not allow for any dynamics in the variables, a problem
we alleviate by allowing the disturbances in the equation for each observable to follow an AR(1)
process.

dfactor — Dynamic-factor models 139

. constraint 2 [D.west]z = [D.south]z

. constraint 3 [D.west]z = [D.ne]z

. constraint 4 [D.west]z = [D.midwest]z

. dfactor (D.(west south ne midwest) = , noconstant ar(1)) (z =),
> constraints(2/4)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 827.97004
Iteration 1: log likelihood = 874.74471

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 880.97488
Iteration 1: log likelihood = 880.97488

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(5) = 363.34

Log likelihood = 880.97488 Prob > chi2 = 0.0000
(1) [D.west]z - [D.south]z = 0
(2) [D.west]z - [D.ne]z = 0
(3) [D.west]z - [D.midwest]z = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

De.west
e.west

LD. .1297198 .0992663 1.31 0.191 -.0648386 .3242781

De.south
e.south

LD. -.2829014 .0909205 -3.11 0.002 -.4611023 -.1047004

De.ne
e.ne
LD. .2866958 .0847851 3.38 0.001 .12052 .4528715

De.midwest
e.midwest

LD. .0049427 .0782188 0.06 0.950 -.1483634 .1582488

D.west
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.south
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.ne
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.midwest
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

var(De.west) .0038959 .0005111 7.62 0.000 .0028941 .0048977
var(De.south) .0035518 .0005097 6.97 0.000 .0025528 .0045507

var(De.ne) .0058173 .0006983 8.33 0.000 .0044488 .0071859
var(De.midw~t) .0075444 .0008268 9.12 0.000 .0059239 .009165

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

140 dfactor — Dynamic-factor models

The results indicate that the model might not fit well. Two of the four AR coefficients are statistically
insignificant, while the two significant coefficients have opposite signs and sum to about zero. We
suspect that a DF model might fit these data better than an SF model with autocorrelated disturbances.

Stored results
dfactor stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k obser) number of observation equations
e(k factor) number of factors specified
e(o ar max) number of AR terms for the disturbances
e(f ar max) number of AR terms for the factors
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise
e(rank) rank of VCE
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) dfactor
e(cmdline) command as typed
e(depvar) unoperated names of dependent variables in observation equations
e(obser deps) names of dependent variables in observation equations
e(covariates) list of covariates
e(indeps) independent variables
e(factor deps) names of unobserved factors in model
e(tvar) variable denoting time within groups
e(eqnames) names of equations
e(model) type of dynamic-factor model specified
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(o ar) list of AR terms for disturbances
e(f ar) list of AR terms for factors
e(observ cov) structure of observation-error covariance matrix
e(factor cov) structure of factor-error covariance matrix
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(method) likelihood method
e(initial values) type of initial values
e(technique) maximization technique
e(tech steps) iterations taken in maximization technique(s)
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V

dfactor — Dynamic-factor models 141

e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
dfactor writes the specified model as a state-space model and uses sspace to estimate the

parameters by maximum likelihood. See Lütkepohl (2005, 619–621) for how to write the DF model
in state-space form. See [TS] sspace for the technical details.

References
De Jong, P. 1988. The likelihood for a state space model. Biometrika 75: 165–169.

. 1991. The diffuse Kalman filter. Annals of Statistics 19: 1073–1083.

Geweke, J. 1977. The dynamic factor analysis of economic time series models. In Latent Variables in Socioeconomic
Models, ed. D. J. Aigner and A. S. Goldberger, 365–383. Amsterdam: North-Holland.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Sargent, T. J., and C. A. Sims. 1977. Business cycle modeling without pretending to have too much a priori economic
theory. In New Methods in Business Cycle Research: Proceedings from a Conference, ed. C. A. Sims, 45–109.
Minneapolis: Federal Reserve Bank of Minneapolis.

Stock, J. H., and M. W. Watson. 1989. New indexes of coincident and leading economic indicators. In NBER
Macroeconomics Annual 1989, ed. O. J. Blanchard and S. Fischer, vol. 4, 351–394. Cambridge, MA: MIT Press.

. 1991. A probability model of the coincident economic indicators. In Leading Economic Indicators: New
Approaches and Forecasting Records, ed. K. Lahiri and G. H. Moore, 63–89. Cambridge: Cambridge University
Press.

Watson, M. W., and R. F. Engle. 1983. Alternative algorithms for the estimation of dymanic factor, MIMIC and
varying coefficient regression models. Journal of Econometrics 23: 385–400.

Also see
[TS] dfactor postestimation — Postestimation tools for dfactor

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[TS] tsset — Declare data to be time-series data

[TS] var — Vector autoregressive models

[R] regress — Linear regression

[R] sureg — Zellner’s seemingly unrelated regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/imtsa.html

Title

dfactor postestimation — Postestimation tools for dfactor

Postestimation commands predict Remarks and examples Methods and formulas
Also see

Postestimation commands
The following standard postestimation commands are available after dfactor:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

142

dfactor postestimation — Postestimation tools for dfactor 143

predict

Description for predict

predict creates a new variable containing predictions such as expected values, unobserved
factors, autocorrelated disturbances, and innovations. The root mean squared error is available for
all predictions. All predictions are also available as static one-step-ahead predictions or as dynamic
multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

y dependent variable, which is xbf + residuals

xb linear predictions using the observable independent variables
xbf linear predictions using the observable independent variables plus the factor

contributions
factors unobserved factor variables
residuals autocorrelated disturbances
innovations innovations, the observed dependent variable minus the predicted y

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) specify name(s) of equation(s) for which predictions are to be made
rmse(stub* | newvarlist) put estimated root mean squared errors of predicted objects in new

variables
dynamic(time constant) begin dynamic forecast at specified time

Advanced

smethod(method) method for predicting unobserved states

method Description

onestep predict using past information
smooth predict using all sample information
filter predict using past and contemporaneous information

144 dfactor postestimation — Postestimation tools for dfactor

Options for predict

The mathematical notation used in this section is defined in Description of [TS] dfactor.

� � �
Main �

y, xb, xbf, factors, residuals, and innovations specify the statistic to be predicted.

y, the default, predicts the dependent variables. The predictions include the contributions of the
unobserved factors, the linear predictions by using the observable independent variables, and
any autocorrelation, P̂f̂t + Q̂xt + ût.

xb calculates the linear prediction by using the observable independent variables, Q̂xt.

xbf calculates the contributions of the unobserved factors plus the linear prediction by using the
observable independent variables, P̂f̂t + Q̂xt.

factors estimates the unobserved factors, f̂t = R̂wt + Â1f̂t−1 + Â2f̂t−2 + · · ·+ Ât−pf̂t−p.

residuals calculates the autocorrelated residuals, ût = Ĉ1ût−1 + Ĉ2ût−2 + · · ·+ Ĉt−qût−q .

innovations calculates the innovations, ε̂t = yt − P̂f̂t + Q̂xt − ût.

� � �
Options �

equation(eqnames) specifies the equation(s) for which the predictions are to be calculated.

You specify equation names, such as equation(income consumption) or equation(factor1
factor2), to identify the equations. For the factors statistic, you must specify names of equations
for factors; for all other statistics, you must specify names of equations for observable variables.

If you do not specify equation() and do not specify stub*, the results are the same as if you
had specified the name of the first equation for the predicted statistic.

equation() may not be specified with stub*.

rmse(stub* | newvarlist) puts the root mean squared errors of the predicted objects into the specified
new variables. The root mean squared errors measure the variances due to the disturbances but do
not account for estimation error.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly, see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with xb, xbf, innovations, smethod(filter), or smethod(smooth).

� � �
Advanced �

smethod(method) specifies the method used to predict the unobserved states in the model. smethod()
may not be specified with xb.

smethod(onestep), the default, causes predict to use previous information on the dependent
variables. The Kalman filter is performed on previous periods, but only the one-step predictions
are made for the current period.

smethod(smooth) causes predict to estimate the states at each time period using all the sample
data by the Kalman smoother.

dfactor postestimation — Postestimation tools for dfactor 145

smethod(filter) causes predict to estimate the states at each time period using previous
and contemporaneous data by the Kalman filter. The Kalman filter is performed on previous
periods and the current period. smethod(filter) may be specified only with factors and
residuals.

Remarks and examples

We assume that you have already read [TS] dfactor. In this entry, we illustrate some of the features
of predict after using dfactor.

dfactor writes the specified model as a state-space model and estimates the parameters by
maximum likelihood. The unobserved factors and the residuals are states in the state-space form of
the model, and they are estimated by the Kalman filter or the Kalman smoother. The smethod()
option controls how these states are estimated.

The Kalman filter or Kalman smoother is run over the specified sample. Changing the sample can
alter the predicted value for a given observation, because the Kalman filter and Kalman smoother are
recursive algorithms.

After estimating the parameters of a dynamic-factor model, there are many quantities of potential
interest. Here we will discuss several of these statistics and illustrate how to use predict to compute
them.

Example 1: One-step, out-of-sample forecasts

Let’s begin by estimating the parameters of the dynamic-factor model considered in example 2 in
[TS] dfactor.

146 dfactor postestimation — Postestimation tools for dfactor

. use http://www.stata-press.com/data/r14/dfex
(St. Louis Fed (FRED) macro data)

. dfactor (D.(ipman income hours unemp) = , noconstant ar(1)) (f = , ar(1/2))
(output omitted)

While several of the six statistics computed by predict might be of interest, we will look only at
a few of these statistics for D.ipman. We begin by obtaining one-step predictions in the estimation
sample and a six-month dynamic forecast for D.ipman. The graph of the in-sample predictions
indicates that our model accounts only for a small fraction of the variability in D.ipman.

. tsappend, add(6)

. predict Dipman_f, dynamic(tm(2008m12)) equation(D.ipman)
(option y assumed; fitted values)

. tsline D.ipman Dipman_f if month<=tm(2008m11), lcolor(gs13) xtitle("")
> legend(rows(2))

−
4

−
2

0
2

1970m1 1980m1 1990m1 2000m1 2010m1

Dipman

y prediction, Dipman, dynamic(tm(2008m12))

Graphing the last year of the sample and the six-month out-of-sample forecast yields

. tsline D.ipman Dipman_f if month>=tm(2008m1), xtitle("") legend(rows(2))

−
6

−
4

−
2

0
2

2008m1 2008m4 2008m7 2008m10 2009m1 2009m4

Dipman

y prediction, Dipman, dynamic(tm(2008m12))

dfactor postestimation — Postestimation tools for dfactor 147

Example 2: Estimating an unobserved factor

Another common task is to estimate an unobserved factor. We can estimate the unobserved factor
at each time period by using only previous information (the smethod(onestep) option), previous
and contemporaneous information (the smethod(filter) option), or all the sample information (the
smethod(smooth) option). We are interested in the one-step predictive power of the unobserved
factor, so we use the default, smethod(onestep).

. predict fac if e(sample), factor

. tsline D.ipman fac, lcolor(gs10) xtitle("") legend(rows(2))

−
4

−
2

0
2

1970m1 1980m1 1990m1 2000m1 2010m1

Dipman

factors, f, onestep

Methods and formulas
dfactor estimates the parameters by writing the model in state-space form and using sspace.

Analogously, predict after dfactor uses the methods described in [TS] sspace postestimation. The
unobserved factors and the residuals are states in the state-space form of the model.

See Methods and formulas of [TS] sspace postestimation for how predictions are made after
estimating the parameters of a state-space model.

Also see
[TS] dfactor — Dynamic-factor models

[TS] sspace — State-space models

[TS] sspace postestimation — Postestimation tools for sspace

[U] 20 Estimation and postestimation commands

Title

dfgls — DF-GLS unit-root test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
dfgls performs a modified Dickey–Fuller t test for a unit root in which the series has been

transformed by a generalized least-squares regression.

Quick start
Modified Dickey–Fuller unit-root test for y1 using GLS-transformed series using tsset data

dfgls y1

As above, for series y2 that has no linear time trend
dfgls y2, notrend

As above, but with at most 2 lags
dfgls y2, notrend maxlag(2)

Menu
Statistics > Time series > Tests > DF-GLS test for a unit root

148

dfgls — DF-GLS unit-root test 149

Syntax

dfgls varname
[

if
] [

in
] [

, options
]

options Description

Main

maxlag(#) use # as the highest lag order for Dickey–Fuller GLS regressions
notrend series is stationary around a mean instead of around a linear time trend
ers present interpolated critical values from Elliott, Rothenberg, and Stock (1996)

You must tsset your data before using dfgls; see [TS] tsset.
varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

maxlag(#) sets the value of k, the highest lag order for the first-differenced, detrended variable
in the Dickey–Fuller regression. By default, dfgls sets k according to the method proposed by
Schwert (1989); that is, dfgls sets kmax = floor[12{(T + 1)/100}0.25].

notrend specifies that the alternative hypothesis be that the series is stationary around a mean instead
of around a linear time trend. By default, a trend is included.

ers specifies that dfgls should present interpolated critical values from tables presented by Elliott,
Rothenberg, and Stock (1996), which they obtained from simulations. See Critical values under
Methods and formulas for details.

Remarks and examples

dfgls tests for a unit root in a time series. It performs the modified Dickey–Fuller t test (known
as the DF-GLS test) proposed by Elliott, Rothenberg, and Stock (1996). Essentially, the test is an
augmented Dickey–Fuller test, similar to the test performed by Stata’s dfuller command, except
that the time series is transformed via a generalized least squares (GLS) regression before performing
the test. Elliott, Rothenberg, and Stock and later studies have shown that this test has significantly
greater power than the previous versions of the augmented Dickey–Fuller test.

dfgls performs the DF-GLS test for the series of models that include 1 to k lags of the first-
differenced, detrended variable, where k can be set by the user or by the method described in
Schwert (1989). Stock and Watson (2011, 644–649) provide an excellent discussion of the approach.

As discussed in [TS] dfuller, the augmented Dickey–Fuller test involves fitting a regression of the
form

∆yt = α+ βyt−1 + δt+ ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζk∆yt−k + εt

and then testing the null hypothesis H0: β = 0. The DF-GLS test is performed analogously but on
GLS-detrended data. The null hypothesis of the test is that yt is a random walk, possibly with drift.
There are two possible alternative hypotheses: yt is stationary about a linear time trend or yt is
stationary with a possibly nonzero mean but with no linear time trend. The default is to use the
former. To specify the latter alternative, use the notrend option.

150 dfgls — DF-GLS unit-root test

Example 1

Here we use the German macroeconomic dataset and test whether the natural log of investment
exhibits a unit root. We use the default options with dfgls.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. dfgls ln_inv
DF-GLS for ln_inv Number of obs = 80
Maxlag = 11 chosen by Schwert criterion

DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value

11 -2.925 -3.610 -2.763 -2.489
10 -2.671 -3.610 -2.798 -2.523
9 -2.766 -3.610 -2.832 -2.555
8 -3.259 -3.610 -2.865 -2.587
7 -3.536 -3.610 -2.898 -2.617
6 -3.115 -3.610 -2.929 -2.646
5 -3.054 -3.610 -2.958 -2.674
4 -3.016 -3.610 -2.986 -2.699
3 -2.071 -3.610 -3.012 -2.723
2 -1.675 -3.610 -3.035 -2.744
1 -1.752 -3.610 -3.055 -2.762

Opt Lag (Ng-Perron seq t) = 7 with RMSE .0388771
Min SC = -6.169137 at lag 4 with RMSE .0398949
Min MAIC = -6.136371 at lag 1 with RMSE .0440319

The null hypothesis of a unit root is not rejected for lags 1–3, it is rejected at the 10% level for
lags 9–10, and it is rejected at the 5% level for lags 4–8 and 11. For comparison, we also test for
a unit root in log of investment by using dfuller with two different lag specifications. We need to
use the trend option with dfuller because it is not included by default.

dfgls — DF-GLS unit-root test 151

. dfuller ln_inv, lag(4) trend

Augmented Dickey-Fuller test for unit root Number of obs = 87

Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -3.133 -4.069 -3.463 -3.158

MacKinnon approximate p-value for Z(t) = 0.0987

. dfuller ln_inv, lag(7) trend

Augmented Dickey-Fuller test for unit root Number of obs = 84

Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -3.994 -4.075 -3.466 -3.160

MacKinnon approximate p-value for Z(t) = 0.0090

The critical values and the test statistic produced by dfuller with 4 lags do not support rejecting
the null hypothesis, although the MacKinnon approximate p-value is less than 0.1. With 7 lags, the
critical values and the test statistic reject the null hypothesis at the 5% level, and the MacKinnon
approximate p-value is less than 0.01.

That the dfuller results are not as strong as those produced by dfgls is not surprising because
the DF-GLS test with a trend has been shown to be more powerful than the standard augmented
Dickey–Fuller test.

Stored results
If maxlag(0) is specified, dfgls stores the following in r():

Scalars
r(rmse0) RMSE
r(dft0) DF-GLS statistic

Otherwise, dfgls stores the following in r():

Scalars
r(maxlag) highest lag order k
r(N) number of observations
r(sclag) lag chosen by Schwarz criterion
r(maiclag) lag chosen by modified AIC method
r(optlag) lag chosen by sequential-t method

Matrices
r(results) k, MAIC, SIC, RMSE, and DF-GLS statistics

Methods and formulas
dfgls tests for a unit root. There are two possible alternative hypotheses: yt is stationary around

a linear trend or yt is stationary with no linear time trend. Under the first alternative hypothesis, the
DF-GLS test is performed by first estimating the intercept and trend via GLS. The GLS estimation is
performed by generating the new variables, ỹt, xt, and zt, where

152 dfgls — DF-GLS unit-root test

ỹ1 = y1

ỹt = yt − α∗yt−1, t = 2, . . . , T

x1 = 1

xt = 1− α∗, t = 2, . . . , T

z1 = 1

zt = t− α∗(t− 1)

and α∗ = 1− (13.5/T). An OLS regression is then estimated for the equation

ỹt = δ0xt + δ1zt + εt

The OLS estimators δ̂0 and δ̂1 are then used to remove the trend from yt; that is, we generate

y∗ = yt − (δ̂0 + δ̂1t)

Finally, we perform an augmented Dickey–Fuller test on the transformed variable by fitting the OLS
regression

∆y∗t = α+ βy∗t−1 +

k∑
j=1

ζj∆y
∗
t−j + εt (1)

and then test the null hypothesis H0: β = 0 by using tabulated critical values.

To perform the DF-GLS test under the second alternative hypothesis, we proceed as before but
define α∗ = 1−(7/T), eliminate z from the GLS regression, compute y∗ = yt−δ0, fit the augmented
Dickey–Fuller regression by using the newly transformed variable, and perform a test of the null
hypothesis that β = 0 by using the tabulated critical values.

dfgls reports the DF-GLS statistic and its critical values obtained from the regression in (1) for
k ∈ {1, 2, . . . , kmax}. By default, dfgls sets kmax = floor[12{(T + 1)/100}0.25] as proposed by
Schwert (1989), although you can override this choice with another value. The sample size available
with kmax lags is used in all the regressions. Because there are kmax lags of the first-differenced
series, kmax + 1 observations are lost, leaving T −kmax observations. dfgls requires that the sample
of T + 1 observations on yt = (y0, y1, . . . , yT) have no gaps.

dfgls reports the results of three different methods for choosing which value of k to use. These
are method 1, the Ng–Perron sequential t; method 2, the minimum Schwarz information criterion
(SIC); and method 3, the Ng–Perron modified Akaike information criterion (MAIC). Although the SIC
has a long history in time-series modeling, the Ng–Perron sequential t was developed by Ng and
Perron (1995), and the MAIC was developed by Ng and Perron (2000).

The SIC can be calculated using either the log likelihood or the sum-of-squared errors from a
regression; dfgls uses the latter definition. Specifically, for each k

SIC = ln(r̂mse
2
) + (k + 1)

ln(T − kmax)

(T − kmax)

dfgls — DF-GLS unit-root test 153

where

r̂mse =
1

(T − kmax)

T∑
t=kmax+1

ê 2
t

dfgls reports the value of the smallest SIC and the k that produced it.

Ng and Perron (1995) derived a sequential-t algorithm for choosing k:

i. Set n = 0 and run the regression in method 2 with all kmax − n lags. If the coefficient on
βkmax is significantly different from zero at level α, choose k to kmax. Otherwise, continue
to ii.

ii. If n < kmax, set n = n+ 1 and continue to iii. Otherwise, set k = 0 and stop.

iii. Run the regression in method 2 with kmax − n lags. If the coefficient on βkmax−n is
significantly different from zero at level α, choose k to kmax − n. Otherwise, return to ii.

Per Ng and Perron (1995), dfgls uses α = 10%. dfgls reports the k selected by this sequential-t
algorithm and the r̂mse from the regression.

Method 3 is based on choosing k to minimize the MAIC. The MAIC is calculated as

MAIC(k) = ln(r̂mse
2
) +

2{τ(k) + k}
T − kmax

where

τ(k) =
1

r̂mse
2 β̂

2
0

T∑
t=kmax+1

ỹ 2
t

and ỹ was defined previously.

Critical values

By default, dfgls uses the 5% and 10% critical values computed from the response surface
analysis of Cheung and Lai (1995). Because Cheung and Lai (1995) did not present results for the
1% case, the 1% critical values are always interpolated from the critical values presented by ERS.

ERS presented critical values, obtained from simulations, for the DF-GLS test with a linear trend
and showed that the critical values for the mean-only DF-GLS test were the same as those for the ADF
test. If dfgls is run with the ers option, dfgls will present interpolated critical values from these
tables. The method of interpolation is standard. For the trend case, below 50 observations and above
200 there is no interpolation; the values for 50 and ∞ are reported from the tables. For a value N
that lies between two values in the table, say, N1 and N2, with corresponding critical values CV1

and CV2, the critical value

CV = CV1 +
N −N1

N1
(CV2 − CV1)

is presented. The same method is used for the mean-only case, except that interpolation is possible
for values between 50 and 500.

154 dfgls — DF-GLS unit-root test

Acknowledgments

We thank Christopher F. Baum of the Department of Economics at Boston College and author of
the Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to
Stata Programming and Richard Sperling for a previous version of dfgls.

References
Cheung, Y.-W., and K. S. Lai. 1995. Lag order and critical values of a modified Dickey–Fuller test. Oxford Bulletin

of Economics and Statistics 57: 411–419.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root.
Journal of the American Statistical Association 74: 427–431.

Elliott, G. R., T. J. Rothenberg, and J. H. Stock. 1996. Efficient tests for an autoregressive unit root. Econometrica
64: 813–836.

Ng, S., and P. Perron. 1995. Unit root tests in ARMA models with data-dependent methods for the selection of the
truncation lag. Journal of the American Statistical Association 90: 268–281.

. 2000. Lag length selection and the construction of unit root tests with good size and power. Econometrica 69:
1519–1554.

Schwert, G. W. 1989. Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics
2: 147–159.

Stock, J. H., and M. W. Watson. 2011. Introduction to Econometrics. 3rd ed. Boston: Addison–Wesley.

Also see
[TS] dfuller — Augmented Dickey–Fuller unit-root test

[TS] pperron — Phillips–Perron unit-root test

[TS] tsset — Declare data to be time-series data

[XT] xtunitroot — Panel-data unit-root tests

http://www.stata-press.com/books/imeus.html
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/isp.html
http://www.stata.com/bookstore/ite.html

Title

dfuller — Augmented Dickey–Fuller unit-root test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

dfuller performs the augmented Dickey–Fuller test that a variable follows a unit-root process.
The null hypothesis is that the variable contains a unit root, and the alternative is that the variable
was generated by a stationary process. You may optionally exclude the constant, include a trend term,
and include lagged values of the difference of the variable in the regression.

Quick start
Augmented Dickey–Fuller test for presence of a unit root in y using tsset data

dfuller y

As above, but with a trend term
dfuller y, trend

Augmented Dickey–Fuller test for presence of a unit root in y with a drift term
dfuller y, drift

As above, but include 3 lagged differences and display the regression table
dfuller y, drift lags(3) regress

Menu
Statistics > Time series > Tests > Augmented Dickey-Fuller unit-root test

155

156 dfuller — Augmented Dickey–Fuller unit-root test

Syntax

dfuller varname
[

if
] [

in
] [

, options
]

options Description

Main

noconstant suppress constant term in regression
trend include trend term in regression
drift include drift term in regression
regress display regression table
lags(#) include # lagged differences

You must tsset your data before using dfuller; see [TS] tsset.
varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

noconstant suppresses the constant term (intercept) in the model and indicates that the process
under the null hypothesis is a random walk without drift. noconstant cannot be used with the
trend or drift option.

trend specifies that a trend term be included in the associated regression and that the process under
the null hypothesis is a random walk, perhaps with drift. This option may not be used with the
noconstant or drift option.

drift indicates that the process under the null hypothesis is a random walk with nonzero drift. This
option may not be used with the noconstant or trend option.

regress specifies that the associated regression table appear in the output. By default, the regression
table is not produced.

lags(#) specifies the number of lagged difference terms to include in the covariate list.

Remarks and examples
Dickey and Fuller (1979) developed a procedure for testing whether a variable has a unit root or,

equivalently, that the variable follows a random walk. Hamilton (1994, 528–529) describes the four
different cases to which the augmented Dickey–Fuller test can be applied. The null hypothesis is
always that the variable has a unit root. They differ in whether the null hypothesis includes a drift
term and whether the regression used to obtain the test statistic includes a constant term and time
trend. Becketti (2013, chap. 9) provides additional examples showing how to conduct these tests.

The true model is assumed to be

yt = α+ yt−1 + ut

where ut is an independent and identically distributed zero-mean error term. In cases one and two,
presumably α = 0, which is a random walk without drift. In cases three and four, we allow for a
drift term by letting α be unrestricted.

dfuller — Augmented Dickey–Fuller unit-root test 157

The Dickey–Fuller test involves fitting the model

yt = α+ ρyt−1 + δt+ ut

by ordinary least squares (OLS), perhaps setting α = 0 or δ = 0. However, such a regression is likely
to be plagued by serial correlation. To control for that, the augmented Dickey–Fuller test instead fits
a model of the form

∆yt = α+ βyt−1 + δt+ ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζk∆yt−k + εt (1)

where k is the number of lags specified in the lags() option. The noconstant option removes the
constant term α from this regression, and the trend option includes the time trend δt, which by
default is not included. Testing β = 0 is equivalent to testing ρ = 1, or, equivalently, that yt follows
a unit root process.

In the first case, the null hypothesis is that yt follows a random walk without drift, and (1) is fit
without the constant term α and the time trend δt. The second case has the same null hypothesis as
the first, except that we include α in the regression. In both cases, the population value of α is zero
under the null hypothesis. In the third case, we hypothesize that yt follows a unit root with drift, so
that the population value of α is nonzero; we do not include the time trend in the regression. Finally,
in the fourth case, the null hypothesis is that yt follows a unit root with or without drift so that α is
unrestricted, and we include a time trend in the regression.

The following table summarizes the four cases.

Process under Regression dfuller
Case null hypothesis restrictions option

1 Random walk without drift α = 0, δ = 0 noconstant
2 Random walk without drift δ = 0 (default)
3 Random walk with drift δ = 0 drift
4 Random walk with or (none) trend

without drift

Except in the third case, the t-statistic used to test H0: β = 0 does not have a standard distribution.
Hamilton (1994, chap. 17) derives the limiting distributions, which are different for each of the
three other cases. The critical values reported by dfuller are interpolated based on the tables in
Fuller (1996). MacKinnon (1994) shows how to approximate the p-values on the basis of a regression
surface, and dfuller also reports that p-value. In the third case, where the regression includes a
constant term and under the null hypothesis the series has a nonzero drift parameter α, the t statistic
has the usual t distribution; dfuller reports the one-sided critical values and p-value for the test of
H0 against the alternative Ha: β < 0, which is equivalent to ρ < 1.

Deciding which case to use involves a combination of theory and visual inspection of the data.
If economic theory favors a particular null hypothesis, the appropriate case can be chosen based on
that. If a graph of the data shows an upward trend over time, then case four may be preferred. If the
data do not show a trend but do have a nonzero mean, then case two would be a valid alternative.

Example 1

In this example, we examine the international airline passengers dataset from Box, Jenkins, and
Reinsel (2008, Series G). This dataset has 144 observations on the monthly number of international
airline passengers from 1949 through 1960. Because the data show a clear upward trend, we use the
trend option with dfuller to include a constant and time trend in the augmented Dickey–Fuller
regression.

158 dfuller — Augmented Dickey–Fuller unit-root test

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. dfuller air, lags(3) trend regress

Augmented Dickey-Fuller test for unit root Number of obs = 140

Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -6.936 -4.027 -3.445 -3.145

MacKinnon approximate p-value for Z(t) = 0.0000

D.air Coef. Std. Err. t P>|t| [95% Conf. Interval]

air
L1. -.5217089 .0752195 -6.94 0.000 -.67048 -.3729379
LD. .5572871 .0799894 6.97 0.000 .399082 .7154923

L2D. .095912 .0876692 1.09 0.276 -.0774825 .2693065
L3D. .14511 .0879922 1.65 0.101 -.0289232 .3191433

_trend 1.407534 .2098378 6.71 0.000 .9925118 1.822557
_cons 44.49164 7.78335 5.72 0.000 29.09753 59.88575

Here we can overwhelmingly reject the null hypothesis of a unit root at all common significance
levels. From the regression output, the estimated β of −0.522 implies that ρ = (1− 0.522) = 0.478.
Experiments with fewer or more lags in the augmented regression yield the same conclusion.

Example 2

In this example, we use the German macroeconomic dataset to determine whether the log of
consumption follows a unit root. We will again use the trend option, because consumption grows
over time.

dfuller — Augmented Dickey–Fuller unit-root test 159

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset qtr
time variable: qtr, 1960q1 to 1982q4

delta: 1 quarter

. dfuller ln_consump, lags(4) trend

Augmented Dickey-Fuller test for unit root Number of obs = 87

Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -1.318 -4.069 -3.463 -3.158

MacKinnon approximate p-value for Z(t) = 0.8834

As we might expect from economic theory, here we cannot reject the null hypothesis that log
consumption exhibits a unit root. Again using different numbers of lag terms yield the same conclusion.

Stored results
dfuller stores the following in r():

Scalars
r(N) number of observations
r(lags) number of lagged differences
r(Zt) Dickey–Fuller test statistic
r(p) MacKinnon approximate p-value (if there is a constant or trend in associated regression)

Methods and formulas
In the OLS estimation of an AR(1) process with Gaussian errors,

yt = ρyt−1 + εt

where εt are independent and identically distributed as N(0, σ2) and y0 = 0, the OLS estimate (based
on an n-observation time series) of the autocorrelation parameter ρ is given by

ρ̂n =

n∑
t=1

yt−1yt

n∑
t=1

y2
t

If |ρ| < 1, then √
n(ρ̂n − ρ)→ N(0, 1− ρ2)

If this result were valid when ρ = 1, the resulting distribution would have a variance of zero. When
ρ = 1, the OLS estimate ρ̂ still converges in probability to one, though we need to find a suitable
nondegenerate distribution so that we can perform hypothesis tests of H0: ρ = 1. Hamilton (1994,
chap. 17) provides a superb exposition of the requisite theory.

160 dfuller — Augmented Dickey–Fuller unit-root test

To compute the test statistics, we fit the augmented Dickey–Fuller regression

∆yt = α+ βyt−1 + δt+

k∑
j=1

ζj∆yt−j + et

via OLS where, depending on the options specified, the constant term α or time trend δt is omitted
and k is the number of lags specified in the lags() option. The test statistic for H0 : β = 0 is
Zt = β̂/σ̂β , where σ̂β is the standard error of β̂.

The critical values included in the output are linearly interpolated from the table of values that
appears in Fuller (1996), and the MacKinnon approximate p-values use the regression surface published
in MacKinnon (1994).

� �
David Alan Dickey (1945–) was born in Ohio and obtained degrees in mathematics at Miami
University and a PhD in statistics at Iowa State University in 1976 as a student of Wayne Fuller.
He works at North Carolina State University and specializes in time-series analysis.

Wayne Arthur Fuller (1931–) was born in Iowa, obtained three degrees at Iowa State University
and then served on the faculty between 1959 and 2001. He has made many distinguished
contributions to time series, measurement-error models, survey sampling, and econometrics.� �

References
Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.
Hoboken, NJ: Wiley.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root.
Journal of the American Statistical Association 74: 427–431.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

MacKinnon, J. G. 1994. Approximate asymptotic distribution functions for unit-root and cointegration tests. Journal
of Business and Economic Statistics 12: 167–176.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Also see
[TS] tsset — Declare data to be time-series data

[TS] dfgls — DF-GLS unit-root test

[TS] pperron — Phillips–Perron unit-root test

[XT] xtunitroot — Panel-data unit-root tests

http://www.stata-press.com/books/introduction-to-time-series-using-stata/

Title

estat acplot — Plot parametric autocorrelation and autocovariance functions

Description Quick start Menu for estat Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

estat acplot plots the estimated autocorrelation and autocovariance functions of a stationary
process using the parameters of a previously fit parametric model.

estat acplot is available after arima and arfima; see [TS] arima and [TS] arfima.

Quick start
Autocorrelation function using estimates from arima or arfima

estat acplot

Autocovariance function using estimates from arima or arfima
estat acplot, covariance

As above, and save results in mydata.dta

estat acplot, covariance saving(mydata)

Menu for estat
Statistics > Postestimation

161

162 estat acplot — Plot parametric autocorrelation and autocovariance functions

Syntax

estat acplot
[
, options

]
options Description

saving(filename
[
, . . .

]
) save results to filename; save variables in double precision;

save variables with prefix stubname
level(#) set confidence level; default is level(95)

lags(#) use # autocorrelations
covariance calculate autocovariances; the default is to calculate autocorrelations
smemory report short-memory ACF; only allowed after arfima

CI plot

ciopts(rcap options) affect rendition of the confidence bands

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options affect rendition of the plotted points

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options

saving(filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of the autocorrelation

estimates, standard errors, and confidence bounds.

Five variables are saved: lag (lag number), ac (autocorrelation estimate), se (standard error),
ci l (lower confidence bound), and ci u (upper confidence bound).

double specifies that the variables be saved as doubles, meaning 8-byte reals. By default, they
are saved as floats, meaning 4-byte reals.

name(stubname) specifies that variables be saved with prefix stubname.

replace indicates that filename be overwritten if it exists.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

lags(#) specifies the number of autocorrelations to calculate. The default is to use
min{floor(n/2) − 2, 40}, where floor(n/2) is the greatest integer less than or equal to n/2 and
n is the number of observations.

covariance specifies the calculation of autocovariances instead of the default autocorrelations.

smemory specifies that the ARFIMA fractional integration parameter be ignored. The computed auto-
correlations are for the short-memory ARMA component of the model. This option is allowed only
after arfima.

� � �
CI plot �

ciopts(rcap options) affects the rendition of the confidence bands; see [G-3] rcap options.

estat acplot — Plot parametric autocorrelation and autocovariance functions 163

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

cline options affect whether lines connect the plotted points and the rendition of those lines; see
[G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, except by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to
disk (see [G-3] saving option).

Remarks and examples
The dependent variable evolves over time because of random shocks in the time domain represen-

tation. The autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its
variance and dependence structure, and the autocorrelations ρj , j ∈ {1, 2, . . . ,∞}, provide a scale-
free measure of yt’s dependence structure. The autocorrelation at lag j specifies whether realizations
at time t and realizations at time t− j are positively related, unrelated, or negatively related. estat
acplot uses the estimated parameters of a parametric model to estimate and plot the autocorrelations
and autocovariances of a stationary process.

164 estat acplot — Plot parametric autocorrelation and autocovariance functions

Example 1

In example 1 of [TS] arima, we fit an ARIMA(1,1,1) model of the U.S. Wholesale Price Index
(WPI) using quarterly data over the period 1960q1 through 1990q4.

. use http://www.stata-press.com/data/r14/wpi1

. arima wpi, arima(1,1,1)

(setting optimization to BHHH)
Iteration 0: log likelihood = -139.80133
Iteration 1: log likelihood = -135.6278
Iteration 2: log likelihood = -135.41838
Iteration 3: log likelihood = -135.36691
Iteration 4: log likelihood = -135.35892
(switching optimization to BFGS)
Iteration 5: log likelihood = -135.35471
Iteration 6: log likelihood = -135.35135
Iteration 7: log likelihood = -135.35132
Iteration 8: log likelihood = -135.35131

ARIMA regression

Sample: 1960q2 - 1990q4 Number of obs = 123
Wald chi2(2) = 310.64

Log likelihood = -135.3513 Prob > chi2 = 0.0000

OPG
D.wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

wpi
_cons .7498197 .3340968 2.24 0.025 .0950019 1.404637

ARMA
ar

L1. .8742288 .0545435 16.03 0.000 .7673256 .981132

ma
L1. -.4120458 .1000284 -4.12 0.000 -.6080979 -.2159938

/sigma .7250436 .0368065 19.70 0.000 .6529042 .7971829

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

Now we use estat acplot to estimate the autocorrelations implied by the estimated ARMA
parameters. We include lags(50) to indicate that autocorrelations be computed for 50 lags. By
default, a 95% confidence interval is provided for each autocorrelation.

estat acplot — Plot parametric autocorrelation and autocovariance functions 165

. estat acplot, lags(50)

0
.2

.4
.6

.8
1

A
u

to
c
o

rr
e

la
ti
o

n
s

0 10 20 30 40 50
quarterly lag

Parametric autocorrelations of D.wpi
with 95% confidence intervals

The graph is similar to a typical autocorrelation function of an AR(1) process with a positive
coefficient. The autocorrelations of a stationary AR(1) process decay exponentially toward zero.

Methods and formulas
The autocovariance function for ARFIMA models is described in Methods and formulas of [TS] arfima.

The autocovariance function for ARIMA models is obtained by setting the fractional difference parameter
to zero.

Box, Jenkins, and Reinsel (2008) provide excellent descriptions of the autocovariance function for
ARIMA and seasonal ARIMA models. Palma (2007) provides an excellent summary of the autocovariance
function for ARFIMA models.

References
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.

Hoboken, NJ: Wiley.

Palma, W. 2007. Long-Memory Time Series: Theory and Methods. Hoboken, NJ: Wiley.

Also see
[TS] arfima — Autoregressive fractionally integrated moving-average models

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

Title

estat aroots — Check the stability condition of ARIMA estimates

Description Quick start Menu for estat Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

estat aroots checks the eigenvalue stability condition after estimating the parameters of an
ARIMA model using arima. A graph of the eigenvalues of the companion matrices for the AR and
MA polynomials is also produced.

estat aroots is available only after arima; see [TS] arima.

Quick start
Verify that all eigenvalues of the autoregressive polynomial lie inside the unit circle after arima

estat aroots

As above, but suppress the graph
estat aroots, nograph

Label each plotted eigenvalue with its distance from the unit circle
estat aroots, dlabel

Menu for estat
Statistics > Postestimation

166

estat aroots — Check the stability condition of ARIMA estimates 167

Syntax

estat aroots
[
, options

]
options Description

nograph suppress graph of eigenvalues for the companion matrices
dlabel label eigenvalues with the distance from the unit circle
modlabel label eigenvalues with the modulus

Grid

nogrid suppress polar grid circles
pgrid(

[
. . .
]
) specify radii and appearance of polar grid circles; see Options for details

Plot

marker options change look of markers (color, size, etc.)

Reference unit circle

rlopts(cline options) affect rendition of reference unit circle

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options

nograph specifies that no graph of the eigenvalues of the companion matrices be drawn.

dlabel labels each eigenvalue with its distance from the unit circle. dlabel cannot be specified
with modlabel.

modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.

� � �
Grid �

nogrid suppresses the polar grid circles.

pgrid(
[

numlist
] [

, line options
]
) determines the radii and appearance of the polar grid circles.

By default, the graph includes nine polar grid circles with radii 0.1, 0.2, . . . , 0.9 that have the grid
line style. The numlist specifies the radii for the polar grid circles. The line options determine the
appearance of the polar grid circles; see [G-3] line options. Because the pgrid() option can be
repeated, circles with different radii can have distinct appearances.

� � �
Plot �

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

� � �
Reference unit circle �

rlopts(cline options) affect the rendition of the reference unit circle; see [G-3] cline options.

168 estat aroots — Check the stability condition of ARIMA estimates

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, except by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Inference after arima requires that the variable yt be covariance stationary. The variable yt is

covariance stationary if its first two moments exist and are time invariant. More explicitly, yt is
covariance stationary if

1. E(yt) is finite and not a function of t;

2. Var(yt) is finite and independent of t; and

3. Cov(yt, ys) is a finite function of |t− s| but not of t or s alone.

The stationarity of an ARMA process depends on the autoregressive (AR) parameters. If the inverse
roots of the AR polynomial all lie inside the unit circle, the process is stationary, invertible, and
has an infinite-order moving-average (MA) representation. Hamilton (1994, chap. 1) shows that if
the modulus of each eigenvalue of the matrix F(ρ) is strictly less than 1, the estimated ARMA is
stationary; see Methods and formulas for the definition of the matrix F(ρ).

The MA part of an ARMA process can be rewritten as an infinite-order AR process provided that
the MA process is invertible. Hamilton (1994, chap. 1) shows that if the modulus of each eigenvalue
of the matrix F(θ) is strictly less than 1, the estimated ARMA is invertible; see Methods and formulas
for the definition of the matrix F(θ).

Example 1

In this example, we check the stability condition of the SARIMA model that we fit in example 3
of [TS] arima. We begin by reestimating the parameters of the model.

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. generate lnair = ln(air)

estat aroots — Check the stability condition of ARIMA estimates 169

. arima lnair, arima(0,1,1) sarima(0,1,1,12) noconstant

(setting optimization to BHHH)
Iteration 0: log likelihood = 223.8437
Iteration 1: log likelihood = 239.80405
Iteration 2: log likelihood = 244.10265
Iteration 3: log likelihood = 244.65895
Iteration 4: log likelihood = 244.68945
(switching optimization to BFGS)
Iteration 5: log likelihood = 244.69431
Iteration 6: log likelihood = 244.69647
Iteration 7: log likelihood = 244.69651
Iteration 8: log likelihood = 244.69651

ARIMA regression

Sample: 14 - 144 Number of obs = 131
Wald chi2(2) = 84.53

Log likelihood = 244.6965 Prob > chi2 = 0.0000

OPG
DS12.lnair Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ma

L1. -.4018324 .0730307 -5.50 0.000 -.5449698 -.2586949

ARMA12
ma

L1. -.5569342 .0963129 -5.78 0.000 -.745704 -.3681644

/sigma .0367167 .0020132 18.24 0.000 .0327708 .0406625

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

We can now use estat aroots to check the stability condition of the MA part of the model.

. estat aroots

Eigenvalue stability condition

Eigenvalue Modulus

.824798 + .4761974i .952395

.824798 - .4761974i .952395
.9523947 .952395
-.824798 + .4761974i .952395
-.824798 - .4761974i .952395

-.4761974 + .824798i .952395
-.4761974 - .824798i .952395
2.776e-16 + .9523947i .952395
2.776e-16 - .9523947i .952395
.4761974 + .824798i .952395
.4761974 - .824798i .952395

-.9523947 .952395
.4018324 .401832

All the eigenvalues lie inside the unit circle.
MA parameters satisfy invertibility condition.

170 estat aroots — Check the stability condition of ARIMA estimates

−
1

−
.5

0
.5

1
Im

a
g

in
a

ry

−1 −.5 0 .5 1
Real

Inverse roots of MA polynomial

Because the modulus of each eigenvalue is strictly less than 1, the MA process is invertible and
can be represented as an infinite-order AR process.

The graph produced by estat aroots displays the eigenvalues with the real components on the x
axis and the imaginary components on the y axis. The graph indicates visually that these eigenvalues
are just inside the unit circle.

Stored results
aroots stores the following in r():

Matrices
r(Re ar) real part of the eigenvalues of F (ρ)

r(Im ar) imaginary part of the eigenvalues of F (ρ)

r(Modulus ar) modulus of the eigenvalues of F (ρ)

r(ar) F (ρ), the AR companion matrix
r(Re ma) real part of the eigenvalues of F (θ)

r(Im ma) imaginary part of the eigenvalues of F (θ)

r(Modulus ma) modulus of the eigenvalues of F (θ)

r(ma) F (θ), the MA companion matrix

Methods and formulas
Recall the general form of the ARMA model,

ρ(Lp)(yt − xtβ) = θ(Lq)εt

where
ρ(Lp) = 1− ρ1L− ρ2L

2 − · · · − ρpLp

θ(Lq) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

and Ljyt = yt−j .

estat aroots — Check the stability condition of ARIMA estimates 171

estat aroots forms the companion matrix

F(γ) =

γ1 γ2 . . . γr−1 γr
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

where γ = ρ and r = p for the AR part of ARMA, and γ = −θ and r = q for the MA part of
ARMA. aroots obtains the eigenvalues of F by using matrix eigenvalues. The modulus of the
complex eigenvalue r + ci is

√
r2 + c2. As shown by Hamilton (1994, chap. 1), a process is stable

and invertible if the modulus of each eigenvalue of F is strictly less than 1.

Reference
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Also see
[TS] arima — ARIMA, ARMAX, and other dynamic regression models

Title

estat sbknown — Test for a structural break with a known break date

Description Quick start Menu for estat Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

estat sbknown performs a Wald or a likelihood-ratio (LR) test of whether the coefficients in a
time-series regression vary over the periods defined by known break dates.

estat sbknown requires that the current estimation results be from regress or ivregress 2sls.

Quick start
Test for a structural break at January 1983 for current estimation results

estat sbknown, break(tm(1983m1))

As above, but for the first quarter of 1997
estat sbknown, break(tq(1997q1))

As above, but perform an LR test instead of a Wald test
estat sbknown, break(tq(1997q1)) lr

Perform a Wald test for multiple breaks at dates 1997q1 and 2005q1

estat sbknown, break(tq(1997q1) tq(2005q1))

Menu for estat
Statistics > Postestimation

172

estat sbknown — Test for a structural break with a known break date 173

Syntax

estat sbknown, break(time constant list)
[

options
]

options Description

∗break(time constant list) specify one or more break dates
breakvars(

[
varlist

][
, constant

]
) specify variables to be included in the test; by default,

all coefficients are tested
wald request a Wald test; the default
lr request an LR test
∗break() is required.
You must tsset your data before using estat sbknown; see [TS] tsset.

Options
break(time constant list) specifies a list of one or more hypothesized break dates. break() is

required with at least one break date.

time constant list is a list of one or more time constant elements specified using dates in Stata
internal form (SIF) or human-readable form (HRF) format. If you specify the time constant list
using HRF, you must use one of the datetime pseudofunctions; see [D] datetime.

breakvars(
[

varlist
][
, constant

]
) specifies variables to be included in the test. By default, all

the coefficients are tested.

constant specifies that a constant be included in the list of variables to be tested. constant may
be specified only if the original model was fit with a constant term.

wald requests that a Wald test be performed. This is the default.

lr requests that an LR test be performed instead of a Wald test.

Remarks and examples
estat sbknown performs a test of the null hypothesis that the coefficients do not vary over the

subsamples defined by the specified known break dates. The null hypothesis of no structural break
can be tested using a Wald or an LR test.

Consider the linear regression
yt = xtβ+ εt

A model with a structural break allows the coefficients to change after a break date. If b is the break
date, the model is

yt =

{
xtβ+ εt if t ≤ b
xt(β+ δ) + εt if t > b

For this model, the null and alternative hypotheses are H0 : δ = 0 and Ha : δ 6= 0.

For a classical linear model where εt is independent and identically distributed, this test is known
as the Chow (1960) test.

174 estat sbknown — Test for a structural break with a known break date

Example 1: Test for a single known break date

In usmacro.dta, we have data for the fedfunds series from the third quarter of 1954 to the fourth
quarter of 2010 from the Federal Reserve Economic Database (FRED), a macroeconomic database
provided by the Federal Reserve Bank of Saint Louis. The data are plotted below.

0
5

1
0

1
5

2
0

fe
d

e
ra

l
fu

n
d

s
 r

a
te

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

U.S. Federal Funds Rate

We note that the 1970s and 1980s were characterized by periods of high interest rates, with the
interest rate peaking in 1981q2.

We want to model the federal funds rate as a function of its first lag, but we are concerned that
there may be a structural break after 1981q2. We fit the model parameters using regress, and then
we use estat sbknown to test for a structural break.

. use http://www.stata-press.com/data/r14/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. regress fedfunds L.fedfunds
(output omitted)

. estat sbknown, break(tq(1981q2))

Wald test for a structural break: Known break date

Number of obs = 225
Sample: 1954q4 - 2010q4
Break date: 1981q2
Ho: No structural break

chi2(2) = 6.4147
Prob > chi2 = 0.0405

Exogenous variables: L.fedfunds
Coefficients included in test: L.fedfunds _cons

We reject the null hypothesis of no structural break at the 5% level.

Example 2: Test for multiple known breaks

Suppose we divide the data into three subsamples for the periods 1954q4 to 1970q1, 1970q2 to
1995q1, and 1995q2 to 2010q4, specified by the break dates at 1970q1 and 1995q1. We would like
to test whether the coefficients are the same in these subsamples. We do this by specifying multiple
dates in the break() option.

estat sbknown — Test for a structural break with a known break date 175

. estat sbknown, break(tq(1970q1) tq(1995q1))

Wald test for a structural break: Known break date

Number of obs = 225
Sample: 1954q4 - 2010q4
Break date: 1970q1 1995q1
Ho: No structural break

chi2(4) = 4.6739
Prob > chi2 = 0.3224

Exogenous variables: L.fedfunds
Coefficients included in test: L.fedfunds _cons

We fail to reject the null hypothesis of no structural break for the specified dates.

Stored results
estat sbknown stores the following in r():

Scalars
r(chi2) χ2 test statistic
r(p) level of significance
r(df) degrees of freedom

Macros
r(breakdate) list of break dates
r(breakvars) list of variables whose coefficients are included in the test
r(test) type of test

Methods and formulas
A test for a structural break with a known break date can be constructed by fitting a linear regression

with an indicator variable as
yt = xtβ+ (b ≤ t)xtδ+ εt

The null hypothesis of no structural break is H0 : δ = 0. This can be tested by constructing a Wald
statistic or an LR statistic, both with χ2(k) as the limiting distribution, where k is the number of
parameters in the model.

A regression model with multiple breaks may be expressed as

yt = xtβ+ xt
{

(b1 ≤ t < b2)δ1 + (b2 ≤ t < b3)δ2 + · · ·+ (bm ≤ t)δm
}

+ εt

where b1, . . . , bm are m ≥ 2 break dates. The null hypothesis of no structural break is a joint test
given by H0 : δ1 = · · · = δm = 0.

Reference
Chow, G. C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28: 591–605.

176 estat sbknown — Test for a structural break with a known break date

Also see
[TS] estat sbsingle — Test for a structural break with an unknown break date

[TS] tsset — Declare data to be time-series data

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

Title

estat sbsingle — Test for a structural break with an unknown break date

Description Quick start Menu for estat Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

estat sbsingle performs a test of whether the coefficients in a time-series regression vary over
the periods defined by an unknown break date.

estat sbsingle requires that the current estimation results be from regress or ivregress
2sls.

Quick start
Supremum Wald test for a structural break at an unknown break date for current estimation results

using default symmetric trimming of 15%
estat sbsingle

Same as above
estat sbsingle, swald

As above, but also report average Wald test
estat sbsingle, swald awald

Supremum Wald test with symmetric trimming of 20%
estat sbsingle, trim(20)

As above, but use asymmetric trimming with a left trim of 10% and a right trim of 20%
estat sbsingle, ltrim(10) rtrim(20)

Menu for estat
Statistics > Postestimation

177

178 estat sbsingle — Test for a structural break with an unknown break date

Syntax

estat sbsingle
[
, options

]
options Description

breakvars(
[

varlist
][
, constant

]
) specify variables to be included in the test; by default,

all coefficients are tested
trim(#) specify a trimming percentage; default is trim(15)

ltrim(#l) specify a left trimming percentage
rtrim(#r) specify a right trimming percentage
swald request a supremum Wald test; the default
awald request an average Wald test
ewald request an exponential Wald test
all report all tests
slr request a supremum likelihood-ratio (LR) test
alr request an average LR test
elr request an exponential LR test
generate(newvarlist) create newvarlist containing Wald or LR test statistics
nodots suppress iteration dots

You must tsset your data before using estat sbsingle; see [TS] tsset.

Options
breakvars(

[
varlist

][
, constant

]
) specifies variables to be included in the test. By default, all

the coefficients are tested.

constant specifies that a constant be included in the list of variables to be tested. constant may
be specified only if the original model was fit with a constant term.

trim(#) specifies an equal left and right trimming percentage as an integer. Specifying trim(#)
causes the observation at the #th percentile to be treated as the first possible break date and the
observation at the (100− #)th percentile to be treated as the last possible break date. By default,
the trimming percentage is set to 15 but may be set to any value between 1 and 49.

ltrim(#l) specifies a left trimming percentage as an integer. Specifying ltrim(#l) causes the
observation at the #lth percentile to be treated as the first possible break date. This option must be
specified with rtrim(#r) and may not be combined with trim(#). #l must be between 1 and
99.

rtrim(#r) specifies a right trimming percentage as an integer. Specifying rtrim(#r) causes the
observation at the (100− #r)th percentile to be treated as the last possible break date. This option
must be specified with ltrim(#l) and may not be combined with trim(#). #r must be less than
(100− #l). Specifying #l = #r is equivalent to specifying trim(#) with # = #l = #r.

swald requests that a supremum Wald test be performed. This is the default.

awald requests that an average Wald test be performed.

ewald requests that an exponential Wald test be performed.

all specifies that all tests be displayed in a table.

slr requests that a supremum LR test be performed.

estat sbsingle — Test for a structural break with an unknown break date 179

alr requests that an average LR test be performed.

elr requests that an exponential LR test be performed.

generate(newvarlist) creates either one or two new variables containing the Wald statistics, LR
statistics, or both that are transformed and used to calculate the requested Wald or LR tests. If you
request only Wald-type tests (swald, awald, or ewald) or only LR-type tests (slr, alr, or elr),
then you may specify only one varname in generate(). By default, newvar will contain Wald
or LR statistics, depending on the type of test specified.

A variable containing Wald statistics and a variable containing LR statistics are created if you specify
both Wald-type and LR-type tests and specify two varnames in generate(). If you only specify
one varname in generate() with Wald-type and LR-type tests specified, then Wald statistics are
returned.

If no test is specified and generate() is specified, Wald statistics are returned.

nodots suppresses display of the iteration dots. By default, one dot character is displayed for each
iteration in the range of possible break dates.

Remarks and examples
estat sbsingle constructs a test statistic for a structural break without imposing a known break

date by combining the test statistics computed for each possible break date in the sample. estat
sbsingle uses the maximum, an average, or the exponential of the average of the tests computed
at each possible break date. The test at each possible break date can be either a Wald or an LR test.

The limiting distribution of each of these test statistics is known but nonstandard. Not only is each
test statistic a function of many sample statistics, but each of these test statistics also depends on
the unknown break date, which is not identified under the null hypothesis; see Davies (1987) for a
seminal treatment.

Tests that use the maximum of the sample tests are known as supremum tests. Specifically, the
supremum Wald test uses the maximum of the sample Wald tests, and the supremum LR test uses
the maximum of the sample LR tests. The intuition behind these tests is to compare the maximum
sample test with what could be expected under the null hypothesis of no break (Quandt [1960], Kim
and Siegmund [1989], and Andrews [1993]).

Supremum tests have much less power than average tests and exponential tests. Average tests
use the average of the sample tests, and exponential tests use the natural log of the average of
the exponential of the sample tests. An average test is optimal when the alternative hypothesis is a
small change in parameter values at the structural break. An exponential test is optimal when the
alternative hypothesis is a larger structural break. See Andrews and Ploberger (1994) for details about
the properties of average and exponential tests.

All tests implemented in estat sbsingle are a function of the sample statistics computed over
a range of possible break dates. However, not all sample observations can be tested as break dates
because there are insufficient observations to estimate the parameters for dates too near the beginning or
the end of the sample. This identification problem is solved by trimming, which excludes observations
too near the beginning or the end of the sample from the set of possible break dates. Andrews (1993)
recommends a symmetric trimming of 15% when the researcher has no other information on good
trimming values.

Much research went into deriving the properties of the implemented tests, and we have cited only
a few of the many papers on the subject. See Perron (2006) for an excellent survey.

180 estat sbsingle — Test for a structural break with an unknown break date

Example 1: Test for a structural break with unknown break date

In usmacro.dta, we have data for the fedfunds series from the third quarter of 1954 to the
fourth quarter of 2010 from the Federal Reserve Economic Database (FRED) provided by the Federal
Reserve Bank of Saint Louis.

Consider a model for the federal funds rate as a function of its first lag and the inflation rate
(inflation). We want to test whether coefficients changed at an unknown break date. Below, we
fit the model using regress and perform the test using estat sbsingle.

. use http://www.stata-press.com/data/r14/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. regress fedfunds L.fedfunds inflation
(output omitted)

. estat sbsingle
1 2 3 4 5

.. 50

.. 100

.. 150

....

Test for a structural break: Unknown break date

Number of obs = 222

Full sample: 1955q3 - 2010q4
Trimmed sample: 1964q1 - 2002q3
Estimated break date: 1980q4
Ho: No structural break

Test Statistic p-value

swald 14.1966 0.0440

Exogenous variables: L.fedfunds inflation
Coefficients included in test: L.fedfunds inflation _cons

By default, a supremum Wald test is performed. The output indicates that we reject the null hypothesis
of no structural break at the 5% level and that the estimated break date is 1980q4.

Some researchers perform more than one test. Below, we present results for the supremum Wald,
average Wald, and average LR tests.

. estat sbsingle, swald awald alr
1 2 3 4 5

.. 50

.. 100

.. 150

....

Test for a structural break: Unknown break date

Number of obs = 222

Full sample: 1955q3 - 2010q4
Trimmed sample: 1964q1 - 2002q3
Ho: No structural break

Test Statistic p-value

swald 14.1966 0.0440
awald 4.5673 0.1474

alr 4.6319 0.1411

Exogenous variables: L.fedfunds inflation
Coefficients included in test: L.fedfunds inflation _cons

estat sbsingle — Test for a structural break with an unknown break date 181

Only the supremum Wald test rejects the null hypothesis of no break.

Example 2: Testing for a structural break in a subset of coefficients

Below, we test the null hypothesis that there is a break in the intercept, when we assume that
there is no break in either the autoregressive coefficient or the coefficient on inflation.

. estat sbsingle, breakvars(, constant)
1 2 3 4 5

.. 50

.. 100

.. 150

....

Test for a structural break: Unknown break date

Number of obs = 222

Full sample: 1955q3 - 2010q4
Trimmed sample: 1964q1 - 2002q3
Estimated break date: 2001q1
Ho: No structural break

Test Statistic p-value

swald 6.7794 0.1141

Exogenous variables: L.fedfunds inflation
Coefficients included in test: _cons

We fail to reject the null hypothesis of no structural break in the intercept when there is no break in
any other coefficient.

Example 3: Reviewing sample test statistics

The observation-level Wald or LR test statistics sometimes provide useful diagnostic information.
Below, we use the generate() option to store the observation-level Wald statistics in the new variable
wald, which we subsequently plot using tsline.

182 estat sbsingle — Test for a structural break with an unknown break date

. estat sbsingle, breakvars(L.fedfunds) generate(wald)
(output omitted)

. tsline wald, title("Wald test statistics")

0
1

2
3

4
W

a
ld

 t
e

s
t

s
ta

ti
s
ti
c
s

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
date (quarters)

Wald test statistics

We see a spike in the value of the test statistic at the estimated break date of 1980q4. The bump to
left of the spike may indicate a second break.

Example 4: Structural break test with an endogenous regressor

We can use estat sbsingle to test for a structural break in a regression with endogenous
variables. Suppose we want to estimate the New Keynesian hybrid Phillips curve, which defines
inflation as a function of the lagged value of inflation (L.inflation), the output gap (ogap), and
the expected value of inflation in t+ 1 {Et(F.inflation)}, conditional on information available at
time t (Gali and Gertler 1999). See [U] 11.4.4 Time-series varlists.

Expected future inflation cannot be directly observed, so macroeconomists use instruments to
predict the one-step-ahead inflation rate. This prediction is obtained by regressing the one-step ahead
inflation rate on a set of instruments.

We can write this mathematically as

inflation = α+ L.inflation β + ogap δ + Et(F.inflation) γ + εt

and
F.inflation = ztθ+ νt+1

where zt is a vector of instruments. The forecasted values given by Et(F.inflation|zt) = ztθ̂ are
uncorrelated with νt+1 by construction.

In this example, we fit the Phillips curve model for the period 1970q1 to 1997q4. We are interested
in testing whether expectation of future inflation changed during this period. We instrument the future
value of inflation with the first two lags of inflation, the federal funds rate, and the output gap. We
use ivregress 2sls to fit the model.

estat sbsingle — Test for a structural break with an unknown break date 183

. ivregress 2sls inflation L.inflation ogap
> (F.inflation = L(1/2).inflation L(1/2).ogap L(1/2).fedfunds)
> if tin(1970q1,1997q4)

(output omitted)
. estat sbsingle, breakvars(F.inflation)

1 2 3 4 5
.. 50
............................

Test for a structural break: Unknown break date

Number of obs = 112

Full sample: 1970q1 - 1997q4
Trimmed sample: 1974q2 - 1993q4
Estimated break date: 1981q3
Ho: No structural break

Test Statistic p-value

swald 6.7345 0.1164

Coefficients included in test: F.inflation

We fail to reject the null hypothesis of no structural break in the coefficient of expected future inflation.

Stored results
estat sbsingle stores the following in r():

Scalars
r(chi2) χ2 test statistic
r(p) level of significance
r(df) degrees of freedom

Macros
r(ltrim) start of trim date
r(rtrim) end of trim date
r(breakvars) list of variables whose coefficients are included in the test
r(breakdate) estimated break date only after supremum tests
r(test) type of test

Methods and formulas
Each supremum test statistic is the maximum value of the test statistic that is obtained from a

series of Wald or LR tests over a range of possible break dates in the sample. Let b denote a possible
break date in the range [b1, b2] for a sample size T .

The supremum test statistic for testing the null hypothesis of no structural change in k coefficients
is given by

supremum ST = sup
b1≤b≤b2

ST (b)

184 estat sbsingle — Test for a structural break with an unknown break date

where ST (b) is the Wald or LR test statistic evaluated at a potential break date b. The average and
the exponential versions of the test statistic are

average ST =
1

b2 − b1 + 1

b2∑
b=b1

ST (b)

exponential ST = ln

[
1

b2 − b1 + 1

b2∑
b=b1

exp
{

1

2
ST (b)

}]

respectively.

The limiting distributions of the test statistics are given by

supremum ST →d sup
λ∈[ε1,ε2]

S(λ)

average ST →d
1

ε2 − ε1

∫ ε2

ε1

S(λ) dλ

exponential ST →d ln
[

1

ε2 − ε1

∫ ε2

ε1

exp
{

1

2
S(λ) dλ

}]
where

S(λ) =
{Bk(λ)− λBk(1)}′{Bk(λ)− λBk(1)}

λ(1− λ)

Bk(λ) is a vector of k-dimensional independent Brownian motions, ε1 = b1/T , ε2 = b2/T , and
λ = ε2(1− ε1)/{ε1(1− ε2)}.

Computing the p-values for the nonstandard limiting distributions is computationally complicated.
For each test, the reported p-value is computed using the method in Hansen (1997).

References
Andrews, D. W. K. 1993. Tests for parameter instability and structural change with unknown change point. Econometrica

61: 821–856.

Andrews, D. W. K., and W. Ploberger. 1994. Optimal tests when a nuisance parameter is present only under the
alternative. Econometrica 62: 1383–1414.

Davies, R. B. 1987. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika
74: 33–43.

Gali, J., and M. Gertler. 1999. Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics
44: 195–222.

Hansen, B. E. 1997. Approximate asymptotic p values for structural-change tests. Journal of Business and Economic
Statistics 15: 60–67.

Kim, H.-J., and D. Siegmund. 1989. The likelihood ratio test for a change-point in simple linear regression. Biometrika
76: 409–423.

Perron, P. 2006. Dealing with structural breaks. In Palgrave Handbook of Econometrics: Econometric Theory, Vol I,
ed. T. C. Mills and K. Patterson, 278–352. Basingstoke, UK: Palgrave.

Quandt, R. E. 1960. Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of
the American Statistical Association 55: 324–330.

estat sbsingle — Test for a structural break with an unknown break date 185

Also see
[TS] estat sbknown — Test for a structural break with a known break date

[TS] tsset — Declare data to be time-series data

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

Title

fcast compute — Compute dynamic forecasts after var, svar, or vec

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

fcast compute produces dynamic forecasts of the dependent variables in a model previously fit
by var, svar, or vec. fcast compute creates new variables and, if necessary, extends the time
frame of the dataset to contain the prediction horizon.

Quick start
Dynamic forecasts stored in f y1, f y2, and f y3 after fitting a model with var for dependent

variables y1, y2, and y3

fcast compute f

As above, but begin forecast on the first quarter of 1979
fcast compute f , dynamic(q(1979q1))

As above, but specify that 10 periods should be forecasted
fcast compute f , dynamic(q(1979q1)) step(10)

Menu
Statistics > Multivariate time series > VEC/VAR forecasts > Compute forecasts (required for graph)

186

fcast compute — Compute dynamic forecasts after var, svar, or vec 187

Syntax
After var and svar

fcast compute prefix
[
, options1

]
After vec

fcast compute prefix
[
, options2

]
prefix is the prefix appended to the names of the dependent variables to create the names of the
variables holding the dynamic forecasts.

options1 Description

Main

step(#) set # periods to forecast; default is step(1)

dynamic(time constant) begin dynamic forecasts at time constant
estimates(estname) use previously stored results estname; default is to use active

results
replace replace existing forecast variables that have the same prefix

Std. Errors

nose suppress asymptotic standard errors
bs obtain standard errors from bootstrapped residuals
bsp obtain standard errors from parametric bootstrap
bscentile estimate bounds by using centiles of bootstrapped dataset
reps(#) perform # bootstrap replications; default is reps(200)

nodots suppress the usual dot after each bootstrap replication
saving(filename

[
, replace

]
) save bootstrap results as filename; use replace to overwrite

existing filename

Reporting

level(#) set confidence level; default is level(95)

188 fcast compute — Compute dynamic forecasts after var, svar, or vec

options2 Description

Main

step(#) set # periods to forecast; default is step(1)

dynamic(time constant) begin dynamic forecasts at time constant
estimates(estname) use previously stored results estname; default is to use active

results
replace replace existing forecast variables that have the same prefix
differences save dynamic predictions of the first-differenced variables

Std. Errors

nose suppress asymptotic standard errors

Reporting

level(#) set confidence level; default is level(95)

Default is to use asymptotic standard errors if no options are specified.
fcast compute can be used only after var, svar, and vec; see [TS] var, [TS] var svar, and [TS] vec.
You must tsset your data before using fcast compute; see [TS] tsset.

Options

� � �
Main �

step(#) specifies the number of periods to be forecast. The default is step(1).

dynamic(time constant) specifies the period to begin the dynamic forecasts. The default is the period
after the last observation in the estimation sample. The dynamic() option accepts either a Stata
date function that returns an integer or an integer that corresponds to a date using the current tsset
format. dynamic() must specify a date in the range of two or more periods into the estimation
sample to one period after the estimation sample.

estimates(estname) specifies that fcast compute use the estimation results stored as estname. By
default, fcast compute uses the active estimation results. See [R] estimates for more information
on manipulating estimation results.

replace causes fcast compute to replace the variables in memory with the specified predictions.

differences specifies that fcast compute also save dynamic predictions of the first-differenced
variables. differences can be specified only with vec estimation results.

� � �
Std. Errors �

nose specifies that the asymptotic standard errors of the forecasted levels and, thus the asymptotic
confidence intervals for the levels, not be calculated. By default, the asymptotic standard errors
and the asymptotic confidence intervals of the forecasted levels are calculated.

bs specifies that fcast compute use confidence bounds estimated by a simulation method based on
bootstrapping the residuals.

bsp specifies that fcast compute use confidence bounds estimated via simulation in which the
innovations are drawn from a multivariate normal distribution.

bscentile specifies that fcast compute use centiles of the bootstrapped dataset to estimate the
bounds of the confidence intervals. By default, fcast compute uses the estimated standard errors
and the quantiles of the standard normal distribution determined by level().

fcast compute — Compute dynamic forecasts after var, svar, or vec 189

reps(#) gives the number of repetitions used in the simulations. The default is reps(200).

nodots specifies that no dots be displayed while obtaining the simulation-based standard errors. By
default, for each replication, a dot is displayed.

saving(filename
[
, replace

]
) specifies the name of the file to hold the dataset that contains the

bootstrap replications. The replace option overwrites any file with this name.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples
Researchers often use VARs and VECMs to construct dynamic forecasts. fcast compute computes

dynamic forecasts of the dependent variables in a VAR or VECM previously fit by var, svar, or vec.
If you are interested in conditional, one-step-ahead predictions, use predict (see [TS] var, [TS] var
svar, and [TS] vec).

To obtain and analyze dynamic forecasts, you fit a model, use fcast compute to compute the
dynamic forecasts, and use fcast graph to graph the results.

Example 1

Typing

. use http://www.stata-press.com/data/r14/lutkepohl2

. var dln_inc dln_consump dln_inv if qtr<tq(1979q1)

. fcast compute m2_, step(8)

. fcast graph m2_dln_inc m2_dln_inv m2_dln_consump, observed

fits a VAR with two lags, computes eight-step dynamic predictions for each endogenous variable, and
produces the graph

190 fcast compute — Compute dynamic forecasts after var, svar, or vec

0
.0

2
.0

4

−
.1

−
.0

5
0

.0
5

.1

0
.0

2
.0

4

1978q3 1979q1 1979q3 1980q1 1980q3

1978q3 1979q1 1979q3 1980q1 1980q3

Forecast for dln_inc Forecast for dln_inv

Forecast for dln_consump

95% CI forecast

observed

The graph shows that the model is better at predicting changes in income and investment than in
consumption. The graph also shows how quickly the predictions from the two-lag model settle down
to their mean values.

fcast compute creates new variables in the dataset. If there are K dependent variables in the
previously fitted model, fcast compute generates 4K new variables:

K new variables that hold the forecasted levels, named by appending the specified prefix to
the name of the original variable

K estimated lower bounds for the forecast interval, named by appending the specified prefix
and the suffix “ LB” to the name of the original variable

K estimated upper bounds for the forecast interval, named by appending the specified prefix
and the suffix “ UB” to the name of the original variable

K estimated standard errors of the forecast, named by appending the specified prefix and the
suffix “ SE” to the name of the original variable

If you specify options so that fcast compute does not calculate standard errors, the 3K variables
that hold them and the bounds of the confidence intervals are not generated.

If the model previously fit is a VECM, specifying differences generates another K variables
that hold the forecasts of the first differences of the dependent variables, named by appending the
prefix “prefixD ” to the name of the original variable.

Example 2

Plots of the forecasts from different models along with the observations from a holdout sample
can provide insights to their relative forecasting performance. Continuing the previous example,

fcast compute — Compute dynamic forecasts after var, svar, or vec 191

. var dln_inc dln_consump dln_inv if qtr<tq(1979q1), lags(1/6)
(output omitted)

. fcast compute m6_, step(8)

. graph twoway line m6_dln_inv m2_dln_inv dln_inv qtr
> if m6_dln_inv < ., legend(cols(1))

−
.0

5
0

.0
5

.1

1978q4 1979q2 1979q4 1980q2 1980q4
quarter

m6_dln_inv, dyn(1979q1)

m2_dln_inv, dyn(1979q1)

first−difference of ln_inv

The model with six lags predicts changes in investment better than the two-lag model in some periods
but markedly worse in other periods.

Methods and formulas

Predictions after var and svar

A VAR with endogenous variables yt and exogenous variables xt can be written as

yt = v + A1yt−1 + · · ·+ Apyt−p + Bxt + ut

where

t = 1, . . . , T
yt = (y1t, . . . , yKt)

′ is a K × 1 random vector,
the Ai are fixed (K ×K) matrices of parameters,
xt is an (M × 1) vector of exogenous variables,
B is a (K ×M) matrix of coefficients,
v is a (K × 1) vector of fixed parameters, and
ut is assumed to be white noise; that is,

E(ut) = 0K
E(utu

′
t) = Σ

E(utu
′
s) = 0K for t 6= s

fcast compute will dynamically predict the variables in the vector yt conditional on p initial values
of the endogenous variables and any exogenous xt. Adopting the notation from Lütkepohl (2005,
402) to fit the case at hand, the optimal h-step-ahead forecast of yt+h conditional on xt is

192 fcast compute — Compute dynamic forecasts after var, svar, or vec

yt(h) = v̂ + Â1yt(h− 1) + · · ·+ Âpyt(h− p) + B̂xt (1)

If there are no exogenous variables, (1) becomes

yt(h) = v̂ + Â1yt(h− 1) + · · ·+ Âpyt(h− p)

When there are no exogenous variables, fcast compute can compute the asymptotic confidence
bounds.

As shown by Lütkepohl (2005, 204–205), the asymptotic estimator of the covariance matrix of
the prediction error is given by

Σ̂
ŷ
(h) = Σ̂y(h) +

1

T
Ω̂(h) (2)

where

Σ̂y(h) =

h−1∑
i=0

Φ̂iΣ̂Φ̂
′
i

Ω̂(h) =
1

T

T∑
t=0

{
h−1∑
i=0

Z′t

(
B̂′
)h−1−i

⊗ Φ̂i

}
Σ̂β

{
h−1∑
i=0

Z′t

(
B̂′
)h−1−i

⊗ Φ̂i

}′

B̂ =

1 0 0 . . . 0 0
v̂ Â1 Â2 . . . Âp−1 Âp

0 IK 0 . . . 0 0
0 0 IK 0 0
...

...
. . .

...
0 0 0 . . . IK 0

Zt = (1,y′t, . . . ,y

′
t−p−1)′

Φ̂0 = IK

Φ̂i =

i∑
j=1

Φ̂i−jÂj i = 1, 2, . . .

Âj = 0 for j > p

Σ̂ is the estimate of the covariance matrix of the innovations, and Σ̂β is the estimated VCE of the
coefficients in the VAR. The formula in (2) is general enough to handle the case in which constraints
are placed on the coefficients in the VAR(p).

Equation (2) is made up of two terms. Σ̂y(h) is the estimated mean squared error (MSE) of the
forecast. Σ̂y(h) estimates the error in the forecast arising from the unseen innovations. T−1Ω̂(h)
estimates the error in the forecast that is due to using estimated coefficients instead of the true
coefficients. As the sample size grows, uncertainty with respect to the coefficient estimates decreases,
and T−1Ω̂(h) goes to zero.

fcast compute — Compute dynamic forecasts after var, svar, or vec 193

If yt is normally distributed, the bounds for the asymptotic (1 − α)100% interval around the
forecast for the kth component of yt, h periods ahead, are

ŷk,t(h)± z(α2)σ̂k(h) (3)

where σ̂k(h) is the kth diagonal element of Σ̂
ŷ
(h).

Specifying the bs option causes the standard errors to be computed via simulation, using bootstrapped
residuals. Both var and svar contain estimators for the coefficients of a VAR that are conditional
on the first p observations on the endogenous variables in the data. Similarly, these algorithms
are conditional on the first p observations of the endogenous variables in the data. However, the
simulation-based estimates of the standard errors are also conditional on the estimated coefficients.
The asymptotic standard errors are not conditional on the coefficient estimates because the second
term on the right-hand side of (2) accounts for the uncertainty arising from using estimated parameters.

For a simulation with R repetitions, this method uses the following algorithm:

1. Fit the model and save the estimated coefficients.

2. Use the estimated coefficients to calculate the residuals.

3. Repeat steps 3a–3c R times.

3a. Draw a simple random sample with replacement of size T + h from the residuals.
When the tth observation is drawn, all K residuals are selected, preserving any
contemporaneous correlation among the residuals.

3b. Use the sampled residuals, p initial values of the endogenous variables, any
exogenous variables, and the estimated coefficients to construct a new sample
dataset.

3c. Save the simulated endogenous variables for the h forecast periods in the bootstrapped
dataset.

4. For each endogenous variable and each forecast period, the simulated standard error is the
estimated standard error of the R simulated forecasts. By default, the upper and lower bounds
of the (1−α)100% are estimated using the simulation-based estimates of the standard errors
and the normality assumption, as in (3). If the bscentile option is specified, the sample
centiles for the upper and lower bounds of the R simulated forecasts are used for the upper
and lower bounds of the confidence intervals.

If the bsp option is specified, a parametric simulation algorithm is used. Specifically, everything
is as above except that 3a is replaced by 3a(bsp) as follows:

3a(bsp). Draw T + h observations from a multivariate normal distribution with covariance
matrix Σ̂.

The algorithm above assumes that h forecast periods come after the original sample of T
observations. If the h forecast periods lie within the original sample, smaller simulated datasets are
sufficient.

Dynamic forecasts after vec

Methods and formulas of [TS] vec discusses how to obtain the one-step predicted differences and
levels. fcast compute uses the previous dynamic predictions as inputs for later dynamic predictions.

194 fcast compute — Compute dynamic forecasts after var, svar, or vec

Per Lütkepohl (2005, sec. 6.5), fcast compute uses

Σ̂
ŷ
(h) =

(
T

T − d

) h−1∑
i=0

Φ̂iΩ̂Φ̂i

where the Φ̂i are the estimated matrices of impulse–response functions, T is the number of observations
in the sample, d is the number of degrees of freedom, and Ω̂ is the estimated cross-equation variance
matrix. The formulas for d and Ω̂ are given in Methods and formulas of [TS] vec.

The estimated standard errors at step h are the square roots of the diagonal elements of Σ̂
ŷ
(h).

Per Lütkepohl (2005), the estimated forecast-error variance does not consider parameter uncertainty.
As the sample size gets infinitely large, the importance of parameter uncertainty diminishes to zero.

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] fcast graph — Graph forecasts after fcast compute

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html

Title

fcast graph — Graph forecasts after fcast compute

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
fcast graph graphs dynamic forecasts of the endogenous variables from a VAR(p) or VECM that

has already been obtained from fcast compute; see [TS] fcast compute.

Quick start
Graph forecasts in f y1 after fcast compute

fcast graph f_y1

As above, and include observed values of the predicted variable
fcast graph f_y1, observed

As above, but suppress confidence bands
fcast graph f_y1, observed noci

Menu
Statistics > Multivariate time series > VEC/VAR forecasts > Graph forecasts

195

196 fcast graph — Graph forecasts after fcast compute

Syntax
fcast graph varlist

[
if
] [

in
] [

, options
]

where varlist contains one or more forecasted variables generated by fcast compute.

options Description

Main

differences graph forecasts of the first-differenced variables (vec only)
noci suppress confidence bands
observed include observed values of the predicted variables

Forecast plot

cline options affect rendition of the forecast lines

CI plot

ciopts(area options) affect rendition of the confidence bands

Observed plot

obopts(cline options) affect rendition of the observed values

Y axis, Time axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
byopts(by option) affect appearance of the combined graph; see [G-3] by option

Options

� � �
Main �

differences specifies that the forecasts of the first-differenced variables be graphed. This option is
available only with forecasts computed by fcast compute after vec. The differences option
implies noci.

noci specifies that the confidence intervals be suppressed. By default, the confidence intervals are
included.

observed specifies that observed values of the predicted variables be included in the graph. By
default, observed values are not graphed.

� � �
Forecast plot �

cline options affect the rendition of the plotted lines corresponding to the forecast; see
[G-3] cline options.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands for the forecasts; see
[G-3] area options.

� � �
Observed plot �

obopts(cline options) affects the rendition of the observed values of the predicted variables; see
[G-3] cline options. This option implies the observed option.

fcast graph — Graph forecasts after fcast compute 197

� � �
Y axis, Time axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by().

byopts(by option) are documented in [G-3] by option. These options affect the appearance of the
combined graph.

Remarks and examples
fcast graph graphs dynamic forecasts created by fcast compute.

Example 1

In this example, we use a cointegrating VECM to model the state-level unemployment rates in
Missouri, Indiana, Kentucky, and Illinois, and we graph the forecasts against a 6-month holdout
sample.

. use http://www.stata-press.com/data/r14/urates

. vec missouri indiana kentucky illinois if t < tm(2003m7), trend(rconstant)
> rank(2) lags(4)

(output omitted)
. fcast compute m1_, step(6)

. fcast graph m1_missouri m1_indiana m1_kentucky m1_illinois, observed

5
5

.5
6

6
.5

7

3
4

5
6

5
5

.5
6

6
.5

7

5
.5

6
6

.5
7

7
.5

2003m6 2003m8 2003m10 2003m122003m6 2003m8 2003m10 2003m12

Forecast for missouri Forecast for indiana

Forecast for kentucky Forecast for illinois

95% CI forecast

observed

Because the 95% confidence bands for the predicted unemployment rates in Missouri and Indiana do
not contain all their observed values, the model does not reliably predict these unemployment rates.

198 fcast graph — Graph forecasts after fcast compute

Also see
[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

forecast — Econometric model forecasting

Description Quick start Syntax Remarks and examples References
Also see

Description

forecast is a suite of commands for obtaining forecasts by solving models, collections of
equations that jointly determine the outcomes of one or more variables. Equations can be stochastic
relationships fit using estimation commands such as regress, ivregress, var, or reg3; or they can
be nonstochastic relationships, called identities, that express one variable as a deterministic function
of other variables. Forecasting models may also include exogenous variables whose values are already
known or determined by factors outside the purview of the system being examined. The forecast
commands can also be used to obtain dynamic forecasts in single-equation models.

The forecast suite lets you incorporate outside information into your forecasts through the use
of add factors and similar devices, and you can specify the future path for some model variables
and obtain forecasts for other variables conditional on that path. Each set of forecast variables has its
own name prefix or suffix, so you can compare forecasts based on alternative scenarios. Confidence
intervals for forecasts can be obtained via stochastic simulation and can incorporate both parameter
uncertainty and additive error terms.

forecast works with both time-series and panel datasets. Time-series datasets may not contain
any gaps, and panel datasets must be strongly balanced.

This manual entry provides an overview of forecasting models and several examples showing how
the forecast commands are used together. See the individual subcommands’ manual entries for
detailed discussions of the various options available and specific remarks about those subcommands.

Quick start
Estimate a linear and an ARIMA regression and store their results as myreg and myarima, respectively

regress y1 x1 x2
estimates store myreg
arima y2 x3 y1, ar(1) ma(1)
estimates store myarima

Create a forecast model with the name mymodel

forecast create mymodel

Add stored estimates myreg and myarima to forecast model mymodel
forecast estimates myreg
forecast estimates myarima

Compute dynamic forecasts from 2012 through 2020 of y1 and y2 using mymodel with nonmissing
values of x1, x2, and x3 for the entire forecast horizon

forecast solve, begin(2012) end(2020)

See [TS] forecast adjust, [TS] forecast coefvector, [TS] forecast create, [TS] forecast describe,
[TS] forecast drop, [TS] forecast estimates, [TS] forecast exogenous, [TS] forecast identity,
[TS] forecast list, and [TS] forecast solve for additional Quick starts.

199

200 forecast — Econometric model forecasting

Syntax
forecast subcommand . . .

[
, options

]
subcommand Description

create create a new model
estimates add estimation result to current model
identity specify an identity (nonstochastic equation)
coefvector specify an equation via a coefficient vector
exogenous declare exogenous variables
solve obtain one-step-ahead or dynamic forecasts
adjust adjust a variable by add factoring, replacing, etc.
describe describe a model
list list all forecast commands composing current model
clear clear current model from memory
drop drop forecast variables
query check whether a forecast model has been started

Remarks and examples

A forecasting model is a system of equations that jointly determine the outcomes of one or more
endogenous variables, whereby the term endogenous variables contrasts with exogenous variables,
whose values are not determined by the interplay of the system’s equations. A model, in the context
of the forecast commands, consists of

1. zero or more stochastic equations fit using Stata estimation commands and added to the
current model using forecast estimates. These stochastic equations describe the behavior
of endogenous variables.

2. zero or more nonstochastic equations (identities) defined using forecast identity. These
equations often describe the behavior of endogenous variables that are based on accounting
identities or adding-up conditions.

3. zero or more equations stored as coefficient vectors and added to the current model using
forecast coefvector. Typically, you will fit your equations in Stata and use forecast
estimates to add them to the model. forecast coefvector is used to add equations
obtained elsewhere.

4. zero or more exogenous variables declared using forecast exogenous.

5. at least one stochastic equation or identity.

6. optional adjustments to be made to the variables of the model declared using forecast adjust.
One use of adjustments is to produce forecasts under alternative scenarios.

The forecast commands are designed to be easy to use, so without further ado, we dive headfirst
into an example.

forecast — Econometric model forecasting 201

Example 1: Klein’s model

Example 3 of [R] reg3 shows how to fit Klein’s (1950) model of the U.S. economy using the
three-stage least-squares estimator (3SLS). Here we focus on how to make forecasts from that model
once the parameters have been estimated. In Klein’s model, there are seven equations that describe
the seven endogenous variables. Three of those equations are stochastic relationships, while the rest
are identities:

ct = β0 + β1pt + β2pt−1 + β3wt + ε1t (1)

it = β4 + β5pt + β6pt−1 + β7kt−1 + ε2t (2)

wpt = β8 + β9yt + β10yt−1 + β11yrt + ε3t (3)

yt = ct + it + gt (4)

pt = yt − tt − wpt (5)

kt = kt−1 + it (6)

wt = wgt + wpt (7)

The variables in the model are defined as follows:

Name Description Type

c Consumption endogenous
p Private-sector profits endogenous
wp Private-sector wages endogenous
wg Government-sector wages exogenous
w Total wages endogenous
i Investment endogenous
k Capital stock endogenous
y National income endogenous
g Government spending exogenous
t Indirect bus. taxes + net exports exogenous
yr Time trend = Year − 1931 exogenous

Our model has four exogenous variables: government-sector wages (wg), government spending (g),
a time-trend variable (yr), and, for simplicity, a variable that lumps indirect business taxes and net
exports together (t). To make out-of-sample forecasts, we must populate those variables over the
entire forecast horizon before solving our model. (We use the phrases “solve our model” and “obtain
forecasts from our model” interchangeably.)

We will illustrate the entire process of fitting and forecasting our model, though our focus will be
on the latter task. See [R] reg3 for a more in-depth look at fitting models like this one. Before we
solve our model, we first estimate the parameters of the stochastic equations by loading the dataset
and calling reg3:

202 forecast — Econometric model forecasting

. use http://www.stata-press.com/data/r14/klein2

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g)

Three-stage least-squares regression

Equation Obs Parms RMSE "R-sq" chi2 P

c 21 3 .9443305 0.9801 864.59 0.0000
i 21 3 1.446736 0.8258 162.98 0.0000
wp 21 3 .7211282 0.9863 1594.75 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

c
p

--. .1248904 .1081291 1.16 0.248 -.0870387 .3368194
L1. .1631439 .1004382 1.62 0.104 -.0337113 .3599992

w .790081 .0379379 20.83 0.000 .715724 .8644379
_cons 16.44079 1.304549 12.60 0.000 13.88392 18.99766

i
p

--. -.0130791 .1618962 -0.08 0.936 -.3303898 .3042316
L1. .7557238 .1529331 4.94 0.000 .4559805 1.055467

k
L1. -.1948482 .0325307 -5.99 0.000 -.2586072 -.1310893

_cons 28.17785 6.793768 4.15 0.000 14.86231 41.49339

wp
y

--. .4004919 .0318134 12.59 0.000 .3381388 .462845
L1. .181291 .0341588 5.31 0.000 .1143411 .2482409

yr .149674 .0279352 5.36 0.000 .094922 .2044261
_cons 1.797216 1.115854 1.61 0.107 -.3898181 3.984251

Endogenous variables: c i wp w p y
Exogenous variables: L.p L.k L.y yr t wg g

The output from reg3 indicates that we have a total of six endogenous variables even though our
model in fact has seven. The discrepancy stems from (6) of our model. The capital stock variable (k)
is a function of the endogenous investment variable and is therefore itself endogenous. However, kt
does not appear in any of our model’s stochastic equations, so we did not declare it in the endog()
option of reg3; from a purely estimation perspective, the contemporaneous value of the capital stock
variable is irrelevant, though it does play a role in terms of solving our model. We next store the
estimation results using estimates store:

. estimates store klein

Now we are ready to define our model using the forecast commands. We first tell Stata to
initialize a new model; we will call our model kleinmodel:

. forecast create kleinmodel
Forecast model kleinmodel started.

forecast — Econometric model forecasting 203

The name you give the model mainly controls how output from forecast commands is labeled.
More importantly, forecast create creates the internal data structures Stata uses to keep track of
your model.

The next step is to add all the equations to the model. To add the three stochastic equations we
fit using reg3, we use forecast estimates:

. forecast estimates klein
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

That command tells Stata to find the estimates stored as klein and add them to our model. forecast
estimates uses those estimation results to determine that there are three endogenous variables (c, i,
and wp), and it will save the estimated parameters and other information that forecast solve will
later need to obtain predictions for those variables. forecast estimates confirmed our request by
reporting that the estimation results added were from reg3.

forecast estimates reports that our forecast model has three endogenous variables because our
reg3 command included three left-hand-side variables. The fact that we specified three additional
endogenous variables in the endog() option of reg3 so that reg3 reports a total of six endogenous
variables is irrelevant to forecast. All that matters is the number of left-hand-side variables in the
model.

We also need to specify the four identities, equations (4) through (7), that determine the other four
endogenous variables in our model. To do that, we use forecast identity:

. forecast identity y = c + i + g
Forecast model kleinmodel now contains 4 endogenous variables.

. forecast identity p = y - t - wp
Forecast model kleinmodel now contains 5 endogenous variables.

. forecast identity k = L.k + i
Forecast model kleinmodel now contains 6 endogenous variables.

. forecast identity w = wg + wp
Forecast model kleinmodel now contains 7 endogenous variables.

You specify identities similarly to how you use the generate command, except that the left-hand-side
variable is an endogenous variable in your model rather than a new variable you want to create in your
dataset. Time-series operators often come in handy when specifying identities; here we expressed
capital, a stock variable, as its previous value plus current-period investment, a flow variable. An
identity defines an endogenous variable, so each time we use forecast identity, the number of
endogenous variables in our forecast model increases by one.

Finally, we will tell Stata about the four exogenous variables. We do that with the forecast
exogenous command:

. forecast exogenous wg
Forecast model kleinmodel now contains 1 declared exogenous variable.

. forecast exogenous g
Forecast model kleinmodel now contains 2 declared exogenous variables.

. forecast exogenous t
Forecast model kleinmodel now contains 3 declared exogenous variables.

. forecast exogenous yr
Forecast model kleinmodel now contains 4 declared exogenous variables.

204 forecast — Econometric model forecasting

forecast keeps track of the exogenous variables that you declare using the forecast exogenous
command and reports the number currently in the model. When you later use forecast solve,
forecast verifies that these variables contain nonmissing data over the forecast horizon. In fact, we
could have instead typed

. forecast exogenous wg g t yr

but to avoid confusing ourselves, we prefer to issue one command for each variable in our model.

Now Stata knows everything it needs to know about the structure of our model. klein2.dta in
memory contains annual observations from 1920 to 1941. Before we make out-of-sample forecasts,
we should first see how well our model works by comparing its forecasts with actual data. There
are a couple of ways to do that. The first is to produce static forecasts. In static forecasts, actual
values of all lagged variables that appear in the model are used. Because actual values will be missing
beyond the last historical time period in the dataset, static forecasts can only forecast one period
into the future (assuming only first lags appear in the model); for that reason, they are often called
one-step-ahead forecasts. To obtain these one-step-ahead forecasts, we type

. forecast solve, prefix(s_) begin(1921) static

Computing static forecasts for model kleinmodel.

Starting period: 1921
Ending period: 1941
Forecast prefix: s_

1921: ..
1922: ..
1923: ...

(output omitted)
1940: ...
1941: ..

Forecast 7 variables spanning 21 periods.

We specified begin(1921) to request that the first year for which forecasts are produced be 1921. Our
model includes variables that are lagged one period; because our data start in 1920, 1921 is the first
year in which we can evaluate all the equations of the model. If we did not specify the begin(1921)
option, forecast solve would have started forecasting in 1941. By default, forecast solve looks
for the earliest time period in which any of the endogenous variables contains a missing value and
begins forecasting in that period. In klein2.dta, k is missing in 1941.

The header of the output confirms that we requested static forecasts for our model, and it indicates
that it will produce forecasts from 1921 through 1941, the last year in our dataset. By default,
forecast solve produces a status report in which the time period being forecast is displayed along
with a dot for each iteration the equation solver performs. The footer of the output confirms that we
forecast seven endogenous variables for 21 years.

forecast — Econometric model forecasting 205

The command we just typed will create seven new variables in our dataset, one for each endogenous
variable, containing the static forecasts. Because we specified prefix(s), the seven new variables
will be named s c, s i, s wp, s y, s p, s k, and s w. Here we graph a subset of the variables
and their forecasts:

4
0

5
0

6
0

7
0

8
0

9
0

1920 1925 1930 1935 1940
year

Total Income

4
0

5
0

6
0

7
0

1920 1925 1930 1935 1940
year

Consumption
−

1
0

−
5

0
5

1920 1925 1930 1935 1940
year

Investment

2
0

3
0

4
0

5
0

6
0

1920 1925 1930 1935 1940
year

Private Wages

Solid lines denote actual values.
Dashed lines denote forecast values.

Static Forecasts

Our static forecasts appear to fit the data relatively well. Had they not fit well, we would have to go
back and reexamine the specification of our model. If the static forecasts are poor, then the dynamic
forecasts that use previous periods’ forecast values are unlikely to work well either. On the other
hand, even if the model produces good static forecasts, it may not produce accurate dynamic forecasts
more than one or two periods into the future.

Another way to check how well a model forecasts is to produce dynamic forecasts for time periods
in which observed values are available. Here we begin dynamic forecasts in 1936, giving us six years’
data with which to compare actual and forecast values and then graph our results:

. forecast solve, prefix(d_) begin(1936)

Computing dynamic forecasts for model kleinmodel.

Starting period: 1936
Ending period: 1941
Forecast prefix: d_

1936: ..
1937: ..
1938: ...
1939: ...
1940: ..
1941: ..

Forecast 7 variables spanning 6 periods.

206 forecast — Econometric model forecasting

4
0

5
0

6
0

7
0

8
0

9
0

1920 1925 1930 1935 1940
year

Total Income

4
0

5
0

6
0

7
0

1920 1925 1930 1935 1940
year

Consumption

−
5

0
5

1920 1925 1930 1935 1940
year

Investment

2
0

3
0

4
0

5
0

6
0

1920 1925 1930 1935 1940
year

Private Wages

Solid lines denote actual values.
Dashed lines denote forecast values.

Dynamic Forecasts

Most of the in-sample forecasts look okay, though our model was unable to predict the outsized
increase in investment in 1936 and the sharp drop in 1938.

Our first example was particularly easy because all the endogenous variables appeared in levels.
However, oftentimes the endogenous variables are better modeled using mathematical transformations
such as logarithms, first differences, or percentage changes; transformations of the endogenous
variables may appear as explanatory variables in other equations. The next few examples illustrate
these complications.

Example 2: Models with transformed endogenous variables

hardware.dta contains hypothetical quarterly sales data from the Hughes Hardware Company,
a huge regional distributor of building products. Hughes Hardware has three main product lines:
dimensional lumber (dim), sheet goods such as plywood and fiberboard (sheet), and miscellaneous
hardware, including fasteners and hand tools (misc). Based on past experience, we know that
dimensional lumber sales are closely tied to the level of new home construction and that other product
lines’ sales can be modeled in terms of the quantity of lumber sold. We are going to use the following
set of equations to model sales of the three product lines:

%∆dimt = β10 + β11 ln(startst) + β12%∆gdpt + β13unratet + ε1t

sheett = β20 + β21dimt + β22%∆gdpt + β23unratet + ε2t

misct = β30 + β31dimt + β32%∆gdpt + β33unratet + ε3t

Here startst represents the number of new homes for which construction began in quarter t, gdpt
denotes real (inflation-adjusted) gross domestic product (GDP), and unratet represents the quarterly
average unemployment rate. Our equation for dimt is written in terms of percentage changes from
quarter to quarter rather than in levels, and the percentage change in GDP appears as a regressor in
each equation rather than the level of GDP itself. In our model, these three macroeconomic factors
are exogenous, and here we will reserve the last few years’ data to make forecasts; in practice, we
would need to make our own forecasts of these macroeconomic variables or else purchase a forecast.

We will approximate the percentage change variables by taking first-differences of the natural
logarithms of the respective underlying variables. In terms of estimation, this does not present any
challenges. Here we load the dataset into memory, create the necessary log-transformed variables,

forecast — Econometric model forecasting 207

and fit the three equations using regress with the data through the end of 2009. We use quietly
to suppress the output from regress to save space, and we store each set of estimation results as
we go. In Stata, we type

. use http://www.stata-press.com/data/r14/hardware, clear
(Hughes Hardware sales data)

. generate lndim = ln(dim)

. generate lngdp = ln(gdp)

. generate lnstarts = ln(starts)

. quietly regress D.lndim lnstarts D.lngdp unrate if qdate <= tq(2009q4)

. estimates store dim

. quietly regress sheet dim D.lngdp unrate if qdate <= tq(2009q4)

. estimates store sheet

. quietly regress misc dim D.lngdp unrate if qdate <= tq(2009q4)

. estimates store misc

The equations for sheet goods and miscellaneous items do not present any challenges for forecast,
so we proceed by creating a new forecast model named salesfcast and adding those two equations:

. forecast create salesfcast, replace
(Forecast model kleinmodel ended.)
Forecast model salesfcast started.

. forecast estimates sheet
Added estimation results from regress.
Forecast model salesfcast now contains 1 endogenous variable.

. forecast estimates misc
Added estimation results from regress.
Forecast model salesfcast now contains 2 endogenous variables.

The equation for dimensional lumber requires more finesse. First, because our dependent variable
contains a time-series operator, we must use the names() option of forecast estimates to specify
a valid name for the endogenous variable being added:

. forecast estimates dim, names(dlndim)
Added estimation results from regress.
Forecast model salesfcast now contains 3 endogenous variables.

We have entered the endogenous variable dlndim into our model, but it represents the left-hand-side
variable of the regression equation we just added. That is, dlndim is the first-difference of the
logarithm of dim, the sales variable we ultimately want to forecast. We can specify an identity to
reverse the first-differencing, providing us with a variable containing the logarithm of dim:

. forecast identity lndim = L.lndim + dlndim
Forecast model salesfcast now contains 4 endogenous variables.

Finally, we can specify another identity to obtain dim from lndim:

. forecast identity dim = exp(lndim)
Forecast model salesfcast now contains 5 endogenous variables.

208 forecast — Econometric model forecasting

Now we can solve the model. We will obtain dynamic forecasts starting in the first quarter of
2010, and we will use the log(off) option to suppress the iteration log:

. forecast solve, begin(tq(2010q1)) log(off)

Computing dynamic forecasts for model salesfcast.

Starting period: 2010q1
Ending period: 2012q3
Forecast prefix: f_

Forecast 5 variables spanning 11 periods.

We did not specify the prefix() or suffix() option, so by default, forecast prefixed our forecast
variables with f . The following graph illustrates our forecasts:

Dimensional Lumber

250

300

350

Sheet Goods

100

130

160

Miscellany

100

150

200

2008q1 2009q1 2010q1 2011q1 2012q1

Forecast Actual

Hughes Hardware Sales ($mil.)

Our model performed well in 2010, but it did not forecast the pickup in sales that occurred in 2011
and 2012.

Technical note
For more information about working with log-transformed variables, see the second technical note

in [TS] forecast estimates.

The forecast commands can also be used to make forecasts for strongly balanced panel datasets.
A panel dataset is strongly balanced when all the panels have the same number of observations, and
the observations for different panels were all made at the same times. Our next example illustrates
how to produce a forecast with panel data and highlights a couple of key assumptions one must make.

Example 3: Forecasting a panel dataset

In the previous example, we mentioned that Hughes Hardware was a regional distributor of building
products. In fact, Hughes Hardware operates in five states across the southern United States: Texas,
Oklahoma, Louisiana, Arkansas, and Mississippi. The company is in the process of deciding whether
it should open additional distribution centers or move existing ones to new locations. As part of the
process, we need to make sales forecasts for each of the states the company serves.

forecast — Econometric model forecasting 209

To make our state-level forecasts, we will use essentially the same model that we did for the
company-wide forecast, though we will also include state-specific effects. The model we will use is

%∆dimit = β10 + β11 ln(startsit) + β12rgspgrowthit + β13unrateit + u1i + ε1it

sheetit = β20 + β21dimit + β22rgspgrowthit + β23unrateit + u2i + ε2it

miscit = β30 + β31dimit + β32rgspgrowthit + β33unrateit + u3i + ε3it

The subscript i indexes states, and we have replaced the gdp variable that was in our previous model
with rgspgrowth, which measures the annual growth rate in real gross state product (GSP), the
state-level analogue to national GDP. The GSP data are released only annually, so we have replicated
the annual growth rate for all four quarterly observations in a given year. For example, rgspgrowth
is about 5.3 for the four observations for the state of Texas in the year 2007; in 2007, Texas’s real
GSP was 5.3% higher than in 2006.

The state-level error terms are u1i, u2i, and u3i. Here we will use the fixed-effects estimator and
fit the three equations via xtreg, fe, again using data only through the end of 2009 so that we
can examine how well our model forecasts. Our first task is to fit the three equations and store the
estimation results. At the same time, we will also use predict to obtain the predicted fixed-effects
terms. You will see why in just a moment. Because the regression results are not our primary concern
here, we will use quietly to suppress the output.

In Stata, we type
. use http://www.stata-press.com/data/r14/statehardware, clear
(Hughes state-level sales data)

. generate lndim = ln(dim)

. generate lnstarts = ln(starts)

. quietly xtreg D.lndim lnstarts rgspgrowth unrate if qdate <= tq(2009q4), fe

. predict dlndim_u, u
(45 missing values generated)

. estimates store dim

. quietly xtreg sheet dim rgspgrowth unrate if qdate <= tq(2009q4), fe

. predict sheet_u, u
(40 missing values generated)

. estimates store sheet

. quietly xtreg misc dim rgspgrowth unrate if qdate <= tq(2009q4), fe

. predict misc_u, u
(40 missing values generated)

. estimates store misc

Having fit the model, we are almost ready to make forecasts. First, though, we need to consider
how to handle the state-level error terms. If we simply created a forecast model, added our three
estimation results, then called forecast solve, Stata would forecast miscit, for example, as a
function of dimit, rgspgrowthit, unrateit, and the estimate of the constant term β30. However,
our model implies that miscit also depends on u3i and the idiosyncratic error term ε3it. We will
ignore the idiosyncratic error for now (but see the discussion of simulations in [TS] forecast solve).
By construction, u3i has a mean of zero when averaged across all panels, but in general, u3i is
nonzero for any individual panel. Therefore, we should include it in our forecasts.

After you fit a model with xtreg, you can predict the panel-specific error component for the
subset of observations in the estimation sample. Typically, xtreg is used in situations where the
number of observations per panel T is modest. In those cases, the estimates of the panel-specific
error components are likely to be “noisy” (analogous to estimating a sample mean with just a few
observations). Often asymptotic analyses of panel-data estimators assume T is fixed, and in those
cases, the estimators of the panel-specific errors are inconsistent.

210 forecast — Econometric model forecasting

However, in forecasting applications, the number of observations per panel is usually larger than
in most other panel-data applications. With enough observations, we can have more confidence in
the estimated panel-specific errors. If we are willing to assume that we have decent estimates of the
panel-specific errors and that those panel-level effects will remain constant over the forecast horizon,
then we can incorporate them into our forecasts. Because predict only provided us with estimates
of the panel-level effects for the estimation sample, we need to extend them into the forecast horizon.
An easy way to do that is to use egen to create a new set of variables:

. by state: egen dlndim_u2 = mean(dlndim_u)

. by state: egen sheet_u2 = mean(sheet_u)

. by state: egen misc_u2 = mean(misc_u)

We can use forecast adjust to incorporate these terms into our forecasts. The following commands
define our forecast model, including the estimated panel-specific terms:

. forecast create statemodel, replace
(Forecast model salesfcast ended.)
Forecast model statemodel started.

. forecast estimates dim, name(dlndim)
Added estimation results from xtreg.
Forecast model statemodel now contains 1 endogenous variable.

. forecast adjust dlndim = dlndim + dlndim_u2
Endogenous variable dlndim now has 1 adjustment.

. forecast identity lndim = L.lndim + dlndim
Forecast model statemodel now contains 2 endogenous variables.

. forecast identity dim = exp(lndim)
Forecast model statemodel now contains 3 endogenous variables.

. forecast estimates sheet
Added estimation results from xtreg.
Forecast model statemodel now contains 4 endogenous variables.

. forecast adjust sheet = sheet + sheet_u2
Endogenous variable sheet now has 1 adjustment.

. forecast estimates misc
Added estimation results from xtreg.
Forecast model statemodel now contains 5 endogenous variables.

. forecast adjust misc = misc + misc_u2
Endogenous variable misc now has 1 adjustment.

We used forecast adjust to perform our adjustment to dlndim immediately after we added those
estimation results so that we would not forget to do so and before we used identities to obtain the
actual dim variable. However, we could have specified the adjustment at any time. Regardless of
when you specify an adjustment, forecast solve performs those adjustments immediately after the
variable being adjusted is computed.

forecast — Econometric model forecasting 211

Now we can solve our model. Here we obtain dynamic forecasts beginning in the first quarter of
2010:

. forecast solve, begin(tq(2010q1))

Computing dynamic forecasts for model statemodel.

Starting period: 2010q1
Ending period: 2011q4
Number of panels: 5
Forecast prefix: f_

Solving panel 1
Solving panel 2
Solving panel 3
Solving panel 4
Solving panel 5

Forecast 5 variables spanning 8 periods for 5 panels.

Here is our state-level forecast for sheet goods:

5
6

7
8

1
3

1
4

1
5

1
6

1
7

4
6

8
1

0

8
9

1
0

1
1

1
2

7
0

8
0

9
0

1
0

0
1

1
0

2008 2010 2012

2008 2010 2012 2008 2010 2012

AR LA MS

OK TX

Forecast Actual

Sales of Sheet Goods ($mil.)

Similar to our company-wide forecast, our state-level forecast failed to call the bottom in sales that
occurred in 2011. Because our model missed the shift in sales momentum in every one of the five
states, we would be inclined to go back and try respecifying one or more of the equations in our
model. On the other hand, if our model forecasted most of the states well but performed poorly in
just a few states, then we would first want to investigate whether any events in those states could
account for the unexpected results.

Technical note
Stata also provides the areg command for fitting a linear regression with a large dummy-variable

set and is designed for situations where the number of groups (panels) is fixed, while the number of
observations per panel increases with the sample size. When the goal is to create a forecast model
for panel data, you should nevertheless use xtreg rather than areg. The forecast commands
require knowledge of the panel-data settings declared using xtset as well as panel-related estimation
information saved by the other panel-data commands in order to produce forecasts with panel datasets.

212 forecast — Econometric model forecasting

In the previous example, none of our equations contained lagged dependent variables as regressors.
If an equation did contain a lagged dependent variable, then one could use a dynamic panel-data
(DPD) estimator such as xtabond, xtdpd, or xtdpdsys. DPD estimators are designed for cases
where the number of observations per panel T is small. As shown by Nickell (1981), the bias
of the standard fixed- and random-effects estimators in the presence of lagged dependent variables
is of order 1/T and is thus particularly severe when each panel has relatively few observations.
Judson and Owen (1999) perform Monte Carlo experiments to examine the relative performance of
different panel-data estimators in the presence of lagged dependent variables when used with panel
datasets having dimensions more commonly encountered in macroeconomic applications. Based on
their results, while the bias of the standard fixed-effects estimator (LSDV in their notation) is not
inconsequential even when T = 20, for T = 30, the fixed-effects estimator does work as well as most
alternatives. The only estimator that appreciably outperformed the standard fixed-effects estimator
when T = 30 is the least-squares dummy variable corrected estimator (LSDVC in their notation).
Bruno (2005) provides a Stata implementation of that estimator. Many datasets used in forecasting
situations contain even more observations per panel, so the “Nickell bias” is unlikely to be a major
concern.

In this manual entry, we have provided an overview of the forecast commands and provided
several examples to get you started. The command-specific entries fill in the details.

Video example

Tour of forecasting

References
Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the

Social Science. New York: Cambridge University Press.

Bruno, G. S. F. 2005. Estimation and inference in dynamic unbalanced panel-data models with a small number of
individuals. Stata Journal 5: 473–500.

Judson, R. A., and A. L. Owen. 1999. Estimating dynamic panel data models: a guide for macroeconomists. Economics
Letters 65: 9–15.

Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Nickell, S. J. 1981. Biases in dynamic models with fixed effects. Econometrica 49: 1417–1426.

Also see
[TS] var — Vector autoregressive models

[TS] tsset — Declare data to be time-series data

[R] ivregress — Single-equation instrumental-variables regression

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] regress — Linear regression

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtset — Declare data to be panel data

http://www.youtube.com/watch?v=wx3lyVGYDic&feature=youtu.be
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata-journal.com/sjpdf.html?articlenum=st0091
http://www.stata-journal.com/sjpdf.html?articlenum=st0091

Title

forecast adjust — Adjust a variable by add factoring, replacing, etc.

Description Quick start Syntax Remarks and examples Stored results
Reference Also see

Description

forecast adjust specifies an adjustment to be applied to an endogenous variable in the model.
Adjustments are typically used to produce alternative forecast scenarios or to incorporate outside
information into a model. For example, you could use forecast adjust with a macroeconomic
model to simulate the effect of an oil price shock whereby the price of oil spikes $50 higher than
your model otherwise predicts in a given quarter.

Quick start
Adjust the endogenous variable y in forecast to account for the variable shock in 1990

forecast adjust y = y + shock if year==1990

Adjust the endogenous variable y in forecast to account for a structural change in its mean that
occurred in year 2000

forecast adjust y = y + 400000 if year > 2000

Syntax
forecast adjust varname = exp

[
if
] [

in
]

varname is the name of an endogenous variable that has been previously added to the model using
forecast estimates or forecast coefvector.

exp represents a Stata expression; see [U] 13 Functions and expressions.

Remarks and examples
When preparing a forecast, you often want to produce several different scenarios. The baseline

scenario is the default forecast that your model produces. It reflects the interplay among the equations
and exogenous variables without any outside forces acting on the model. Users of forecasts often
want answers to questions like “What happens to the economy if housing prices decline 10% more
than your baseline forecast suggests they will?” or “What happens to unemployment and interest rates
if tax rates increase?” forecast adjust lets you explore such questions by specifying alternative
paths for one or more endogenous variables in your model.

Example 1: Revisiting the Klein model

In example 1 of [TS] forecast, we produced a baseline forecast for the classic Klein (1950) model.
We noted that investment declined quite substantially in 1938. Suppose the government had a plan
such as a one-year investment tax credit that it could enact in 1939 to stimulate investment. Based
on discussions with accountants, tax experts, and business leaders, say this plan would encourage an
additional $1 billion in investment in 1939. How would this additional investment affect the economy?

213

214 forecast adjust — Adjust a variable by add factoring, replacing, etc.

To answer this question, we first refit the Klein (1950) model from [TS] forecast using the data
through 1938 and then obtain dynamic forecasts starting in 1939. We will prefix these forecast
variables with bl to indicate they are the baseline forecasts. In Stata, we type

. use http://www.stata-press.com/data/r14/klein2

. quietly reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr) if year < 1939,
> endog(w p y) exog(t wg g)

. estimates store klein

. forecast create kleinmodel
Forecast model kleinmodel started.

. forecast estimates klein
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

. forecast identity y = c + i + g
Forecast model kleinmodel now contains 4 endogenous variables.

. forecast identity p = y - t - wp
Forecast model kleinmodel now contains 5 endogenous variables.

. forecast identity k = L.k + i
Forecast model kleinmodel now contains 6 endogenous variables.

. forecast identity w = wg + wp
Forecast model kleinmodel now contains 7 endogenous variables.

. forecast exogenous wg
Forecast model kleinmodel now contains 1 declared exogenous variable.

. forecast exogenous g
Forecast model kleinmodel now contains 2 declared exogenous variables.

. forecast exogenous t
Forecast model kleinmodel now contains 3 declared exogenous variables.

. forecast exogenous yr
Forecast model kleinmodel now contains 4 declared exogenous variables.

. forecast solve, prefix(bl_) begin(1939)

Computing dynamic forecasts for model kleinmodel.

Starting period: 1939
Ending period: 1941
Forecast prefix: bl_

1939: ...
..

1940: ...
..

1941: ...
...

Forecast 7 variables spanning 3 periods.

To model our $1 billion increase in investment in 1939, we type

. forecast adjust i = i + 1 if year == 1939
Endogenous variable i now has 1 adjustment.

While computing the forecasts for 1939, whenever forecast evaluates the equation for i, it will set
i to be higher than it would otherwise be by 1. Now we re-solve our model using the prefix alt
to indicate this is an alternative forecast:

forecast adjust — Adjust a variable by add factoring, replacing, etc. 215

. forecast solve, prefix(alt_) begin(1939)

Computing dynamic forecasts for model kleinmodel.

Starting period: 1939
Ending period: 1941
Forecast prefix: alt_

1939: ...
...

1940: ...
..

1941: ...
..

Forecast 7 variables spanning 3 periods.

The following graph shows how investment and total income respond to this policy shock.

0
5

1
0

1
5

$
 B

ill
io

n

1938 1939 1940 1941
year

Investment
6

0
8

0
1

0
0

1
2

0
$

 B
ill

io
n

1938 1939 1940 1941
year

Total Income

Solid lines denote forecast without tax credit
Dashed lines denote forecast with tax credit

Effect of $1 billion investment tax credit

Both investment and total income would be higher not just in 1939 but also in 1940; the higher
capital stock implied by the additional investment raises total output (and hence income) even after
the tax credit expires. Let’s look at these two variables in more detail:

. list year bl_i alt_i bl_y alt_y if year >= 1938, sep(0)

year bl_i alt_i bl_y alt_y

19. 1938 -1.9 -1.9 60.9 60.9
20. 1939 3.757227 6.276423 75.57685 80.71709
21. 1940 7.971523 9.501909 89.67435 94.08473
22. 1941 16.16375 16.20362 123.0809 124.238

Although we simulated a policy that we thought would encourage $1 billion in investment,
investment in fact rises about $2.5 billion in 1939 according to our model. That is because higher
investment raises total income, which also affects private-sector profits, which beget further changes
in investment, and so on.

The investment multiplier in this example might strike you as implausibly large, but it highlights an
important attribute of forecasting models. Studying each equation’s estimated coefficients in isolation
can help to unveil some specification errors, but one must also consider how those equations interact.

216 forecast adjust — Adjust a variable by add factoring, replacing, etc.

It is possible to construct models in which each equation appears to be well specified, but the model
nevertheless forecasts poorly or suggests unlikely behavior in response to policy shocks.

In the previous example, we applied a single adjustment to a single endogenous variable in a
single time period. However, forecast allows you to specify forecast adjust multiple times with
each endogenous variable, and many real-world policy simulations require adjustments to multiple
variables. You can also consider policies that affect variables for multiple periods.

For example, suppose we wanted to see what would happen if our investment tax credit lasted
two years instead of one. One way would be to use forecast adjust twice:

. forecast adjust i = i + 1 if year == 1939

. forecast adjust i = i + 1 if year == 1940

A second way would be to make that adjustment using one command:

. forecast adjust i = i + 1 if year == 1939 | year == 1940

To make adjustments lasting more than one or two periods, you should create an adjustment variable,
which makes more sense. A third way to simulate our two-year tax credit is

. generate i_adj = 0

. replace i_adj = 1 if year == 1939 | year == 1940

. forecast adjust i = i + i_adj

So far in our discussion of forecast adjust, we have always shown an endogenous variable
being adjusted by adding a number or variable to it. However, any valid expression is allowed on the
right-hand side of the equals sign. If you want to explore the effects of a policy that will increase
investment by 10% in 1939, you could type

. forecast adjust i = 1.1*i if year == 1939

If you believe investment will be −2.0 in 1939, you could type

. forecast adjust i = -2.0 if year == 1939

An alternative way to force forecasts of endogenous variables to take on prespecified values is
discussed in example 1 of [TS] forecast solve.

Stored results
forecast adjust stores the following in r():

Macros
r(lhs) left-hand-side (endogenous) variable
r(rhs) right-hand side of identity
r(basenames) base names of variables found on right-hand side
r(fullnames) full names of variables found on right-hand side

Reference
Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast solve — Obtain static and dynamic forecasts

Title

forecast clear — Clear current model from memory

Description Syntax Remarks and examples Also see

Description
forecast clear removes the current forecast model from memory.

Syntax
forecast clear

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast allows you to have only one model in memory
at a time. You use forecast clear to remove the current model from memory. Forecast models
themselves do not consume a significant amount of memory, so there is no need to clear a model from
memory unless you intend to create a new one. An alternative to forecast clear is the replace
option with forecast create.

Calling forecast clear when no forecast model exists in memory does not result in an error.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast create — Create a new forecast model

217

Title

forecast coefvector — Specify an equation via a coefficient vector

Description Quick start Syntax Options Remarks and examples
Methods and formulas Also see

Description

forecast coefvector adds equations that are stored as coefficient vectors to your forecast model.
Typically, equations are added using forecast estimates and forecast identity. forecast
coefvector is used in less-common situations where you have a vector of parameters that represent
a linear equation.

Most users of the forecast commands will not need to use forecast coefvector. We recom-
mend skipping this manual entry until you are familiar with the other features of forecast.

Quick start
Incorporate coefficient vector of the endogenous equation of y to be used by forecast solve

forecast coefvector y

As above, but include the variance of the estimated parameters stored in matrix mymat

forecast coefvector y, variance(mymat)

Syntax
forecast coefvector cname

[
, options

]
cname is a Stata matrix with one row.

options Description

variance(vname) specify parameter variance matrix
errorvariance(ename) specify additive error variance matrix
names(namelist

[
, replace

]
) use namelist for names of left-hand-side variables

Options

variance(vname) specifies that Stata matrix vname contains the variance matrix of the estimated
parameters. This option only has an effect if you specify the simulate() option when calling
forecast solve and request sim technique’s betas or residuals. See [TS] forecast solve.

errorvariance(ename) specifies that the equations being added include an additive error term with
variance ename, where ename is the name of a Stata matrix. The number of rows and columns in
ename must match the number of equations represented by coefficient vector cname. This option
only has an effect if you specify the simulate() option when calling forecast solve and
request sim technique’s errors or residuals. See [TS] forecast solve.

218

forecast coefvector — Specify an equation via a coefficient vector 219

names(namelist
[
, replace

]
) instructs forecast coefvector to use namelist as the names of the

left-hand-side variables in the coefficient vector being added. By default, forecast coefvector
uses the equation names on the column stripe of cname. You must use this option if any of the
equation names stored with cname contains time-series operators.

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. This manual entry also assumes that you are familiar with Stata’s
matrices and the concepts of row and column names that can be attached to them; see [P] matrix.
You use forecast coefvector to add endogenous variables to your model that are defined by linear
equations, where the linear equations are stored in a coefficient (parameter) vector.

Remarks are presented under the following headings:

Introduction
Simulations with coefficient vectors

Introduction

forecast coefvector can be used to add equations that you obtained elsewhere to your model.
For example, you might see the estimated coefficients for an equation in an article and want to add
that equation to your model. User-written estimators that do not implement a predict command can
also be included in forecast models via forecast coefvector. forecast coefvector can also
be useful in situations where you want to simulate time-series data, as the next example illustrates.

Example 1: A shock to an autoregressive process

Consider the following autoregressive process:

yt = 0.9yt−1 − 0.6yt−2 + 0.3yt−3

Suppose yt is initially equal to zero. How does yt evolve in response to a one-unit shock at time
t = 5? We can use forecast coefvector to find out. First, we create a small dataset with time
variable t and set our target variable y equal to zero:

. set obs 20
number of observations (_N) was 0, now 20

. generate t = _n

. tsset t
time variable: t, 1 to 20

delta: 1 unit

. generate y = 0

Now let’s think about our coefficient vector. The only tricky part is in labeling the columns. We can
represent the lagged values of yt using time-series operators; there is just one equation, corresponding
to variable y. We can use matrix coleq to apply both variable and equation names to the columns
of our matrix. In Stata, we type

220 forecast coefvector — Specify an equation via a coefficient vector

. matrix y = (.9, -.6, 0.3)

. matrix coleq y = y:L.y y:L2.y y:L3.y

. matrix list y

y[1,3]
y: y: y:
L. L2. L3.
y y y

r1 .9 -.6 .3

forecast coefvector ignores the row name of the vector being added (r1 here), so we can leave
it as is. Next we create a forecast model and add y:

. forecast create
Forecast model started.

. forecast coefvector y
Forecast model now contains 1 endogenous variable.

To shock our system at t = 5, we can use forecast adjust:

. forecast adjust y = 1 in 5
Endogenous variable y now has 1 adjustment.

Now we can solve our model. Because our y variable is filled in for the entire dataset, forecast
solve will not be able to automatically determine when forecasting should commence. We have three
lags in our process, so we will start at t = 4. To reduce the amount of output, we specify log(off):

. forecast solve, begin(4) log(off)

Computing dynamic forecasts for current model.

Starting period: 4
Ending period: 20
Forecast prefix: f_

Forecast 1 variable spanning 17 periods.

0
.2

.4
.6

.8
1

R
e

s
p

o
n

s
e

0 5 10 15 20
t

Evolution of yt in response to a unit shock at t = 5.

Impulse−Response Function

The graph shows our shock causing y to jump to 1 at t = 5. At t = 6, we can see that y = 0.9, and
at t = 7, we can see that y = 0.9× 0.9− 0.6× 1 = 0.21.

forecast coefvector — Specify an equation via a coefficient vector 221

The previous example used a coefficient vector representing a single equation. However, coefficient
vectors can contain multiple equations. For example, say we read an article and saw the following
results displayed:

xt = 0.2 + 0.3xt−1 − 0.8zt

zt = 0.1 + 0.7zt−1 + 0.3xt − 0.2xt−1

We can add both equations at once to our forecast model. Again the key is in labeling the columns.
forecast coefvector understands cons to mean a constant term, and it looks at the equation
names on the vector’s columns to determine how many equations there are and to what endogenous
variables they correspond:

. matrix eqvector = (0.2, 0.3, -0.8, 0.1, 0.7, 0.3, -0.2)

. matrix coleq eqvector = x:_cons x:L.x x:y y:_cons y:L.y y:x y:L.x

. matrix list eqvector

eqvector[1,7]
x: x: x: y: y: y: y:

L. L. L.
_cons x y _cons y x x

r1 .2 .3 -.8 .1 .7 .3 -.2

We could then type

. forecast coefvector y

to add our coefficient vector to a model.

Just like with estimation results whose left-hand-side variables contain time-series operators, if
any of the equation names of the coefficient vector being added contains time-series operators, you
must use the names() option of forecast coefvector to specify alternative names.

Simulations with coefficient vectors

The forecast solve command provides the option simulate(sim technique, . . .) to perform
stochastic simulations and obtain measures of forecast uncertainty. How forecast solve handles
coefficient vectors when performing these simulations depends on the options provided with forecast
coefvector. There are four cases to consider:

1. You specify neither variance() nor errorvariance() with forecast coefvector. You
have provided no measures of uncertainty with this coefficient vector. Therefore, forecast
solve treats it like an identity. No random errors or residuals are added to this coefficient
vector’s linear combination, nor are the coefficients perturbed in any way.

2. You specify variance() but not errorvariance(). The variance() option provides
the covariance matrix of the estimated parameters in the coefficient vector. Therefore, the
coefficient vector is taken to be stochastic. If you request sim technique betas, this coefficient
vector is assumed to be distributed multivariate normal with a mean equal to the original
value of the vector and covariance matrix as specified in the variance() option, and random
draws are taken from this distribution. If you request sim technique residuals, randomly
chosen static residuals are added to this coefficient vector’s linear combination. Because
you did not specify a covariance matrix for the error terms with the errorvariance()
option, sim technique errors cannot draw random errors for this coefficient vector’s linear
combination, so sim technique errors has no impact on the equations.

222 forecast coefvector — Specify an equation via a coefficient vector

3. You specify errorvariance() but not variance(). Because you specified a covariance
matrix for the assumed additive error term, the equations represented by this coefficient vector
are stochastic. If you request sim technique residuals, randomly chosen static residuals
are added to this coefficient vector’s linear combination. If you request sim technique
errors, multivariate normal errors with mean zero and covariance matrix as specified
in the errorvariance() option are added during the simulations. However, specifying
sim technique betas does not affect the equations because there is no covariance matrix
associated with the coefficients.

4. You specify both variance() and errorvariance(). The equations represented by this
coefficient vector are stochastic, and forecast solve treats the coefficient vector just like
an estimation result. sim technique’s betas, residuals, and errors all work as expected.

Methods and formulas
Let β denote the 1×k coefficient vector being added. Then the matrix specified in the variance()

option must be k × k. Row and column names for that matrix are ignored.

Let m denote the number of equations represented by β. That is, if β is stored as Stata matrix
beta and local macro m is to hold the number of equations, then in Stata parlance,

. local eqnames : coleq beta

. local eq : list uniq eqnames

. local m : list sizeof eq

Then the matrix specified in the errorvariance option must be m×m. Row and column names
for that matrix are ignored.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast solve — Obtain static and dynamic forecasts

[P] matrix — Introduction to matrix commands

[P] matrix rownames — Name rows and columns

Title

forecast create — Create a new forecast model

Description Quick start Syntax Option Remarks and examples
Also see

Description

forecast create creates a new forecast model in Stata.

Quick start
Start a forecast model called myforecast

forecast create myforecast

As above, but clear the existing model myforecast from memory if it exists
forecast create myforecast, replace

Syntax
forecast create

[
name

] [
, replace

]
name is an optional name that can be given to the model. name must follow the naming conventions

described in [U] 11.3 Naming conventions.

Option
replace causes Stata to clear the existing model from memory before creating name. You may have

only one model in memory at a time. By default, forecast create issues an error message if
another model is already in memory.

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. The forecast create command creates a new forecast model
in Stata. You must create a model before you can add equations or solve it. You can have only one
model in memory at a time.

You may optionally specify a name for your model. That name will appear in the output produced
by the various forecast subcommands.

223

224 forecast create — Create a new forecast model

Example 1

Here we create a model named salesfcast:

. forecast create salesfcast
Forecast model salesfcast started.

Technical note
Warning: Do not type clear all, clear mata, or clear results after creating a forecast

model with forecast create unless you intend to remove your forecast model. Typing clear all
or clear mata eliminates the internal structures used to store your forecast model. Typing clear
results clears all estimation results from memory. If your forecast model includes estimation results
that rely on the ability to call predict, you will not be able to solve your model.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast clear — Clear current model from memory

Title

forecast describe — Describe features of the forecast model

Description Quick start Syntax Options Remarks and examples
Stored results Reference Also see

Description

forecast describe displays information about the forecast model currently in memory. For
example, you can obtain information regarding all the endogenous or exogenous variables in the
model, the adjustments used for alternative scenarios, or the solution method used. Typing forecast
describe without specifying a particular aspect of the model is equivalent to typing forecast
describe for every available aspect and can result in more output than you want, particularly if you
also request a detailed description.

Quick start
Display information about the estimates in the current forecast

forecast describe estimates

Display information about coefficient vectors
forecast describe coefvector

Display endogenous variables defined by identities
forecast describe identity

Display names of declared exogenous variables
forecast describe exogenous

Display information about the solution method used
forecast describe solve

Display information about endogenous variables
forecast describe endogenous

All the above
forecast describe

225

226 forecast describe — Describe features of the forecast model

Syntax

Describe the current forecast model

forecast describe
[
, options

]
Describe particular aspects of the current forecast model

forecast describe aspect
[
, options

]
aspect Description

estimates estimation results
coefvector coefficient vectors
identity identities
exogenous declared exogenous variables
adjust adjustments to endogenous variables
solve forecast solution information
endogenous all endogenous variables

options Description

brief provide a one-line summary
∗detail provide more-detailed information

∗ Specifying detail provides no additional information with aspects exogenous, endogenous, and solve.

Options
brief requests that forecast describe produce a one-sentence summary of the aspect specified.

For example, forecast describe exogenous, brief will tell you just the current forecast
model’s name and the number of exogenous variables in the model.

detail requests a more-detailed description of the aspect specified. For example, typing forecast
describe estimates lists all the estimation results added to the model using forecast esti-
mates, the estimation commands used, and the number of left-hand-side variables in each estimation
result. When you specify forecast describe estimates, detail, the output includes a list
of all the left-hand-side variables entered with forecast estimates.

Remarks and examples

For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you
have already read that manual entry. forecast describe displays information about the forecast
model currently in memory. You can obtain either all the information at once or information about
individual aspects of your model, whereby we use the word “aspect” to refer to, for example, just
the estimation results, identities, or solution information.

forecast describe — Describe features of the forecast model 227

Example 1

In example 1 of [TS] forecast, we created and forecasted Klein’s (1950) model of the U.S. economy.
Here we obtain information about all the endogenous variables in the model:

. forecast describe endogenous

Forecast model kleinmodel contains 7 endogenous variables:

Variable Source # adjustments

1. c estimates 0
2. i estimates 0
3. wp estimates 0
4. y identity 0
5. p identity 0
6. k identity 0
7. w identity 0

As we mentioned in [TS] forecast, there are seven endogenous variables in this model. Three of those
variables (c, i, and wp) were left-hand-side variables in equations we fitted and added to our forecast
model with forecast estimates. The other four variables were defined by identities added with
forecast identity. The right-hand column of the table indicates that none of our endogenous
variables contains adjustments specified using forecast adjust.

We can obtain more information about the estimated equations in our model using forecast
describe estimates:

. forecast describe estimates, detail

Forecast model kleinmodel contains 1 estimation result:

Estimation
result Command LHS variables

1. klein reg3 c
i

wp

Our model has one estimation result, klein, containing results produced by the reg3 command. If
we had not specified the detail option, forecast describe estimates would have simply stated
the number of left-hand-side variables (3) rather than listing them.

228 forecast describe — Describe features of the forecast model

At the end of example 1 in [TS] forecast, we obtained dynamic forecasts beginning in 1936. Here
we obtain information about the solution:

. forecast describe solve

Forecast model kleinmodel has been solved:

Forecast horizon
Begin 1936
End 1941
Number of periods 6

Forecast variables
Prefix d_
Number of variables 7
Storage type float

Type of forecast Dynamic

Solution
Technique Damped Gauss-Seidel (0.200)
Maximum iterations 500
Tolerance for function values 1.0e-09
Tolerance for function zero (not applicable)

We obtain information about the forecast horizon, how the variables holding our forecasts were
created and stored, and the solution technique used. If we had used the simulate() option with
forecast solve, we would have obtained information about the types of simulations performed and
the variables used to hold the results.

Stored results
When you specify option brief, only a limited number of results are stored. In the tables

below, a superscript B indicates results that are available even after brief is specified. forecast
coefvector saves certain results only if detail is specified; these are indicated by superscript D.
Typing forecast describe without specifying an aspect does not return any results.

forecast describe estimates stores the following in r():

Scalars
r(n estimates)B number of estimation results
r(n lhs) number of left-hand-side variables defined by estimation results

Macros
r(model)B name of forecast model, if named
r(lhs) left-hand-side variables
r(estimates) names of estimation results

forecast describe identity stores the following in r():

Scalars
r(n identities)B number of identities

Macros
r(model)B name of forecast model, if named
r(lhs) left-hand-side variables
r(identities) list of identities

forecast describe — Describe features of the forecast model 229

forecast describe coefvector stores the following in r():

Scalars
r(n coefvectors)B number of coefficient vectors
r(n lhs)B number of left-hand-side variables defined by coefficient vectors

Macros
r(model)B name of forecast model, if named
r(lhs) left-hand-side variables
r(rhs)D right-hand-side variables
r(names) names of coefficient vectors
r(Vnames)D names of variance matrices (“.” if not specified)
r(Enames)D names of error variance matrices (“.” if not specified)

forecast describe exogenous stores the following in r():

Scalars
r(n exogenous)B number of declared exogenous variables

Macros
r(model)B name of forecast model, if named
r(exogenous) declared exogenous variables

forecast describe endogenous stores the following in r():

Scalars
r(n endogenous)B number of endogenous variables

Macros
r(model)B name of forecast model, if named
r(varlist) endogenous variables
r(source list) sources of endogenous variables (estimates, identity, coefvector)
r(adjust cnt) number of adjustments per endogenous variable

forecast describe solve stores the following in r():

Scalars
r(periods) number of periods forecast per panel
r(Npanels) number of panels forecast
r(Nvar) number of forecast variables
r(damping) damping parameter for damped Gauss–Seidel
r(maxiter) maximum number of iterations
r(vtolerance) tolerance for forecast values
r(ztolerance) tolerance for function zero
r(sim nreps) number of simulations

Macros
r(solved)B solved, if the model has been solved
r(model)B name of forecast model, if named
r(actuals) actuals, if specified with forecast solve
r(double) double, if specified with forecast solve
r(static) static, if specified with forecast solve
r(begin) first period in forecast horizon
r(end) last period in forecast horizon
r(technique) solver technique
r(sim technique) specified sim technique
r(prefix) forecast variable prefix
r(suffix) forecast variable suffix
r(sim prefix i) ith simulation statistic prefix
r(sim suffix i) ith simulation statistic suffix
r(sim stat i) ith simulation statistic

230 forecast describe — Describe features of the forecast model

forecast describe adjust stores the following in r():

Scalars
r(n adjustments)B total number of adjustments
r(n adjust vars)B number of variables with adjustments

Macros
r(model)B name of forecast model, if named
r(varlist) variables with adjustments
r(adjust cnt) number of adjustments per endogenous variable
r(adjust list) list of adjustments

Reference
Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast list — List forecast commands composing current model

Title

forecast drop — Drop forecast variables

Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description

forecast drop drops variables previously created by forecast solve.

Quick start
Remove all variables created by forecast solve from the current dataset

forecast drop

Remove only forecast variables starting with f

forecast drop, prefix(f)

Remove only forecast variables ending with f

forecast drop, suffix(_f)

Syntax
forecast drop

[
, options

]
options Description

∗prefix(string) specify prefix for forecast variables
∗suffix(string) specify suffix for forecast variables

∗ You can specify prefix() or suffix() but not both.

Options
prefix(string) and suffix(string) specify either a name prefix or a name suffix that will be used to

identify forecast variables to be dropped. You may specify prefix() or suffix() but not both.
By default, forecast drop removes all forecast variables produced by the previous invocation
of forecast solve.

Suppose, however, that you previously specified the simulate() option with forecast solve
and wish to remove variables containing simulation results but retain the variables containing the
point forecasts. Then you can use the prefix() or suffix() option to identify the simulation
variables you want dropped.

231

232 forecast drop — Drop forecast variables

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast drop safely removes variables previously created
using forecast solve. Say you previously solved your model and created forecast variables that
were suffixed with f. Do not type

. drop *_f

to remove those variables from the dataset. Rather, type

. forecast drop

The former command is dangerous: Suppose you were given the dataset and asked to produce the
forecast. The person who previously worked with the dataset created other variables that ended with
f. Using drop would remove those variables as well. forecast drop removes only those variables

that were previously created by forecast solve based on the model in memory.

If you do not specify any options, forecast drop removes all the forecast variables created by
the current model, including the variables that contain the point forecasts as well as any variables
that contain simulation results specified by the simulate() option with forecast solve. Suppose
you had typed

. forecast solve, prefix(s_) simulate(betas, statistic(stddev, prefix(sd_)))

Then if you type

. forecast drop, prefix(sd_)

forecast drop will remove the variables containing the standard deviations of the forecasts and
will leave the variables containing the point forecasts (prefixed with s) untouched.

forecast drop does not exit with an error if a variable it intends to drop does not exist in the
dataset.

Stored results
forecast drop stores the following in r():

Scalars
r(n dropped) number of variables dropped

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast solve — Obtain static and dynamic forecasts

Title

forecast estimates — Add estimation results to a forecast model

Description Quick start Syntax Options Remarks and examples References
Also see

Description

forecast estimates adds estimation results to the forecast model currently in memory. You
must first create a new model using forecast create before you can add estimation results with
forecast estimates. After estimating the parameters of an equation or set of equations, you must
use estimates store to store the estimation results in memory or use estimates save to save
them on disk before adding them to the model.

Quick start
Add estimation results stored in myestimates to the forecast model in memory

forecast estimates myestimates

As above, but specify the prediction produced by predict, pr outcome(#1)

forecast estimates myestimates, predict("pr outcome(#1)")

Add estimates from var estimation stored in memory as varest

forecast estimates varest

Also add the second estimation result saved on disk as notcurrent.ster to the forecast model
forecast estimates using notcurrent, number(2)

233

234 forecast estimates — Add estimation results to a forecast model

Syntax
Add estimation result currently in memory to model

forecast estimates name
[
, options

]
name is the name of a stored estimation result; see [R] estimates store.

Add estimation result currently saved on disk to model

forecast estimates using filename
[
, number(#) options

]
filename is an estimation results file created by estimates save; see [R] estimates save. If no file

extension is specified, .ster is assumed.

options Description

predict(p options) call predict using p options
names(namelist

[
, replace

]
) use namelist for names of left-hand-side variables

advise advise whether estimation results can be dropped from memory

Options

predict(p options) specifies the predict options to use when predicting the dependent variables.
For a single-equation estimation command, you simply specify the appropriate options to pass to
predict. If multiple options are required, enclose them in quotation marks:

. forecast estimates ..., predict("pr outcome(#1)")

For a multiple-equation estimation command, you can either specify one set of options that will
be applied to all equations or specify p options, where p is the number of endogenous variables
being added. If multiple options are required for each equation, enclose each equation’s options
in quotes:

. forecast estimates ..., predict("pr eq(#1)" "pr eq(#2)")

If you do not specify the eq() option for any of the equations, forecast automatically includes
it for you.

If you are adding results from a linear estimation command that forecast recognizes as one
whose predictions can be calculated as x′tβ, do not specify the predict() option, because this
will slow forecast’s computation time substantially. Use the advise option to determine whether
forecast needs to call predict.

If you do not specify any predict options, forecast uses the default type of prediction for the
command whose results are being added.

names(namelist
[
, replace

]
) instructs forecast estimates to use namelist as the names of the

left-hand-side variables in the estimation result being added. You must use this option if any of
the left-hand-side variables contains time-series operators. By default, forecast estimates uses
the names stored in the e(depvar) macro of the results being added.

forecast estimates creates a new variable in the dataset for each element of namelist. If a
variable of the same name already exists in your dataset, forecast estimates exits with an
error unless you specify the replace option, in which case existing variables are overwritten.

forecast estimates — Add estimation results to a forecast model 235

advise requests that forecast estimates report a message indicating whether the estimation
results being added can be removed from memory. This option is useful if you expect your model
to contain more than 300 sets of estimation results, the maximum number that Stata allows you to
store in memory; see [R] limits. This option also provides an indication of the speed with which
the model can be solved: forecast executes much more slowly with estimation results that must
remain in memory.

number(#), for use with forecast estimates using, specifies that the #th set of estimation results
from filename be loaded. This assumes that multiple sets of estimation results have been saved
in filename. The default is number(1). See [R] estimates save for more information on saving
multiple sets of estimation results in a single file.

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast estimates adds stochastic equations previously fit
by Stata estimation commands to a forecast model.

Remarks are presented under the following headings:

Introduction
The advise option
Using saved estimation results
The predict option
Forecasting with ARIMA models

Introduction

After you fit an equation that will become a part of your model, you must use either estimates
store to store the estimation results in memory or estimates save to save the estimation results
to disk. Then you can use forecast estimates to add that equation to your model.

We usually refer to “equation” in the singular, but of course, you can also use a multiple-equation
estimation command to fit several equations at once and add them to the model. When we discuss
adding a stochastic equation to a model, we really mean adding a single estimation result.

In this discussion, we also need to make a distinction between making a forecast and obtaining a
prediction. We use the word “predict” to refer to the process of obtaining a fitted value for a single
equation, just as you can use the predict command to obtain fitted values, residuals, or other statistics
after fitting a model with an estimation command. We use the word “forecast” to mean finding a
solution to the complete set of equations that compose the forecast model. The iterative techniques
we use to solve the model and produce forecasts require that we be able to obtain predictions from
each of the equations in the model.

Example 1: A simple example

Here we illustrate how to add estimation results from a regression model in which none of
the left-hand-side variables contains time-series operators or mathematical transformations. We use
quietly with the estimation command because the output is not relevant here. We type

236 forecast estimates — Add estimation results to a forecast model

. use http://www.stata-press.com/data/r14/klein2

. quietly reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g)

. estimates store klein

. forecast create kleinmodel
Forecast model kleinmodel started.

. forecast estimates klein
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

forecast estimates indicated that three endogenous variables were added to the forecast model.
That is because we specified three equations in our call to reg3. As we mentioned in example 1 in
[TS] forecast, the endog() option of reg3 has no bearing on forecast. All that matters are the
three left-hand-side variables.

Technical note
When you add an estimation result to your forecast model, forecast looks at the macro e(depvar)

to determine the endogenous variables being added. If that macro is empty, forecast tries a few
other macros to account for nonstandard commands. The number of endogenous variables being added
to the model is based on the number of words found in the macro containing the dependent variables.

You can fit equations with the D. and S. first- and seasonal-difference time-series operators
adorning the left-hand-side variables, but in those cases, when you add the equations to the model,
you must use the names() option of forecast estimates. When you specify names(namelist),
forecast estimates uses namelist as the names of the newly declared endogenous variables and
ignores what is in e(depvar). Moreover, forecast does not automatically “undo” the operators on
left-hand-side variables. For example, you might fit a regression with D.x as the regressand and then
add it to the model using forecast estimates . . ., name(Dx). In that case, forecast will solve
the model in terms of Dx. You must add an identity to convert Dx to the corresponding level variable
x, as the next example illustrates.

Of course, you are free to use the D., S., and L. time-series operators on endogenous variables
when they appear on the right-hand sides of equations. It is only when D. or S. appears on the
left-hand side that you must use the names() option to provide alternative names for them. You
cannot add equations to models for which the L. operator appears on left-hand-side variables. You
cannot use the F. forward operator anywhere in forecast models.

Example 2: Differenced and log-transformed dependent variables

Consider the following model:

D.logC = β10 + β11D.logW + β12D.logY + u1t (1)

logW = β20 + β21L.logW + β22M + β23logY + β24logC + u2t (2)

Here logY and M are exogenous variables, so we will assume they are filled in over the forecast
horizon before solving the model. Ultimately, we are interested in forecasting C and W. However,
the first equation is specified in terms of changes in the logarithm of C, and the second equation is
specified in terms of the logarithm of W.

forecast estimates — Add estimation results to a forecast model 237

We will refer to variables and transformations like logC, D.logC, and C as “related” variables
because they are related to one another by simple mathematical functions. Including the related
variables, we in fact have a five-equation model with two stochastic equations and three identities:

dlogC = β10 + β11D.logW + β12D.logY + u1t

logC = L.logC + dlogC

C = exp(logC)

logW = β20 + β21L.logW + β22M + β23logY + β24logC + u2t

W = exp(logW)

To fit (1) and (2) in Stata and create a forecast model, we type

. use http://www.stata-press.com/data/r14/fcestimates, clear
(1978 Automobile Data)

. quietly regress D.logC D.logW D.logY

. estimates store dlogceq

. quietly regress logW L.logW M logY logC

. estimates store logweq

. forecast create cwmodel, replace
(Forecast model kleinmodel ended.)
Forecast model cwmodel started.

. forecast estimates dlogceq, names(dlogC)
Added estimation results from regress.
Forecast model cwmodel now contains 1 endogenous variable.

. forecast identity logC = L.logC + dlogC
Forecast model cwmodel now contains 2 endogenous variables.

. forecast identity C = exp(logC)
Forecast model cwmodel now contains 3 endogenous variables.

. forecast estimates logweq
Added estimation results from regress.
Forecast model cwmodel now contains 4 endogenous variables.

. forecast identity W = exp(logW)
Forecast model cwmodel now contains 5 endogenous variables.

Because the left-hand-side variable in (1) contains a time-series operator, we had to use the names()
option of forecast estimates when adding that equation’s estimation results to our forecast model.
Here we named this endogenous variable dlogC. We then added the other four equations to our
model. In general, when we have a set of related variables, we prefer to specify the identities right
after we add the stochastic equation so that we do not forget about them.

Technical note
In the previous example, we “undid” the log-transformations by simply exponentiating the logarith-

mic variable. However, that is only an approximation that does not work well in many applications.
Suppose we fit the linear regression model

ln yt = x′tβ+ ut

238 forecast estimates — Add estimation results to a forecast model

where ut is a zero-mean regression error term. Then E(yt|xt) = exp(x′tβ)×E{ exp(ut)}. Although
E(ut) = 0, Jensen’s inequality suggests that E{ exp(ut)} 6= 1, implying that we cannot predict yt
by simply taking the exponential of the linear prediction x′tβ.

If we assume that ut ∼ N(0, σ2), then E{ exp(ut)} = exp(σ2/2). Moreover, many estimation
commands like regress provide an estimate σ̂2 of σ2, so for regression models that contain a
logarithmic dependent variable, we can obtain better forecasts for the dependent variable in levels if
we approximate E{ exp(ut)} as exp(σ̂2/2). Suppose we run the regression

. regress lny x1 x2 x3

. estimates store myreg

then we could add lny and y as endogenous variables like this:

. forecast estimates lny

. forecast identity y = exp(lny)*‘=e(rmse)^2 / 2’

In the second command, Stata will first evaluate the expression ‘=e(rmse)^2 / 2’ and replace it with
its numerical value. After regress, the macro e(rmse) contains the square root of the estimate of
σ̂2, so the value of this expression will be our estimate of E{ exp(ut)}. Then forecast will forecast
y as the product of this number and exp(lny). Here we had to use a macro expression including
an equals sign to force Stata to evaluate the expression immediately and obtain the expression’s
value. Identities are not associated with estimation results, so as soon as we used another estimation
command or restored some other estimation results (perhaps unknowingly by invoking forecast
solve), our reference to e(rmse) would no longer be meaningful. See [U] 18.3.8 Macro expressions
for more information on macro evaluation.

Another alternative would be to use Duan’s (1983) smearing technique. Stata code for this is
provided in Cameron and Trivedi (2010).

A third alternative is to use the generalized linear model (GLM) as implemented by the glm
command with a log-link function. In a GLM framework, we would be modeling ln {E(yt)} rather
than E { ln(yt)} because we would be using regress, but oftentimes, the two quantities are similar.
Moreover, obtaining predicted values for yt in the GLM does not present the transformation problem as
happens with linear regression. The forecast commands contain special code to handle estimation
results obtained by using glm with the link(log) option, and you do not need to specify an identity
to obtain y as a function of lny. All you would need to do is

. glm y x1 x2 x3, link(log)

. estimates store myglm

. forecast estimates myglm

The advise option

To produce forecasts from your model, forecast must be able to obtain predictions for each
estimation result that you have added. For many of the most commonly used estimation commands such
as regress, ivregress, and var, forecast includes special code to quickly obtain these predictions.
For estimation commands that either require more involved computations to obtain predictions or
are not widely used in forecasting, forecast instead relies on the predict command to obtain
predictions.

The advise option of forecast estimates advises you as to whether forecast includes the
special code to obtain fast predictions for the command whose estimation results are being added
to the model. For example, here we use advise with forecast estimates when building the
Klein (1950) model.

forecast estimates — Add estimation results to a forecast model 239

Example 3: Using the advise option

. use http://www.stata-press.com/data/r14/klein2, clear

. quietly reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g)

. estimates store klein

. forecast create kleinmodel, replace
(Forecast model cwmodel ended.)
Forecast model kleinmodel started.

. forecast estimates klein, advise
(These estimation results are no longer needed; you can drop them.)
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

After we typed forecast estimates, Stata advised us that “[t]hese estimation results are no longer
needed; you can drop them”. That means forecast includes code to obtain predictions from reg3
without having to call predict. forecast has recorded all the information it needs about the
estimation results stored in klein, and we could type

. estimates drop klein

to remove those estimates from memory.

For relatively small models, there is no need to use estimates drop to remove estimation results
from memory. However, Stata allows no more than 300 sets of estimation results to be in memory
at once, and forecast solve requires estimation results to be in memory (and not merely saved
on disk) before it can produce forecasts. For very large models in which that limit may bind, you
can use the advise option to determine which estimation results are needed to solve the model and
which can be dropped.

Suppose we had estimation results from a command for which forecast must call predict to
obtain predictions. Then instead of obtaining the note saying the estimation results were no longer
needed, we would obtain a note stating

. forecast estimates IUsePredict
(These estimation results are needed to solve the model.)

In that case, the estimation results would need to be in memory before calling forecast solve.

The advise option also provides an indication of how quickly forecasts can be produced from
the model. Models for which forecast never needs to call predict can be solved much more
quickly than models that include equations for which forecast must restore estimation results and
call predict to obtain predictions.

Using saved estimation results

Stata’s estimates commands allow you to save estimation results to disk so that they are available
in subsequent Stata sessions. You can use the using option of forecast estimates to use estimation
results saved on disk without having to first call estimates use. In fact, estimates use can even
retrieve estimation results stored on a website, as the next example demonstrates.

240 forecast estimates — Add estimation results to a forecast model

Example 4: Adding saved estimation results

The file klein.ster contains the estimation results produced by reg3 for the three stochastic
equations of Klein’s (1950) model. That file is stored on the Stata Press website in the same location
as the example datasets. Here we create a forecast model and add those results:

. use http://www.stata-press.com/data/r14/klein2

. forecast create example4, replace
(Forecast model kleinmodel ended.)
Forecast model example4 started.

. forecast estimates using http://www.stata-press.com/data/r14/klein
Added estimation results from reg3.
Forecast model example4 now contains 3 endogenous variables.

If you do not specify a file extension, forecast estimates assumes the file ends in .ster. You
are more likely to save your estimation results on your computer’s disk drive rather than a web server,
but in either case, this example shows that you can fit equations in one session of Stata, save the
results to disk, and then build your forecast model later.

The estimates save command allows you to save multiple estimation results to the same file and
numbers them sequentially starting at 1. You can use the number() option of forecast estimates
using to specify which set of estimation results from the specified file you wish to add to the forecast
model. If you do not specify number(), forecast estimates using uses the first set of results.

When you use forecast estimates using, forecast loads the estimation results from disk
and stores them in memory using a temporary name. Later, when you proceed to solve your model,
forecast checks to see whether those estimation results are still in memory. If not, it will attempt
to reload them from the file you had specified. You should therefore not move or rename estimation
result files between the time you add them to your model and the time you solve the model.

The predict option

As we mentioned while discussing the advise option, the forecast commands include code
to quickly obtain predictions from some of the most commonly used commands, while they use
predict to obtain predictions from other estimation commands. When you add estimation results
that require forecast to use predict, by default, forecast assumes that it can pass the option
xb on to predict to obtain the appropriate predicted values. You use the predict() option of
forecast estimates to specify the option that predict must use to obtain predicted values from
the estimates being added.

For example, suppose you used tobit to fit an equation whose dependent variable is left-censored
at zero and then stored the estimation results under the name tobitreg. When solving the model,
you want to use the predicted values of the left-truncated mean, the expected value of the dependent
variable conditional on its being greater than zero. Looking at the Syntax for predict in [R] tobit
postestimation, we see that the appropriate option we must pass to predict is e(0,.). To add this
estimation result to an existing forecast model, we would therefore type

. forecast estimates tobitreg, predict(e(0,.))

Now, whenever forecast calls predict with those estimation results, it will pass the option e(0,.)
so that we obtain the appropriate predictions. If you are adding results from a multiple-equation
estimation command with k dependent variables, then you must specify k predict options within
the predict() option, separated by spaces.

forecast estimates — Add estimation results to a forecast model 241

Forecasting with ARIMA models

Practitioners often use ARIMA models to forecast some of the variables in their models, and you
can certainly use estimation results produced by commands such as arima with forecast. There are
just two rules to follow when using commands that use the Kalman filter to obtain predictions. First,
do not specify the predict() option with forecast estimates. The forecast commands know
how to handle these estimators automatically. Second, as we stated earlier, the forecast commands
do not “undo” any time-series operators that may adorn the left-hand-side variables of estimation
results, so you must use forecast identity to specify identities to recover the underlying variables
in levels.

Example 5: An ARIMA model with first- and seasonal-differencing

wpi1.dta contains quarterly observations on the variable wpi. First, let’s fit a multiplicative
seasonal ARIMA model with both first- and seasonal-difference operators applied to the dependent
variable and store the estimation results:

. use http://www.stata-press.com/data/r14/wpi1

. arima wpi, arima(1, 1, 1) sarima(1, 1, 1, 4)
(output omitted)

. estimates store arima

(For details on fitting seasonal ARIMA models, see [TS] arima).

With the difference operators used here, when forecast calls predict, it will obtain predictions
in terms of DS4.wpi. Using the definitions of time-series operators in [TS] tsset, we have

DS4.wpit = (wpit − wpit−4)− (wpit−1 − wpit−5)

so that
wpit = DS4.wpit + wpit−4 + (wpit−1 − wpit−5)

Because our arima results include a dependent variable with time-series operators, we must use the
name() option of forecast estimates to specify an alternative variable name. We will name ours
ds4wpi. Then we can specify an identity by using the previous equation to recover our forecasts in
terms of wpi. We type

. forecast create arimaexample, replace
(Forecast model example4 ended.)
Forecast model arimaexample started.

. forecast estimates arima, name(ds4wpi)
Added estimation results from arima.
Forecast model arimaexample now contains 1 endogenous variable.

. forecast identity wpi = ds4wpi + L4.wpi + (L.wpi - L5.wpi)
Forecast model arimaexample now contains 2 endogenous variables.

242 forecast estimates — Add estimation results to a forecast model

. forecast solve, begin(tq(1988q1))

Computing dynamic forecasts for model arimaexample.

Starting period: 1988q1
Ending period: 1990q4
Forecast prefix: f_

1988q1:
1988q2:
1988q3:

(output omitted)
1990q4:

Forecast 2 variables spanning 12 periods.

Because our entire forecast model consists of a single equation fit by arima, we can also call predict
to obtain forecasts:

. predict a_wpi, y dynamic(tq(1988q1))
(5 missing values generated)

. list t f_wpi a_wpi in -5/l

t f_wpi a_wpi

120. 1989q4 110.2182 110.2182
121. 1990q1 111.6782 111.6782
122. 1990q2 112.9945 112.9945
123. 1990q3 114.3281 114.3281
124. 1990q4 115.5142 115.5142

Looking at the last few observations in the dataset, we see that the forecasts produced by forecast
(f wpi) match those produced by predict (a wpi). Of course, the advantage of forecast is that
we can combine multiple sets of estimation results and obtain forecasts for an entire system of
equations.

Technical note
Do not add estimation results to your forecast model that you have stored after calling an estimation

command with the by: prefix. The stored estimation results will contain information from only the
last group on which the estimation command was executed. forecast will then use those results for
all observations in the forecast horizon regardless of the value of the group variable you specified
with by:.

References
Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.

Duan, N. 1983. Smearing estimate: A nonparametric retransformation method. Journal of the American Statistical
Association 78: 605–610.

Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

http://www.stata-press.com/books/musr.html

forecast estimates — Add estimation results to a forecast model 243

Also see
[TS] forecast — Econometric model forecasting

[R] estimates — Save and manipulate estimation results

[R] predict — Obtain predictions, residuals, etc., after estimation

Title

forecast exogenous — Declare exogenous variables

Description Syntax Remarks and examples Also see

Description
forecast exogenous declares exogenous variables in the current forecast model.

Syntax
forecast exogenous varlist

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast exogenous declares exogenous variables in your
forecast model.

Before you can solve your model, all the exogenous variables must be filled in with nonmissing
values over the entire forecast horizon. When you use forecast solve, Stata first checks your
exogenous variables and exits with an error message if any of them contains missing values for any
periods being forecast. When you assemble a large model with many variables, it is easy to forget
some variables and then have problems obtaining forecasts. forecast exogenous provides you with
a mechanism to explicitly declare the exogenous variables in your model so that you do not forget
about them.

Declaring exogenous variables with forecast exogenous is not explicitly necessary, but we
nevertheless strongly encourage doing so. Stata can check the exogenous variables before solving the
model and issue an appropriate error message if missing values are found, whereas troubleshooting
models for which forecasting failed is more difficult after the fact.

Example 1

Here we fit a simple single-equation dynamic model with two exogenous variables, x1 and x2:

. use http://www.stata-press.com/data/r14/forecastex1

. quietly regress y L.y x1 x2

. estimates store exregression

. forecast create myexample
Forecast model myexample started.

. forecast estimates exregression
Added estimation results from regress.
Forecast model myexample now contains 1 endogenous variable.

. forecast exogenous x1
Forecast model myexample now contains 1 declared exogenous variable.

. forecast exogenous x2
Forecast model myexample now contains 2 declared exogenous variables.

244

forecast exogenous — Declare exogenous variables 245

Instead of using forecast exogenous twice, we could have instead typed

. forecast exogenous x1 x2

Also see
[TS] forecast — Econometric model forecasting

Title

forecast identity — Add an identity to a forecast model

Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description

forecast identity adds an identity to the forecast model currently in memory. You must
first create a new model using forecast create before you can add an identity with forecast
identity. An identity is a nonstochastic equation that expresses an endogenous variable in the model
as a function of other variables in the model. Identities often describe the behavior of endogenous
variables that are based on accounting identities or adding-up conditions.

Quick start
Add an identity to the forecast that states that y3 is the sum of y1 and y2

forecast identity y3=y1+y2

As above, and create new variable newy before adding it to the forecast
forecast identity newy=y1+y2, generate

Syntax
forecast identity varname = exp

[
, options

]
options Description

generate create new variable varname
∗double store new variable as a double instead of as a float

varname is the name of an endogenous variable to be added to the forecast model.
∗ You can only specify double if you also specify generate.

Options
generate specifies that the new variable varname be created equal to exp for all observations in the

current dataset.

double, for use in conjunction with the generate option, requests that the new variable be created
as a double instead of as a float. See [D] data types.

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast identity specifies a nonstochastic equation that
determines the value of an endogenous variable in the model. When you type

. forecast identity varname = exp

246

forecast identity — Add an identity to a forecast model 247

forecast identity registers varname as an endogenous variable in your forecast model that is
equal to exp, where exp is a valid Stata expression that is typically a function of other endogenous
variables and exogenous variables in your model and perhaps lagged values of varname as well.
forecast identity was used in all the examples in [TS] forecast.

Example 1: Variables with constant growth rates

Some models contain variables that you are willing to assume will grow at a constant rate throughout
the forecast horizon. For example, say we have a model using annual data and want to assume that
our population variable pop grows at 0.75% per year. Then we can declare endogenous variable pop
by using forecast identity:

. forecast identity pop = 1.0075*L.pop

Typically, you use forecast identity to define the relationship that determines an endogenous
variable that is already in your dataset. For example, in example 1 of [TS] forecast, we used forecast
identity to define total wages as the sum of government and private-sector wages, and the total
wage variable already existed in our dataset.

The generate option of forecast identity is useful when you wish to use a transformation of
one or more endogenous variables as a right-hand-side variable in a stochastic equation that describes
another endogenous variable. For example, say you want to use regress to model variable y as
a function of the ratio of two endogenous variables, u and w, as well as other covariates. Without
the generate option of forecast identity, you would have to define the variable y = u/w
twice: first, you would have to use the generate command to create the variable before fitting your
regression model, and then you would have to use forecast identity to add an identity to your
forecast model to define y in terms of u and w. Assuming you have already created your forecast
model, the generate option allows you to define the ratio variable just once, before you fit the
regression equation. In this example, the ratio variable is easy enough to specify twice, but it is very
easy to forget to include identities that define regressors used in estimation results while building
large forecast models. In other cases, an endogenous variable may be a more complicated function of
other endogenous variables, so having to specify the function only once reduces the chance for error.

Stored results
forecast identity stores the following in r():

Macros
r(lhs) left-hand-side (endogenous) variable
r(rhs) right-hand side of identity
r(basenames) base names of variables found on right-hand side
r(fullnames) full names of variables found on right-hand side

Also see
[TS] forecast — Econometric model forecasting

Title

forecast list — List forecast commands composing current model

Description Quick start Syntax Options Remarks and examples Reference
Also see

Description

forecast list produces a list of forecast commands that compose the current model.

Quick start
List all forecast commands that compose the current model

forecast list

Save a list of commands to replicate the current forecast model to myforecast.do

forecast list, saving(myforecast)

As above, but save the commands as myforecast.txt

forecast list, saving(myforecast.txt)

Syntax
forecast list

[
, options

]
options Description

saving(filename
[
, replace

]
) save list of commands to file

notrim do not remove extraneous white space

Options

saving(filename
[
, replace

]
) requests that forecast list write the list of commands to disk

with filename. If no extension is specified, .do is assumed. If filename already exists, an error is
issued unless you specify replace, in which case the file is overwritten.

notrim requests that forecast list not remove any extraneous spaces and that commands be
shown exactly as they were originally entered. By default, superfluous white space is removed.

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast list produces a list of all the forecast commands
you would need to enter to re-create the forecast model currently in memory. Unlike using a command
log, forecast list only shows the forecast-related commands but not any estimation command
or other commands you may have issued. If you specify saving(filename), forecast list saves
the list as filename.do, which you can then edit using the Do-file Editor.

248

forecast list — List forecast commands composing current model 249

forecast creates models by accumulating estimation results, identities, and other features that you
add to the model by using various forecast subcommands. Once you add a feature to a model, it
remains a part of the model until you clear the entire model from memory. forecast list provides
a list of all the forecast commands you would need to rebuild the current model.

When building all but the smallest forecast models, you will typically write a do-file to load
your dataset, perhaps call some estimation commands, and issue a sequence of forecast commands
to build and solve your forecast model. There are times, though, when you will type a forecast
command interactively and then later want to undo the command or else wish you had not typed the
command in the first place. forecast list provides the solution.

Suppose you use forecast adjust to perform some policy simulations and then decide you want
to remove those adjustments from the model. forecast list makes this easy to do. You simply
call forecast list with the saving() option to produce a do-file that contains all the forecast
commands issued since the model was created. Then you can edit the do-file to remove the forecast
adjust command, type forecast clear, and run the do-file.

Example 1: Klein’s model

In example 1 of [TS] forecast, we obtained forecasts from Klein’s (1950) macroeconomic model.
If we type forecast list after typing all the commands in that example, we obtain

. forecast list

forecast create kleinmodel
forecast estimates klein
forecast identity y = c + i + g
forecast identity p = y - t - wp
forecast identity k = L.k + i
forecast identity w = wg + wp
forecast exogenous wg
forecast exogenous g
forecast exogenous t
forecast exogenous yr

The forecast solve command is not included in output produced by forecast list because
solving the model does not add any features to the model.

Technical note
To prevent you from accidentally destroying the model in memory, forecast list does not add

the replace option to forecast create even if you specified replace when you originally called
forecast create.

Reference
Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Also see
[TS] forecast — Econometric model forecasting

Title

forecast query — Check whether a forecast model has been started

Description Syntax Remarks and examples Stored results Also see

Description
forecast query issues a message indicating whether a forecast model has been started.

Syntax
forecast query

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. forecast query allows you to check whether a forecast model
has been started. Most users of the forecast commands will not need to use forecast query.
This command is most useful to programmers.

Suppose there is no forecast model in memory:

. forecast query
No forecast model exists.

Now we create a forecast model named fcmodel:

. forecast create fcmodel
Forecast model fcmodel started.

. forecast query
Forecast model fcmodel exists.

Stored results
forecast query stores the following in r():

Scalars
r(found) 1 if model started; 0 otherwise

Macros
r(name) model name

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast describe — Describe features of the forecast model

250

Title

forecast solve — Obtain static and dynamic forecasts

Description Quick start Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

forecast solve computes static or dynamic forecasts based on the model currently in memory.
Before you can solve a model, you must first create a new model using forecast create and add
equations and variables to it using the commands summarized in [TS] forecast.

Quick start
Compute dynamic forecast after forecast create and forecast estimates

forecast solve

As above, but with forecasts starting at 1990q1 and ending at 1995q3
forecast solve, begin(q(1990q1)) end(q(1995q3))

As above, and change prefix of predicted endogenous variables to hat

forecast solve, begin(q(1990q1)) end(q(1995q3)) prefix(hat)

As above, but forecast 11 periods starting at 1990q1
forecast solve, begin(q(1990q1)) prefix(hat) periods(11)

Incorporate forecast uncertainty via simulation and store point forecasts and their standard deviations
in variables prefixed with d and sd

forecast solve, prefix(d_) ///
simulate(betas, statistic(stddev, prefix(sd_)))

251

252 forecast solve — Obtain static and dynamic forecasts

Syntax

forecast solve
[
,
{
prefix(stub) | suffix(stub)

}
options

]
options Description

Model
∗prefix(string) specify prefix for forecast variables
∗suffix(string) specify suffix for forecast variables
begin(time constant) specify period to begin forecasting
†end(time constant) specify period to end forecasting
†periods(#) specify number of periods to forecast
double store forecast variables as doubles instead of as floats
static produce static forecasts instead of dynamic forecasts
actuals use actual values if available instead of forecasts

Simulation

simulate(sim technique, sim statistic sim options)
specify simulation technique and options

Reporting

log(log level) specify level of logging display; log level may be detail,
on, brief, or off

Solver

vtolerance(#) specify tolerance for forecast values
ztolerance(#) specify tolerance for function zero
iterate(#) specify maximum number of iterations
technique(technique) specify solution method; may be dampedgaussseidel #,

gaussseidel, broydenpowell, or newtonraphson

∗ You can specify prefix() or suffix() but not both.
† You can specify end() or periods() but not both.

sim technique Description

betas draw multivariate-normal parameter vectors
errors draw additive errors from multivariate normal distribution
residuals draw additive residuals based on static forecast errors

You can specify one or two sim methods separated by a space, though you cannot specify both errors and residuals.

sim statistic is

statistic(statistic,
{
prefix(string) | suffix(string)

}
)

and may be repeated up to three times.

forecast solve — Obtain static and dynamic forecasts 253

statistic Description

mean record the mean of the simulation forecasts
variance record the variance of the simulation forecasts
stddev record the standard deviation of the simulation forecasts

sim options Description

saving(filename, . . .) save results to file; save statistics in double precision; save results to
filename every # replications

nodots suppress replication dots
reps(#) perform # replications; default is reps(50)

Options

� � �
Model �

prefix(string) and suffix(string) specify a name prefix or suffix that will be used to name the
variables holding the forecast values of the variables in the model. You may specify prefix() or
suffix() but not both. Sometimes, it is more convenient to have all forecast variables start with
the same set of characters, while other times, it is more convenient to have all forecast variables
end with the same set of characters.

If you specify prefix(f), then the forecast values of endogenous variables x, y, and z will be
stored in new variables f x, f y, and f z.

If you specify suffix(g), then the forecast values of endogenous variables x, y, and z will be
stored in new variables x g, y g, and z g.

begin(time constant) requests that forecast begin forecasting at period time constant. By default,
forecast determines when to begin forecasting automatically.

end(time constant) requests that forecast end forecasting at period time constant. By default,
forecast produces forecasts for all periods on or after begin() in the dataset.

periods(#) specifies the number of periods after begin() to forecast. By default, forecast
produces forecasts for all periods on or after begin() in the dataset.

double requests that the forecast and simulation variables be stored in double precision. The default
is to use single-precision floats. See [D] data types for more information.

static requests that static forecasts be produced. Actual values of variables are used wherever
lagged values of the endogenous variables appear in the model. By default, dynamic forecasts are
produced, which use the forecast values of variables wherever lagged values of the endogenous
variables appear in the model. Static forecasts are also called one-step-ahead forecasts.

actuals specifies how nonmissing values of endogenous variables in the forecast horizon are treated.
By default, nonmissing values are ignored, and forecasts are produced for all endogenous variables.
When you specify actuals, forecast sets the forecast values equal to the actual values if they
are nonmissing. The forecasts for the other endogenous variables are then conditional on the known
values of the endogenous variables with nonmissing data.

254 forecast solve — Obtain static and dynamic forecasts

� � �
Simulation �

simulate(sim technique, sim statistic sim options) allows you to simulate your model to obtain
measures of uncertainty surrounding the point forecasts produced by the model. Simulating a
model involves repeatedly solving the model, each time accounting for the uncertainty associated
with the error terms and the estimated coefficient vectors.

sim technique can be betas, errors, or residuals, or you can specify both betas and one of
errors or residuals separated by a space. You cannot specify both errors and residuals.
The sim technique controls how uncertainty is introduced into the model.

sim statistic specifies a summary statistic to summarize the forecasts over all the simulations.
sim statistic takes the form

statistic(statistic, { prefix(string) | suffix(string) })
where statistic may be mean, variance, or stddev. You may specify either the prefix or the
suffix that will be used to name the variables that will contain the requested statistic. You
may specify up to three sim statistics, allowing you to track the mean, variance, and standard
deviations of your forecasts.

sim options include saving(filename,
[

suboptions
]
), nodots, and reps(#).

saving(filename,
[

suboptions
]
) creates a Stata data file (.dta file) consisting of (for each

endogenous variable in the model) a variable containing the simulated values.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals.
By default, they are saved as floats, meaning 4-byte reals.

replace specifies that filename be overwritten if it exists.

every(#) specifies that results be written to disk every #th replication. every() should be
specified only in conjunction with saving() when the command takes a long time for each
replication. This will allow recovery of partial results should some other software crash your
computer. See [P] postfile.

nodots suppresses display of the replication dots. By default, one dot character is displayed for
each successful replication. If during a replication convergence is not achieved, forecast
solve exits with an error message.

reps(#) requests that forecast solve perform # replications; the default is reps(50).

� � �
Reporting �

log(log level) specifies the level of logging provided while solving the model. log level may be
detail, on, brief, or off.

log(detail) provides a detailed iteration log including the current values of the convergence
criteria for each period in each panel (in the case of panel data) for which the model is being
solved.

log(on), the default, provides an iteration log showing the current panel and period for which
the model is being solved as well as a sequence of dots for each period indicating the number of
iterations.

log(brief), when used with a time-series dataset, is equivalent to log(on). When used with a
panel dataset, log(brief) produces an iteration log showing the current panel being solved but
does not show which period within the current panel is being solved.

log(off) requests that no iteration log be produced.

forecast solve — Obtain static and dynamic forecasts 255

� � �
Solver �

vtolerance(#), ztolerance(#), and iterate(#) control when the solver of the system of
equations stops. ztolerance() is ignored if either technique(dampedgaussseidel #) or
technique(gaussseidel) is specified. These options are seldom used. See [M-5] solvenl().

technique(technique) specifies the technique to use to solve the system of equations. technique
may be dampedgaussseidel #, gaussseidel, broydenpowell, or newtonraphson, where
0 < # < 1 specifies the amount of damping with smaller numbers indicating less damping.
The default is technique(dampedgaussseidel 0.2), which works well in most situations.
If you have convergence issues, first try continuing to use dampedgaussseidel # but with a
larger damping factor. Techniques broydenpowell and newtonraphson usually work well, but
because they require the computation of numerical derivatives, they tend to be much slower. See
[M-5] solvenl().

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you

have already read that manual entry. The forecast solve command solves a forecast model in
Stata. Before you can solve a model, you must first create a model using forecast create, and you
must add at least one equation using forecast estimates, forecast coefvector, or forecast
identity. We covered the most commonly used options of forecast solve in the examples in
[TS] forecast.

Here we focus on two sets of options that are available with forecast solve. First, we discuss
the actuals option, which allows you to obtain forecasts conditional on prespecified values for one
or more of the endogenous variables. Then we focus on performing simulations to obtain estimates
of uncertainty around the point forecasts.

Remarks are presented under the following headings:

Performing conditional forecasts
Using simulations to measure forecast accuracy

Performing conditional forecasts

Sometimes, you already know the values of some of the endogenous variables in the forecast
horizon and would like to obtain forecasts for the remaining endogenous variables conditional on
those known values. Other times, you may not know the values but would nevertheless like to specify
a path for some endogenous variables and see how the others would evolve conditional on that path.
To accomplish these types of exercises, you can use the actuals option of forecast solve.

Example 1: Specifying alternative scenarios

gdpoil.dta contains quarterly data on the annualized growth rate of GDP and the percentage
change in the quarterly average price of oil through the end of 2007. We want to explore how GDP
would have evolved if the price of oil had risen 10% in each of the first three quarters of 2008 and
then held steady for several years. We will use a bivariate vector autoregression (VAR) to forecast the
variables gdp and oil. Results obtained from the varsoc command indicate that the Hannan–Quinn
information criterion is minimized when the VAR includes two lags. First, we fit our VAR model and
store the estimation results:

256 forecast solve — Obtain static and dynamic forecasts

. use http://www.stata-press.com/data/r14/gdpoil

. var gdp oil, lags(1 2)

Vector autoregression

Sample: 1986q4 - 2007q4 Number of obs = 85
Log likelihood = -500.0749 AIC = 12.00176
FPE = 559.0724 HQIC = 12.11735
Det(Sigma_ml) = 441.7362 SBIC = 12.28913

Equation Parms RMSE R-sq chi2 P>chi2

gdp 5 1.88516 0.1820 18.91318 0.0008
oil 5 11.8776 0.1140 10.93614 0.0273

Coef. Std. Err. z P>|z| [95% Conf. Interval]

gdp
gdp
L1. .1498285 .1015076 1.48 0.140 -.0491227 .3487797
L2. .3465238 .1022446 3.39 0.001 .146128 .5469196

oil
L1. -.0374609 .0167968 -2.23 0.026 -.070382 -.0045399
L2. .0119564 .0164599 0.73 0.468 -.0203043 .0442172

_cons 1.519983 .4288145 3.54 0.000 .6795226 2.360444

oil
gdp
L1. .8102233 .6395579 1.27 0.205 -.4432871 2.063734
L2. 1.090244 .6442017 1.69 0.091 -.1723684 2.352856

oil
L1. .0995271 .1058295 0.94 0.347 -.1078949 .3069491
L2. -.1870052 .103707 -1.80 0.071 -.3902672 .0162568

_cons -4.041859 2.701785 -1.50 0.135 -9.33726 1.253543

. estimates store var

The dataset ends in the fourth quarter of 2007, so before we can produce forecasts for 2008 and
beyond, we need to extend our dataset. We can do that using the tsappend command. Here we
extend our dataset three years:

. tsappend, add(12)

forecast solve — Obtain static and dynamic forecasts 257

Now we can create a forecast model and obtain baseline forecasts:

. forecast create oilmodel
Forecast model oilmodel started.

. forecast estimates var
Added estimation results from var.
Forecast model oilmodel now contains 2 endogenous variables.

. forecast solve, prefix(bl_)

Computing dynamic forecasts for model oilmodel.

Starting period: 2008q1
Ending period: 2010q4
Forecast prefix: bl_

2008q1:
(output omitted)

2010q4:

Forecast 2 variables spanning 12 periods.

To see how GDP evolves if oil prices increase 10% in each of the first three quarters of 2008
and then remain flat, we need to obtain a forecast for gdp conditional on a specified path for
oil. The actuals option of forecast solve will do that for us. With the actuals option, if an
endogenous variable contains a nonmissing value for the period currently being forecast, forecast
solve will use that value as the forecast, overriding whatever value might be produced by that
variable’s underlying estimation result or identity. Then the endogenous variables with missing values
will be forecast conditional on the endogenous variables that do have valid data. Here we fill in oil
with our hypothesized price path:

. replace oil = 10 if qdate == tq(2008q1)
(1 real change made)

. replace oil = 10 if qdate == tq(2008q2)
(1 real change made)

. replace oil = 10 if qdate == tq(2008q3)
(1 real change made)

. replace oil = 0 if qdate > tq(2008q3)
(9 real changes made)

Now we obtain forecasts conditional on our oil variable. We will use the prefix alt for these
forecast variables:

. forecast solve, prefix(alt_) actuals

Computing dynamic forecasts for model oilmodel.

Starting period: 2008q1
Ending period: 2010q4
Forecast prefix: alt_

2008q1:
(output omitted)

2010q4:

Forecast 2 variables spanning 12 periods.
Forecasts used actual values if available.

258 forecast solve — Obtain static and dynamic forecasts

Finally, we make a variable containing the difference between our alternative and our baseline gdp
forecasts and graph it:

. generate diff_gdp = alt_gdp - bl_gdp

−
.4

−
.3

−
.2

−
.1

0
.1

C
h

a
n

g
e

 i
n

 A
n

n
u

a
liz

e
d

 G
D

P
 G

ro
w

th

0 4 8 12
Quarters since shock

Assumes oil increases 10% for 3 quarters, then holds steady

Oil’s Effect on GDP

Our model indicates GDP growth would be about 0.4% less in the second through fourth quarters of
2008 than it would otherwise be, but would be mostly unaffected thereafter if oil prices followed our
hypothetical path. The one-quarter lag in the response of GDP is due to our using a VAR model. In
our VAR model, lagged values of oil predict the current value of gdp, but the current value of oil
does not.

Technical note
The previous example allowed us to demonstrate forecast solve’s actuals option, but in fact

measuring the economy’s response to oil shocks is much more difficult than our simple VAR analysis
would suggest. One obvious complication is that positive and negative oil price shocks do not have
symmetric effects on the economy. In our simple model, if a 50% increase in oil prices lowers GDP
by x%, then a 50% decrease in oil prices must raise GDP by x%. However, a 50% decrease in oil
prices is perhaps more likely to portend weakness in the economy rather than an imminent growth
spurt. See, for example, Hamilton (2003) and Kilian and Vigfusson (2013).

Another way to specify alternative scenarios for your forecasts is to use the forecast adjust
command. That command is more flexible in the types of manipulations you can perform on endogenous
variables but, depending on the task at hand, may involve more effort. The actuals option of the
forecast solve and the forecast adjust commands are complementary. There is much overlap
in what you can achieve; in some situations, specifying the actuals option will be easier, while in
other situations, using adjustments via forecast adjust will prove to be easier.

forecast solve — Obtain static and dynamic forecasts 259

Using simulations to measure forecast accuracy

To motivate the discussion, we will focus on the simple linear regression model. Even though
forecast can handle models with many equations with equal ease, all the issues that arise can be
illustrated with one equation. Suppose we have the following relationship between variables y and
x:

yt = α+ βxt + εt (1)

where εt is a zero-mean error term. Say we fit (1) by ordinary least squares (OLS) using observations
1, . . . , T and obtain the point estimates α̂ and β̂. Assuming we have data for exogenous variable x
at time T + 1, we could forecast yT+1 as

ŷT+1 = α̂+ β̂xT+1 (2)

However, there are several factors that prevent us from guaranteeing ex ante that yT+1 will indeed
equal ŷT+1. We must assume that (1) specifies the correct relationship between y and x. Even if that
relationship held for times 1 through T , are we sure it will hold at time T + 1? Uncertainty due to
issues like that are inherent to the type of forecasting that the forecast commands are designed for.
Here we discuss two additional sources of uncertainty that forecast solve can help you measure.

First, we estimated α and β by OLS to obtain α̂ and β̂, but we must emphasize the word estimated.
Our estimates are subject to sampling error. When you fit a regression using regress or any other
estimation command, Stata presents not just the point estimates of the parameters but also the standard
errors and confidence intervals representing the level of uncertainty surrounding those point estimates.
Uncertainty surrounding the true values of α and β mean that there is some level of uncertainty
surrounding our predicted value ŷT+1 as well.

Second, (1) states that yt depends not just on α, β, and xt but also on an unobserved error term
εt. When we make our forecast using (2), we assume that the error term will equal its expected value
of zero. Saying a random error has an expected value of zero is clearly not the same as saying it
will be zero every time. If a positive outside shock occurs at T + 1, yT+1 will be higher than our
estimate based on (2) would lead us to believe.

Fortunately, quantifying both these sources of uncertainty is straightforward using simulation. First,
we solve our model as usual, providing us with our point forecasts. To see how uncertainty surrounding
our estimated parameters affects our forecasts, we can take random draws from a multivariate normal
distribution whose mean is (α̂, β̂) and whose variance is the covariance matrix produced by regress.
We then solve our model using these randomly drawn parameters rather than the original point
estimates. If we repeat the process of drawing random parameters and solving the model many times,
we can use the variance or standard deviation across replications for each time period as a measure
of uncertainty.

To account for uncertainty surrounding the error term, we can also use simulation. Here, at each
replication, we add a random noise term to our forecast for yT+1, where we draw our random errors
such that they have the same characteristics as εt. There are two ways we can do that. First, all the
estimation commands commonly used in forecasting provide us with an estimate of the variance or
standard deviation of the error term. For example, regress labels the estimated standard deviation
of the error term “Root RMSE” and conveniently saves it in a macro that forecast can access. If
we are willing to assume that all the errors in the equations in our model are normally distributed,
then we can use random-normal errors drawn with means equal to zero and variances as reported by
the estimation command used to fit each equation.

Sometimes the assumption of normality is unpalatable. In those cases, an alternative is to solve the
model to obtain static forecasts and then compute the sample residuals based on the observations for
which we have nonmissing values of the endogenous variables. Then in our simulations, we randomly
choose one of the residuals observed for that equation.

260 forecast solve — Obtain static and dynamic forecasts

At each replication, whether we draw errors based on the normal errors or from the pool of
static-forecast residuals, we add the drawn value to our estimate of ŷT+1 to provide a simulated value
for our forecast. Then, just like when simulating parameter uncertainty, we can use the variance or
standard deviation across replications to measure uncertainty. In fact, we can perform simulations that
draw both random parameters and random errors to account for both sources of uncertainty at once.

Example 2: Accounting for parameter uncertainty

Here we revisit our Klein (1950) model from example 1 of [TS] forecast and perform simulations
in which we account for uncertainty associated with the estimated parameters of the model. First, we
load the dataset and set up our model:

. use http://www.stata-press.com/data/r14/klein2, clear

. quietly reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y)
> exog(t wg g)

. estimates store klein

. forecast create kleinmodel, replace
(Forecast model oilmodel ended.)
Forecast model kleinmodel started.

. forecast estimates klein
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

. forecast identity y = c + i + g
Forecast model kleinmodel now contains 4 endogenous variables.

. forecast identity p = y - t - wp
Forecast model kleinmodel now contains 5 endogenous variables.

. forecast identity k = L.k + i
Forecast model kleinmodel now contains 6 endogenous variables.

. forecast identity w = wg + wp
Forecast model kleinmodel now contains 7 endogenous variables.

. forecast exogenous wg
Forecast model kleinmodel now contains 1 declared exogenous variable.

. forecast exogenous g
Forecast model kleinmodel now contains 2 declared exogenous variables.

. forecast exogenous t
Forecast model kleinmodel now contains 3 declared exogenous variables.

. forecast exogenous yr
Forecast model kleinmodel now contains 4 declared exogenous variables.

Now we are ready to solve our model. We are going to begin dynamic forecasts in 1936, and we
are going to perform 100 replications. We will store the point forecasts in variables prefixed with d ,
and we will store the standard deviations of our forecasts in variables prefixed with sd . Because
the simulations involve the use of random numbers, we must remember to set the random-number
seed if we want to be able to replicate our results; see [R] set seed. We type

forecast solve — Obtain static and dynamic forecasts 261

. set seed 1

. forecast solve, prefix(d_) begin(1936)
> simulate(betas, statistic(stddev, prefix(sd_)) reps(100))

Computing dynamic forecasts for model kleinmodel.

Starting period: 1936
Ending period: 1941
Forecast prefix: d_

1936: ..
1937: ..
1938: ...
1939: ...
1940: ..
1941: ..

Performing simulations (100)
1 2 3 4 5

.. 50

.. 100

Forecast 7 variables spanning 6 periods.

The key here is the simulate() option. We requested that forecast solve perform 100 simulations
by taking random draws for the parameters (betas), and we requested that it record the standard
deviation (stddev) of each endogenous variable in new variables that begin with sd . Next we
compute the upper and lower bounds of a 95% prediction interval for our forecast of total income y:

. generate d_y_up = d_y + invnormal(0.975)*sd_y
(16 missing values generated)

. generate d_y_dn = d_y + invnormal(0.025)*sd_y
(16 missing values generated)

We obtained 16 missing values after each generate because the simulation summary variables only
contain nonmissing data for the periods in which forecasts were made. The point-forecast variables
that begin with d in this example are filled in with the corresponding actual values of the endogenous
variables for periods before the beginning of the forecast horizon; in our experience, having both the
historical data and forecasts in one set of variables simplifies many tasks. Here we graph our forecast
of total income along with the 95% prediction interval:

262 forecast solve — Obtain static and dynamic forecasts

5
0

6
0

7
0

8
0

9
0

1
0

0

1935 1937 1939 1941

Solid lines denote actual values.
Dashed lines denote forecast values.
95% confidence bands based on parameter uncertainty.

Total Income

Our next example will use the same forecast model, but we will not need the forecast variables
we just created. forecast drop makes removing those variables easy:

. forecast drop
(dropped 14 variables)

forecast drop drops all variables created by the previous invocation of forecast solve, including
both the point-forecast variables and any variables that contain simulation results. In this case,
forecast drop will remove all the variables that begin with sd as well as d y, d c, d i, and
so on. However, we are not done yet. We created the variables d y dn and d y up ourselves, and
they were not part of the forecast model. Therefore, they are not removed by forecast drop, and
we need to do that ourselves:

. drop d_y_dn d_y_up

Example 3: Accounting for both parameter uncertainty and random errors

In the previous example, we measured uncertainty in our model stemming from the fact that our
parameters were estimated. Here we not only simulate random draws for the parameters but also add
random-normal errors to the stochastic equations. We type

forecast solve — Obtain static and dynamic forecasts 263

. set seed 1

. forecast solve, prefix(d_) begin(1936)
> simulate(betas errors, statistic(stddev, prefix(sd_)) reps(100))

Computing dynamic forecasts for model kleinmodel.

Starting period: 1936
Ending period: 1941
Forecast prefix: d_

1936: ..
1937: ..
1938: ...
1939: ...
1940: ..
1941: ..

Performing simulations (100)
1 2 3 4 5

.. 50

.. 100

Forecast 7 variables spanning 6 periods.

The only difference between this call to forecast solve and the one in the previous example is that
here we specified betas errors in the simulate() option rather than just betas. Had we wanted
to perform simulations involving the parameters and random draws from the pool of static-forecast
residuals rather than random-normal errors, we would have specified betas residuals. After we
re-create the variables containing the bounds on our prediction interval, we obtain the following graph:

5
0

6
0

7
0

8
0

9
0

1
0

0

1935 1937 1939 1941

Solid lines denote actual values.
Dashed lines denote forecast values.
95% confidence bands based on parameter uncertainty and normally distributed errors.

Total Income

Notice that by accounting for both parameter and additive error uncertainty, our prediction interval
became much wider.

264 forecast solve — Obtain static and dynamic forecasts

Stored results
forecast solve stores the following in r():
Scalars

r(first obs) first observation in forecast horizon
r(last obs) last observation in forecast horizon

(of first panel if forecasting panel data)
r(Npanels) number of panels forecast
r(Nvar) number of forecast variables
r(vtolerance) tolerance for forecast values
r(ztolerance) tolerance for function zero
r(iterate) maximum number of iterations
r(sim nreps) number of simulations
r(damping) damping parameter for damped Gauss–Seidel

Macros
r(prefix) forecast variable prefix
r(suffix) forecast variable suffix
r(actuals) actuals, if specified
r(static) static, if specified
r(double) double, if specified
r(sim technique) specified sim technique
r(logtype) on, off, brief, or detail

Methods and formulas
Formalizing the definition of a model provided in [TS] forecast, we represent the endogenous

variables in the model as the k×1 vector y, and we represent the exogenous variables in the model as
the m× 1 vector x. We refer to the contemporaneous values as yt and xt; for notational simplicity,
we refer to lagged values as yt−1 and xt−1 with the implication that further lags of the variables
can also be included with no loss of generality. We use θ to refer to the vector of all the estimated
parameters in all the equations of the model. We use ut and ut−1 to refer to contemporaneous and
lagged error terms, respectively.

The forecast commands solve models of the form

yit = fi(y−i,t,yt−1,xt,xt−1,ut,ut−1; θ) (3)

where i = 1, . . . , k and y−i,t refers to the k − 1× 1 vector of endogenous variables other than yi
at time t. If equation j is an identity, we take ujt = 0 for all t; for stochastic equations, the errors
correspond to the usual regression error terms. Equation (3) does not include subscripts indexing
panels for notational simplicity, but the extension is obvious. A model is solveable if k ≥ 1. m may
be zero.

Endogenous variables are added to the forecast model via forecast estimates, forecast
identity, and forecast coefvector. Equations added via forecast estimates are always
stochastic, while equations added via forecast identity are always nonstochastic. Equations added
via forecast coefvector are treated as stochastic if options variance() or errorvariance()
(or both) are specified and nonstochastic if neither is specified.

Exogenous variables are declared using forecast exogenous, but the model may contain additional
exogenous variables. For example, the right-hand side of an equation may contain exogenous variables
that are not declared using forecast exogenous. Before solving the model, forecast solve
determines whether the declared exogenous variables contain missing values over the forecast horizon
and issues an informative error message if any do. Undeclared exogenous variables that contain
missing values within the forecast horizon will cause forecast solve to exit with a less-informative
error message and require the user to do more work to pinpoint the problem.

forecast solve — Obtain static and dynamic forecasts 265

Adjustments added via forecast adjust easily fit within the framework of (3). Simply let fi(·)
represent the value of yit obtained by first evaluating the appropriate estimation result, coefficient
vector, or identity and then performing the adjustments based on that intermediate result. Endogenous
variables may have multiple adjustments; adjustments are made in the order in which they were
specified via forecast adjust. For single-equation estimation results and coefficient vectors as well
as identities, adjustments are performed right after the equation is evaluated. For multiple-equation
estimation results and coefficient vectors, adjustments are made after all the equations within that set
of results are evaluated. Suppose an estimation result that uses predict includes two left-hand-side
variables, y1t and y2t, and you have added two adjustments to y1t and one adjustment to y2t. Here
forecast solve first calls predict twice to obtain candidate values for y1t and y2t; then it performs
the two adjustments to y1t, and finally it adjusts y2t.

forecast solve offers four solution techniques: Gauss–Seidel, damped Gauss–Seidel, Broyden–
Powell, and Newton–Raphson. The Gauss–Seidel techniques are simple iterative techniques that are
often fast and typically work well, particularly when a damping factor is used. Gauss–Seidel is simply
damped Gauss–Seidel without damping (a damping factor of 0). By default, damped Gauss–Seidel
with a damping factor of 0.2 is used, representing a small amount of damping. As Fair (1984, 250)
notes, while these techniques often work well, there is no guarantee that they will converge. Technique
Newton–Raphson typically works well but is slow because it requires the use of numerical derivatives at
every iteration to obtain a Jacobian matrix. The Broyden–Powell (Broyden 1970; Powell 1970) method
is analogous to quasi-Newton methods used for function optimization in that an updating method is
used at each iteration to update an estimate of the Jacobian matrix rather than actually recalculating
it. For additional details as well as a discussion of the convergence criteria, see [M-5] solvenl().

If you do not specify the begin() option, forecast solve uses the following algorithm to select
the starting time period. Suppose the time variable t runs from 1 to T . If, at time T , none of the
endogenous variables contains missing values, forecast solve exits with an error message: there
are no periods in which the endogenous variables are not known; therefore, there are no periods
where a forecast is obviously required. Otherwise, consider period T − 1. If none of the endogenous
variables contains missing values in that period, then the only period to forecast is T . Otherwise, work
back through time to find the latest period in which all the endogenous variables contain nonmissing
values and then begin forecasting in the subsequent period. In the case of panel datasets, the same
algorithm is applied to each panel, and forecasts for all panels begin on the earliest period selected.

When you specify the simulate() option with sim technique betas, forecast solve draws
random vectors from the multivariate normal distribution for each estimation result individually.
The mean and variance are based on the estimation result’s e(b) and e(V) macros, respectively.
If the estimation result is from a multiple-equation estimator, the corresponding Stata command
stores in e(b) and e(V) the full parameter vector and covariance matrix for all equations so that
forecast solve’s simulations will account for covariances among parameters in that estimation
result’s equations. However, covariances among parameters that appear in different estimation results
are taken to be zero.

If you specify a coefficient vector using forecast coefvector and specify a variance matrix in
the variance() option, then those coefficient vectors are simulated just like the parameter vectors
from estimation results. If you do not specify the variance() option, then the coefficient vector is
assumed to be nonstochastic and therefore is not simulated.

When you specify the simulate() option with sim technique residuals, forecast solve
first obtains static forecasts from your model for all possible periods. For each endogenous variable
defined by a stochastic equation, it then computes residuals as the forecast value minus the actual
value for all observations with nonmissing data. At each replication and for each period in the forecast
horizon, forecast solve randomly selects one element from each stochastic equation’s pool of
residuals before solving the model for that replication and period. Then whenever forecast solve

266 forecast solve — Obtain static and dynamic forecasts

evaluates a stochastic equation, it adds the chosen element to the predicted value for that equation.
Suppose an estimation result represents a multiple-equation estimator with m equations, and suppose
that there are n time periods for which sample residuals are available. Arrange the residuals into the
n ×m matrix R. Then when forecast solve is randomly selecting residuals for this estimation
result, it will choose a random number j between 1 and n and select the entire jth row from R.
That preserves the correlation structure among the error terms of the estimation result’s equations.

If you specify a coefficient vector using forecast coefvector and specify either the variance()
option or the errorvariance() option (or both), sim technique residuals considers the equation
represented by the coefficient vector to be stochastic and resamples residuals for that equation.

When you specify the simulate() option with sim technique errors, forecast solve, for
each stochastic equation, replication, and period, takes a random draw from a multivariate normal
distribution with zero mean before solving the model for that replication and period. Then whenever
forecast solve evaluates a stochastic equation, it adds that random draw to the predicted value
for that equation. The variance of the distribution from which errors are drawn is based on the
estimation results for that equation. The forecast commands look in e(rmse), e(sigma), and
e(Sigma) to find the estimated variance. If you add an estimation result that does not set any of those
three macros and you request sim technique errors, forecast solve exits with an error message.
Multiple-equation commands typically set e(Sigma) so that the randomly drawn errors reflect the
estimated error correlation structure.

If you specify a coefficient vector using forecast coefvector and specify the errorvariance()
option, sim technique errors simulates errors for that equation. Otherwise, the equation is treated
like an identity and no errors are added.

forecast solve solves panel-data models by solving for all periods in the forecast horizon for
the first panel in the dataset, then the second dataset, and so on. When you perform simulations with
panel datasets, one replication is completed for all panels in the dataset before moving to the next
replication. Simulations that include residual resampling select residuals from the pool containing
residuals for all panels; forecast solve does not restrict itself to the static-forecast residuals for a
single panel when simulating that panel.

References
Broyden, C. G. 1970. Recent developments in solving nonlinear algebraic systems. In Numerical Methods for Nonlinear

Algebraic Equations, ed. P. Rabinowitz, 61–73. London: Gordon and Breach Science Publishers.

Fair, R. C. 1984. Specification, Estimation, and Analysis of Macroeconometric Models. Cambridge, MA: Harvard
University Press.

Hamilton, J. D. 2003. What is an oil shock? Journal of Econometrics 113: 363–398.

Kilian, L., and R. J. Vigfusson. 2013. Do oil prices help forecast U.S. real GDP? The role of nonlinearities and
asymmetries. Journal of Business and Economic Statistics 31: 78–93.

Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Powell, M. J. D. 1970. A hybrid method for nonlinear equations. In Numerical Methods for Nonlinear Algebraic
Equations, ed. P. Rabinowitz, 87–114. London: Gordon and Breach Science Publishers.

Also see
[TS] forecast — Econometric model forecasting

[TS] forecast adjust — Adjust a variable by add factoring, replacing, etc.

[TS] forecast drop — Drop forecast variables

[R] set seed — Specify random-number seed and state

Title

irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Syntax Remarks and examples References
Also see

Description

irf creates and manipulates IRF files that contain estimates of the IRFs, dynamic-multiplier
functions, and forecast-error variance decompositions (FEVDs) created after estimation by var, svar,
or vec; see [TS] var, [TS] var svar, or [TS] vec.

irf creates and manipulates IRF files that contain estimates of the IRFs created after estimation
by arima or arfima; see [TS] arima or [TS] arfima.

IRFs and FEVDs are described below, and the process of analyzing them is outlined. After reading
this entry, please see [TS] irf create.

Quick start
Fit a VAR model

var y1 y2 y3

Create impulse–response function myirf and IRF file myirfs.irf

irf create myirf, set(myirfs)

Graph orthogonalized impulse–response function for dependent variables y1 and y2 given a shock to
y1

irf graph oirf, impulse(y1) response(y1 y2)

As above, but present results in a table
irf table oirf, impulse(y1) response(y1 y2)

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

See [TS] irf add, [TS] irf cgraph, [TS] irf ctable, [TS] irf describe, [TS] irf drop, [TS] irf graph,
[TS] irf ograph, [TS] irf rename, [TS] irf set, and [TS] irf table for additional Quick starts.

267

268 irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

Syntax
irf subcommand . . .

[
, . . .

]
subcommand Description

create create IRF file containing IRFs, dynamic-multiplier functions, and FEVDs
set set the active IRF file

graph graph results from active file
cgraph combine graphs of IRFs, dynamic-multiplier functions, and FEVDs
ograph graph overlaid IRFs, dynamic-multiplier functions, and FEVDs
table create tables of IRFs, dynamic-multiplier functions, and FEVDs from

active file
ctable combine tables of IRFs, dynamic-multiplier functions, and FEVDs

describe describe contents of active file
add add results from an IRF file to the active IRF file
drop drop IRF results from active file
rename rename IRF results within a file

IRF stands for impulse–response function; FEVD stands for forecast-error variance decomposition.
irf can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var svar, [TS] vec,

[TS] arima, or [TS] arfima.

Remarks and examples
An IRF measures the effect of a shock to an endogenous variable on itself or on another

endogenous variable; see Lütkepohl (2005, 51–63) and Hamilton (1994, 318–323) for formal definitions.
Becketti (2013) provides an approachable, gentle introduction to IRF analysis. Of the many types of
IRFs, irf create estimates the five most important: simple IRFs, orthogonalized IRFs, cumulative
IRFs, cumulative orthogonalized IRFs, and structural IRFs.

A dynamic-multiplier function, or transfer function, measures the impact of a unit increase in an
exogenous variable on the endogenous variables over time; see Lütkepohl (2005, chap. 10) for formal
definitions. irf create estimates simple and cumulative dynamic-multiplier functions after var.

The forecast-error variance decomposition (FEVD) measures the fraction of the forecast-error
variance of an endogenous variable that can be attributed to orthogonalized shocks to itself or to
another endogenous variable; see Lütkepohl (2005, 63–66) and Hamilton (1994, 323–324) for formal
definitions. Of the many types of FEVDs, irf create estimates the two most important: Cholesky
and structural.

irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs 269

To analyze IRFs and FEVDs in Stata, you first fit a model, then use irf create to estimate the
IRFs and FEVDs and save them in a file, and finally use irf graph or any of the other irf analysis
commands to examine results:

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk

(output omitted)
. irf create order1, step(10) set(myirf1)
(file myirf1.irf created)
(file myirf1.irf now active)
(file myirf1.irf updated)

. irf graph oirf, impulse(dln_inc) response(dln_consump)

−.002

0

.002

.004

.006

0 5 10

order1, dln_inc, dln_consump

95% CI orthogonalized irf

step

Graphs by irfname, impulse variable, and response variable

Multiple sets of IRFs and FEVDs can be placed in the same file, with each set of results in a
file bearing a distinct name. The irf create command above created file myirf1.irf and put
one set of results in it, named order1. The order1 results include estimates of the simple IRFs,
orthogonalized IRFs, cumulative IRFs, cumulative orthogonalized IRFs, and Cholesky FEVDs.

IRF files are just files: they can be erased by erase, listed by dir, and copied by copy; see
[D] erase, [D] dir, and [D] copy.

Below we use the same estimated var but use a different Cholesky ordering to create a second set
of IRF results, which we will save as order2 in the same file, and then we will graph both results:

270 irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

. irf create order2, step(10) order(dln_inc dln_inv dln_consump)
(file myirf1.irf updated)

. irf graph oirf, irf(order1 order2) impulse(dln_inc) response(dln_consump)

−.005

0

.005

.01

0 5 10 0 5 10

order1, dln_inc, dln_consump order2, dln_inc, dln_consump

95% CI orthogonalized irf

step

Graphs by irfname, impulse variable, and response variable

We have compared results for one model under two different identification schemes. We could just
as well have compared results of two different models. We now use irf table to display the results
tabularly:

. irf table oirf, irf(order1 order2) impulse(dln_inc) response(dln_consump)

Results from order1 order2

(1) (1) (1) (2) (2) (2)
step oirf Lower Upper oirf Lower Upper

0 .004934 .003016 .006852 .005244 .003252 .007237
1 .001309 -.000931 .003549 .001235 -.001011 .003482
2 .003573 .001285 .005862 .00391 .001542 .006278
3 -.000692 -.002333 .00095 -.000677 -.002347 .000993
4 .000905 -.000541 .002351 .00094 -.000576 .002456
5 .000328 -.0005 .001156 .000341 -.000518 .001201
6 .000021 -.000675 .000717 .000042 -.000693 .000777
7 .000154 -.000206 .000515 .000161 -.000218 .00054
8 .000026 -.000248 .0003 .000027 -.000261 .000315
9 .000026 -.000121 .000174 .00003 -.000125 .000184
10 .000026 -.000061 .000113 .000027 -.000065 .00012

95% lower and upper bounds reported
(1) irfname = order1, impulse = dln_inc, and response = dln_consump
(2) irfname = order2, impulse = dln_inc, and response = dln_consump

Both the table and the graph show that the two orthogonalized IRFs are essentially the same. In both
functions, an increase in the orthogonalized shock to dln inc causes a short series of increases in
dln consump that dies out after four or five periods.

irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs 271

References
Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the
Social Science. New York: Cambridge University Press.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] arfima — Autoregressive fractionally integrated moving-average models

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] vec — Vector error-correction models

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/imtsa.html

Title

irf add — Add results from an IRF file to the active IRF file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
irf add copies results from an existing IRF file on disk to the active IRF file, set by irf set; see

[TS] irf set.

Quick start
Copy the IRF results myirf1 from myirfs.irf to newirf in the active IRF file

irf add newirf = myirf1, using(myirfs)

As above, but copy all IRF results from myirfs.irf to the active file
irf add _all, using(myirfs)

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > Manage IRF results and files > Add IRF results

272

irf add — Add results from an IRF file to the active IRF file 273

Syntax
irf add

{
all |

[
newname=

]
oldname . . .

}
, using(irf filename)

Option
using(irf filename) specifies the file from which results are to be obtained and is required. If

irf filename is specified without an extension, .irf is assumed.

Remarks and examples
If you have not read [TS] irf, please do so.

Example 1

After fitting a VAR model, we create two separate IRF files:

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk
(output omitted)

. irf create original, set(irf1, replace)
(file irf1.irf created)
(file irf1.irf now active)
(file irf1.irf updated)

. irf create order2, order(dln_inc dln_inv dln_consump) set(irf2, replace)
(file irf2.irf created)
(file irf2.irf now active)
(file irf2.irf updated)

We copy IRF results original to the active file giving them the name order1.

. irf add order1 = original, using(irf1)
(file irf2.irf updated)

Here we create new IRF results and save them in the new file irf3.

. irf create order3, order(dln_inc dln_consump dln_inv) set(irf3, replace)
(file irf3.irf created)
(file irf3.irf now active)
(file irf3.irf updated)

Now we copy all the IRF results in file irf2 into the active file.

. irf add _all, using(irf2)
(file irf3.irf updated)

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf cgraph makes a graph or a combined graph of IRF results. A graph is drawn for specified

combinations of named IRF results, impulse variables, response variables, and statistics. irf cgraph
combines these graphs into one image, unless separate graphs are requested.

irf cgraph operates on the active IRF file; see [TS] irf set.

Quick start
Combine graphs of an orthogonalized IRF myirf and cumulative IRF mycirf for dependent variables

y1 and y2

irf cgraph (myirf y1 y2 oirf) (mycirf y1 y2 cirf)

As above, but suppress confidence bands and add a title
irf cgraph (myirf y1 y2 oirf) (mycirf y1 y2 cirf), noci ///

title("My Title")

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Combined graphs

274

irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs 275

Syntax
irf cgraph (spec1)

[
(spec2) . . .

[
(specN)

]] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
)

irfname is the name of a set of IRF results in the active IRF file. impulsevar should be specified as an
endogenous variable for all statistics except dm and cdm; for those, specify as an exogenous variable.
responsevar is an endogenous variable name. stat is one or more statistics from the list below:

stat Description

Main

irf impulse–response function
oirf orthogonalized impulse–response function
dm dynamic-multiplier function
cirf cumulative impulse–response function
coirf cumulative orthogonalized impulse–response function
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition
sirf structural impulse–response function
sfevd structural forecast-error variance decomposition

Notes: 1. No statistic may appear more than once.
2. If confidence intervals are included (the default), only two statistics may be included.
3. If confidence intervals are suppressed (option noci), up to four statistics may be included.

options Description

Main

set(filename) make filename active

Options

combine options affect appearance of combined graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
∗ spec options level, steps, and rendition of plots and their CIs

individual graph each combination individually

∗spec options appear on multiple tabs in the dialog box.
individual does not appear in the dialog box.

276 irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs

spec options Description

Main

noci suppress confidence bands

Options

level(#) set confidence level; default is level(95)

lstep(#) use # for first step
ustep(#) use # for maximum step

Plots

plot#opts(line options) affect rendition of the line plotting the # stat

CI plots

ci#opts(area options) affect rendition of the confidence interval for the # stat

spec options may be specified within a graph specification, globally, or in both. When specified in a graph
specification, the spec options affect only the specification in which they are used. When supplied globally, the
spec options affect all graph specifications. When supplied in both places, options in the graph specification take
precedence.

Options

� � �
Main �

noci suppresses graphing the confidence interval for each statistic. noci is assumed when the model
was fit by vec because no confidence intervals were estimated.

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

� � �
Options �

level(#) specifies the default confidence level, as a percentage, for confidence intervals, when they
are reported. The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals. The value set of an overall level() can be overridden by the
level() inside a (speck).

lstep(#) specifies the first step, or period, to be included in the graph. lstep(0) is the default.

ustep(#), # ≥ 1, specifies the maximum step, or period, to be included in the graph.

combine options affect the appearance of the combined graph; see [G-2] graph combine.

� � �
Plots �

plot1opts(cline options), . . . , plot4opts(cline options) affect the rendition of the plotted statis-
tics. plot1opts() affects the rendition of the first statistic; plot2opts(), the second; and so
on. cline options are as described in [G-3] cline options.

� � �
CI plots �

ci1opts1(area options) and ci2opts2(area options) affect the rendition of the confidence intervals
for the first (ci1opts()) and second (ci2opts()) statistics. See [TS] irf graph for a description
of this option and [G-3] area options for the suboptions that change the look of the CI.

irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs 277

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

The following option is available with irf cgraph but is not shown in the dialog box:

individual specifies that each graph be displayed individually. By default, irf cgraph combines
the subgraphs into one image.

Remarks and examples
If you have not read [TS] irf, please do so.

The relationship between irf cgraph and irf graph is syntactically and conceptually the same
as that between irf ctable and irf table; see [TS] irf ctable for a description of the syntax.

irf cgraph is much the same as using irf graph to make individual graphs and then using
graph combine to put them together. If you cannot use irf cgraph to do what you want, consider
the other approach.

Example 1

You have previously issued the commands:

. use http://www.stata-press.com/data/r14/lutkepohl2

. mat a = (., 0, 0\0,.,0\.,.,.)

. mat b = I(3)

. svar dln_inv dln_inc dln_consump, aeq(a) beq(b)

. irf create modela, set(results3) step(8)

. svar dln_inc dln_inv dln_consump, aeq(a) beq(b)

. irf create modelb, step(8)

278 irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs

You now type
. irf cgraph (modela dln_inc dln_consump oirf sirf)
> (modelb dln_inc dln_consump oirf sirf)
> (modela dln_inc dln_consump fevd sfevd, lstep(1))
> (modelb dln_inc dln_consump fevd sfevd, lstep(1)),
> title("Results from modela and modelb")

−.002

0

.002

.004

.006

0 2 4 6 8
step

95% CI for oirf 95% CI for sirf

oirf sirf

modela: dln_inc −> dln_consump

−.005

0

.005

.01

0 2 4 6 8
step

95% CI for oirf 95% CI for sirf

oirf sirf

modelb: dln_inc −> dln_consump

.1

.2

.3

.4

.5

0 2 4 6 8
step

95% CI for fevd 95% CI for sfevd

fevd sfevd

modela: dln_inc −> dln_consump

.1

.2

.3

.4

.5

0 2 4 6 8
step

95% CI for fevd 95% CI for sfevd

fevd sfevd

modelb: dln_inc −> dln_consump

Results from modela and modelb

Stored results
irf cgraph stores the following in r():
Scalars

r(k) number of specific graph commands
Macros

r(individual) individual, if specified
r(save) filename, replace from saving() option for combined graph
r(name) name, replace from name() option for combined graph
r(title) title of the combined graph
r(save#) filename, replace from saving() option for individual graphs
r(name#) name, replace from name() option for individual graphs
r(title#) title for the #th graph
r(ci#) level applied to the #th confidence interval or noci
r(response#) response specified in the #th command
r(impulse#) impulse specified in the #th command
r(irfname#) IRF name specified in the #th command
r(stats#) statistics specified in the #th command

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
irf create estimates multiple sets of impulse–response functions (IRFs), dynamic-multiplier

functions, and forecast-error variance decompositions (FEVDs). All of these estimates and their
standard errors are known collectively as IRF results and are saved in an IRF file under a specified
filename. Once you have created a set of IRF results, you can use the other irf commands to analyze
them.

Quick start
Create impulse–response function myirf with 8 forecast periods in the active IRF file

irf create myirf

As above, and use IRF file myirfs.irf

irf create myirf, set(myirfs)

As above, but compute the IRF for 12 periods
irf create myirf, set(myirfs) step(12)

Note: irf can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var svar, [TS] vec,
[TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Obtain IRFs, dynamic-multiplier functions, and
FEVDs

279

280 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Syntax

After var

irf create irfname
[
, var options

]
After svar

irf create irfname
[
, svar options

]
After vec

irf create irfname
[
, vec options

]
After arima

irf create irfname
[
, arima options

]
After arfima

irf create irfname
[
, arfima options

]
irfname is any valid name that does not exceed 15 characters.

var options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

order(varlist) specify Cholesky ordering of endogenous variables
estimates(estname) use previously stored results estname; default is to use active

results

Std. errors

nose do not calculate standard errors
bs obtain standard errors from bootstrapped residuals
bsp obtain standard errors from parametric bootstrap
nodots do not display “.” for each bootstrap replication
reps(#) use # bootstrap replications; default is reps(200)

bsaving(filename
[
, replace

]
) save bootstrap results in filename

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 281

svar options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

estimates(estname) use previously stored results estname; default is to use active
results

Std. errors

nose do not calculate standard errors
bs obtain standard errors from bootstrapped residual
bsp obtain standard errors from parametric bootstrap
nodots do not display “.” for each bootstrap replication
reps(#) use # bootstrap replications; default is reps(200)

bsaving(filename
[
, replace

]
) save bootstrap results in filename

vec options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

estimates(estname) use previously stored results estname; default is to use active
results

arima options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

estimates(estname) use previously stored results estname; default is to use active
results

Std. errors

nose do not calculate standard errors

arfima options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

smemory calculate short-memory IRFs
estimates(estname) use previously stored results estname; default is to use active

results

Std. errors

nose do not calculate standard errors

282 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

The default is to use asymptotic standard errors if no options are specified.
irf create is for use after fitting a model with the var, svar, vec, arima, or arfima command; see [TS] var,

[TS] var svar, [TS] vec, [TS] arima, or [TS] arfima.
You must tsset your data before using var, svar, vec, arima, or arfima and, hence, before using irf create;

see [TS] tsset.

Options

� � �
Main �

set(filename[, replace]) specifies the IRF file to be used. If set() is not specified, the active IRF
file is used; see [TS] irf set.
If set() is specified, the specified file becomes the active file, just as if you had issued an irf
set command.

replace specifies that the results saved under irfname may be replaced, if they already exist. IRF
results are saved in files, and one file may contain multiple IRF results.

step(#) specifies the step (forecast) horizon; the default is eight periods.

order(varlist) is allowed only after estimation by var; it specifies the Cholesky ordering of the
endogenous variables to be used when estimating the orthogonalized IRFs. By default, the order
in which the variables were originally specified on the var command is used.

smemory is allowed only after estimation by arfima; it specifies that the IRFs are calculated based
on a short-memory model with the fractional difference parameter d set to zero.

estimates(estname) specifies that estimation results previously estimated by var, svar, or vec,
and stored by estimates, be used. This option is rarely specified; see [R] estimates.

� � �
Std. errors �

nose, bs, and bsp are alternatives that specify how (whether) standard errors are to be calculated. If
none of these options is specified, asymptotic standard errors are calculated, except in two cases:
after estimation by vec and after estimation by svar in which long-run constraints were applied.
In those two cases, the default is as if nose were specified, although in the second case, you could
specify bs or bsp. After estimation by vec, standard errors are simply not available.

nose specifies that no standard errors be calculated.

bs specifies that standard errors be calculated by bootstrapping the residuals. bs may not be
specified if there are gaps in the data.

bsp specifies that standard errors be calculated via a multivariate-normal parametric bootstrap.
bsp may not be specified if there are gaps in the data.

nodots, reps(#), and bsaving(filename
[
, replace

]
) are relevant only if bs or bsp is specified.

nodots specifies that dots not be displayed each time irf create performs a bootstrap replication.

reps(#), # > 50, specifies the number of bootstrap replications to be performed. reps(200) is
the default.

bsaving(filename
[
, replace

]
) specifies that file filename be created and that the bootstrap

replications be saved in it. New file filename is just a .dta dataset that can be loaded later
using use; see [D] use. If filename is specified without an extension, .dta is assumed.

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 283

Remarks and examples
If you have not read [TS] irf, please do so. An introductory example using IRFs is presented there.

irf create estimates several types of IRFs, dynamic-multiplier functions, and FEVDs. Which
estimates are saved depends on the estimation method previously used to fit the model, as summarized
in the table below:

Estimation command
Saves arima arfima var svar vec

simple IRFs x x x x x
orthogonalized IRFs x x x x x
dynamic multipliers x
cumulative IRFs x x x x x
cumulative orthogonalized IRFs x x x x x
cumulative dynamic multipliers x
structural IRFs x x x

Cholesky FEVDs x x x
structural FEVDs x

Remarks are presented under the following headings:

Introductory examples
Technical aspects of IRF files
IRFs and FEVDs
IRF results for VARs

An introduction to impulse–response functions for VARs
An introduction to dynamic-multiplier functions for VARs
An introduction to forecast-error variance decompositions for VARs

IRF results for VECMs
An introduction to impulse–response functions for VECMs
An introduction to forecast-error variance decompositions for VECMs

IRF results for ARIMA and ARFIMA

Introductory examples

Example 1: After var

Below we compare bootstrap and asymptotic standard errors for a specific FEVD. We begin by
fitting a VAR(2) model to the Lütkepohl data (we use the var command). We next use the irf create
command twice, first to create results with asymptotic standard errors (saved under the name asymp)
and then to re-create the same results, this time with bootstrap standard errors (saved under the name
bs). Because bootstrapping is a random process, we set the random-number seed (set seed 123456)
before using irf create the second time; this makes our results reproducible. Finally, we compare
results by using the IRF analysis command irf ctable.

284 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4), lags(1/2)
(output omitted)

. irf create asymp, step(8) set(results1)
(file results1.irf created)
(file results1.irf now active)
(file results1.irf updated)

. set seed 123456

. irf create bs, step(8) bs reps(250) nodots
(file results1.irf updated)

. irf ctable (asymp dln_inc dln_consump fevd) (bs dln_inc dln_consump fevd),
> noci stderror

(1) (1) (2) (2)
step fevd S.E. fevd S.E.

0 0 0 0 0
1 .282135 .087373 .282135 .102756
2 .278777 .083782 .278777 .098161
3 .33855 .090006 .33855 .10586
4 .339942 .089207 .339942 .104191
5 .342813 .090494 .342813 .105351
6 .343119 .090517 .343119 .105258
7 .343079 .090499 .343079 .105266
8 .34315 .090569 .34315 .105303

(1) irfname = asymp, impulse = dln_inc, and response = dln_consump
(2) irfname = bs, impulse = dln_inc, and response = dln_consump

Point estimates are, of course, the same. The bootstrap estimates of the standard errors, however,
are larger than the asymptotic estimates, which suggests that the sample size of 71 is not large
enough for the distribution of the estimator of the FEVD to be well approximated by the asymptotic
distribution. Here we would expect the bootstrap confidence interval to be more reliable than the
confidence interval that is based on the asymptotic standard error.

Technical note
The details of the bootstrap algorithms are given in Methods and formulas. These algorithms are

conditional on the first p observations, where p is the order of the fitted VAR. (In an SVAR model, p
is the order of the VAR that underlies the SVAR.) The bootstrapped estimates are conditional on the
first p observations, just as the estimators of the coefficients in VAR models are conditional on the
first p observations. With bootstrap standard errors (option bs), the p initial observations are used
with resampling the residuals to produce the bootstrap samples used for estimation. With the more
parametric bootstrap (option bsp), the p initial observations are used with draws from a multivariate
normal distribution with variance–covariance matrix Σ̂ to generate the bootstrap samples.

Technical note

For var and svar e() results, irf uses Σ̂, the estimated variance matrix of the disturbances, in
computing the asymptotic standard errors of all the functions. The point estimates of the orthogo-
nalized impulse–response functions, the structural impulse–response functions, and all the variance

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 285

decompositions also depend on Σ̂. As discussed in [TS] var, var and svar use the ML estimator of
this matrix by default, but they have option dfk, which will instead use an estimator that includes a
small-sample correction. Specifying dfk when the model is fit—when the var or svar command is
given—changes the estimate of Σ̂ and will change the IRF results that depend on it.

Example 2: After var with exogenous variables

After fitting a VAR, irf create computes estimates of the dynamic multipliers, which describe
the impact of a unit change in an exogenous variable on each endogenous variable. For instance,
below we estimate and report the cumulative dynamic multipliers from a model in which changes in
investment are exogenous. The results indicate that both of the cumulative dynamic multipliers are
significant.

. var dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4), lags(1/2)
> exog(L(0/2).dln_inv)

(output omitted)
. irf create dm, step(8)
(file results1.irf updated)

. irf table cdm, impulse(dln_inv) irf(dm)

Results from dm

(1) (1) (1)
step cdm Lower Upper

0 .032164 -.027215 .091544
1 .096568 .003479 .189656
2 .140107 .022897 .257317
3 .150527 .032116 .268938
4 .148979 .031939 .26602
5 .151247 .033011 .269482
6 .150267 .033202 .267331
7 .150336 .032858 .267813
8 .150525 .033103 .267948

(2) (2) (2)
step cdm Lower Upper

0 .058681 .012529 .104832
1 .062723 -.005058 .130504
2 .126167 .032497 .219837
3 .136583 .038691 .234476
4 .146482 .04442 .248543
5 .146075 .045201 .24695
6 .145542 .044988 .246096
7 .146309 .045315 .247304
8 .145786 .045206 .246365

95% lower and upper bounds reported
(1) irfname = dm, impulse = dln_inv, and response = dln_inc
(2) irfname = dm, impulse = dln_inv, and response = dln_consump

286 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Example 3: After vec

Although all IRFs and orthogonalized IRFs (OIRFs) from models with stationary variables will taper
off to zero, some of the IRFs and OIRFs from models with first-difference stationary variables will not.
This is the key difference between IRFs and OIRFs from systems of stationary variables fit by var or
svar and those obtained from systems of first-difference stationary variables fit by vec. When the
effect of the innovations dies out over time, the shocks are said to be transitory. In contrast, when
the effect does not taper off, shocks are said to be permanent.

In this example, we look at the OIRF from one of the VECMs fit to the unemployment-rate data
analyzed in example 2 of [TS] vec. We see that an orthogonalized shock to Indiana has a permanent
effect on the unemployment rate in Missouri:

. use http://www.stata-press.com/data/r14/urates

. vec missouri indiana kentucky illinois, trend(rconstant) rank(2) lags(4)

(output omitted)
. irf create vec1, set(vecirfs) step(50)
(file vecirfs.irf created)
(file vecirfs.irf now active)
(file vecirfs.irf updated)

Now we can use irf graph to graph the OIRF of interest:

. irf graph oirf, impulse(indiana) response(missouri)

0

.1

.2

.3

0 50

vec1, indiana, missouri

step
Graphs by irfname, impulse variable, and response variable

The graph shows that the estimated OIRF converges to a positive asymptote, which indicates that
an orthogonalized innovation to the unemployment rate in Indiana has a permanent effect on the
unemployment rate in Missouri.

Technical aspects of IRF files

This section is included for programmers wishing to extend the irf system.

irf create estimates a series of impulse–response functions and their standard errors. Although
these estimates are saved in an IRF file, most users will never need to look at the contents of this
file. The IRF commands fill in, analyze, present, and manage IRF results.

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 287

IRF files are just Stata datasets that have names ending in .irf instead of .dta. The dataset in
the file has a nested panel structure.

Variable irfname contains the irfname specified by the user. Variable impulse records the name
of the endogenous variable whose innovations are the impulse. Variable response records the name
of the endogenous variable that is responding to the innovations. In a model with K endogenous
variables, there are K2 combinations of impulse and response. Variable step records the periods
for which these estimates were computed.

Below is a catalog of the statistics that irf create estimates and the variable names under which
they are saved in the IRF file.

Statistic Name
impulse–response functions irf

orthogonalized impulse–response functions oirf

dynamic-multiplier functions dm

cumulative impulse–response functions cirf

cumulative orthogonalized impulse–response functions coirf

cumulative dynamic-multiplier functions cdm

Cholesky forecast-error decomposition fevd

structural impulse–response functions sirf

structural forecast-error decomposition sfevd

standard error of the impulse–response functions stdirf

standard error of the orthogonalized impulse–response functions stdoirf

standard error of the cumulative impulse–response functions stdcirf

standard error of the cumulative orthogonalized impulse–response functions stdcoirf

standard error of the Cholesky forecast-error decomposition stdfevd

standard error of the structural impulse–response functions stdsirf

standard error of the structural forecast-error decomposition stdsfevd

288 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

In addition to the variables, information is stored in dta characteristics. Much of the following
information is also available in r() after irf describe, where it is often more convenient to obtain
the information. Characteristic dta[version] contains the version number of the IRF file, which
is currently 1.1. Characteristic dta[irfnames] contains a list of all the irfnames in the IRF file.
For each irfname, there are a series of additional characteristics:

Name Contents
dta[irfname model] var, sr var, lr var, vec, arima, or arfima

dta[irfname order] Cholesky order used in IRF estimates
dta[irfname exog] exogenous variables, and their lags, in VAR
dta[irfname exogvars] exogenous variables in VAR
dta[irfname constant] constant or noconstant, depending on whether

noconstant was specified in var or svar

dta[irfname lags] lags in model
dta[irfname exlags] lags of exogenous variables in model
dta[irfname tmin] minimum value of timevar in the estimation sample
dta[irfname tmax] maximum value of timevar in the estimation sample
dta[irfname timevar] name of tsset timevar
dta[irfname tsfmt] format of timevar
dta[irfname varcns] constrained or colon-separated list of

constraints placed on VAR coefficients
dta[irfname svarcns] constrained or colon-separated list of

constraints placed on VAR coefficients
dta[irfname step] maximum step in IRF estimates
dta[irfname stderror] asymptotic, bs, bsp, or none,

depending on the type of standard errors requested
dta[irfname reps] number of bootstrap replications performed
dta[irfname version] version of the IRF file that originally

held irfname IRF results
dta[irfname rank] number of cointegrating equations
dta[irfname trend] trend() specified in vec

dta[irfname veccns] constraints placed on VECM parameters
dta[irfname sind] normalized seasonal indicators included in vec

dta[irfname d] fractional difference parameter d in arfima

IRFs and FEVDs

irf create can estimate several types of IRFs and FEVDs for VARs and VECMs. irf create can
also estimate IRFs and cumulative IRFs for ARIMA and ARFIMA models. We first discuss IRF results for
VAR and SVAR models, and then we discuss them in the context of VECMs. Because the cointegrating
VECM is an extension of the stationary VAR framework, the section that discusses the IRF results for
VECMs draws on the earlier VAR material. We conclude our discussion with IRF results for ARIMA
and ARFIMA models.

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 289

IRF results for VARs

An introduction to impulse–response functions for VARs

A pth-order vector autoregressive model (VAR) with exogenous variables is given by

yt = v + A1yt−1 + · · ·+ Apyt−p + Bxt + ut

where

yt = (y1t, . . . , yKt)
′ is a K × 1 random vector,

the Ai are fixed K ×K matrices of parameters,
xt is an R0 × 1 vector of exogenous variables,
B is a K ×R0 matrix of coefficients,
v is a K × 1 vector of fixed parameters, and
ut is assumed to be white noise; that is,

E(ut) = 0
E(utu

′
t) = Σ

E(utu
′
s) = 0 for t 6= s

As discussed in [TS] varstable, a VAR can be rewritten in moving-average form only if it is stable.
Any exogenous variables are assumed to be covariance stationary. Because the functions of interest
in this section depend only on the exogenous variables through their effect on the estimated Ai, we
can simplify the notation by dropping them from the analysis. All the formulas given below still
apply, although the Ai are estimated jointly with B on the exogenous variables.

Below we discuss conditions under which the IRFs and forecast-error variance decompositions have a
causal interpretation. Although estimation requires only that the exogenous variables be predetermined,
that is, that E(xjtuit) = 0 for all i, j, and t, assigning a causal interpretation to IRFs and FEVDs
requires that the exogenous variables be strictly exogenous, that is, that E(xjsuit) = 0 for all i, j,
s, and t.

IRFs describe how the innovations to one variable affect another variable after a given number of
periods. For an example of how IRFs are interpreted, see Stock and Watson (2001). They use IRFs to
investigate the effect of surprise shocks to the Federal Funds rate on inflation and unemployment. In
another example, Christiano, Eichenbaum, and Evans (1999) use IRFs to investigate how shocks to
monetary policy affect other macroeconomic variables.

Consider a VAR without exogenous variables:

yt = v + A1yt−1 + · · ·+ Apyt−p + ut (1)

The VAR represents the variables in yt as functions of its own lags and serially uncorrelated innovations
ut. All the information about contemporaneous correlations among the K variables in yt is contained
in Σ. In fact, as discussed in [TS] var svar, a VAR can be viewed as the reduced form of a dynamic
simultaneous-equation model.

To see how the innovations affect the variables in yt after, say, i periods, rewrite the model in its
moving-average form

yt = µ+

∞∑
i=0

Φiut−i (2)

where µ is the K × 1 time-invariant mean of yt, and

Φi =

{
IK if i = 0∑i

j=1 Φi−jAj if i = 1, 2, . . .

290 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

We can rewrite a VAR in the moving-average form only if it is stable. Essentially, a VAR is stable
if the variables are covariance stationary and none of the autocorrelations are too high (the issue of
stability is discussed in greater detail in [TS] varstable).

The Φi are the simple IRFs. The j, k element of Φi gives the effect of a 1–time unit increase in
the kth element of ut on the jth element of yt after i periods, holding everything else constant.
Unfortunately, these effects have no causal interpretation, which would require us to be able to answer
the question, “How does an innovation to variable k, holding everything else constant, affect variable j
after i periods?” Because the ut are contemporaneously correlated, we cannot assume that everything
else is held constant. Contemporaneous correlation among the ut implies that a shock to one variable
is likely to be accompanied by shocks to some of the other variables, so it does not make sense to
shock one variable and hold everything else constant. For this reason, (2) cannot provide a causal
interpretation.

This shortcoming may be overcome by rewriting (2) in terms of mutually uncorrelated innovations.
Suppose that we had a matrix P, such that Σ = PP′. If we had such a P, then P−1ΣP′−1 = IK ,
and

E{P−1ut(P
−1ut)

′} = P−1E{(utu′t)P′−1} = P−1ΣP′−1 = IK

We can thus use P−1 to orthogonalize the ut and rewrite (2) as

yt = µ+

∞∑
i=0

ΦiPP−1ut−i

= µ+

∞∑
i=0

ΘiP
−1ut−i

= µ+

∞∑
i=0

Θiwt−i

where Θi = ΦiP and wt = P−1ut. If we had such a P, the wk would be mutually orthogonal,
and no information would be lost in the holding-everything-else-constant assumption, implying that
the Θi would have the causal interpretation that we seek.

Choosing a P is similar to placing identification restrictions on a system of dynamic simultaneous
equations. The simple IRFs do not identify the causal relationships that we wish to analyze. Thus we
seek at least as many identification restrictions as necessary to identify the causal IRFs.

So, where do we get such a P? Sims (1980) popularized the method of choosing P to be the
Cholesky decomposition of Σ̂. The IRFs based on this choice of P are known as the orthogonalized
IRFs . Choosing P to be the Cholesky decomposition of Σ̂ is equivalent to imposing a recursive
structure for the corresponding dynamic structural equation model. The ordering of the recursive
structure is the same as the ordering imposed in the Cholesky decomposition. Because this choice is
arbitrary, some researchers will look at the OIRFs with different orderings assumed in the Cholesky
decomposition. The order() option available with irf create facilitates this type of analysis.

The SVAR approach integrates the need to identify the causal IRFs into the model specification and
estimation process. Sufficient identification restrictions can be obtained by placing either short-run or
long-run restrictions on the model. The VAR in (1) can be rewritten as

yt − v −A1yt−1 − · · · −Apyt−p = ut

Similarly, a short-run SVAR model can be written as

A(yt − v −A1yt−1 − · · · −Apyt−p) = Aut = Bet (3)

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 291

where A and B are K×K nonsingular matrices of parameters to be estimated, et is a K× 1 vector
of disturbances with et ∼ N(0, IK), and E(ete

′
s) = 0K for all s 6= t. Sufficient constraints must

be placed on A and B so that P is identified. One way to see the connection is to draw out the
implications of the latter equality in (3). From (3) it can be shown that

Σ = A−1B(A−1B)′

As discussed in [TS] var svar, the estimates Â and B̂ are obtained by maximizing the concentrated
log-likelihood function on the basis of the Σ̂ obtained from the underlying VAR. The short-run
SVAR approach chooses P = Â−1B̂ to identify the causal IRFs. The long-run SVAR approach works

similarly, with P = Ĉ = Â
−1

B̂, where Â
−1

is the matrix of estimated long-run or accumulated
effects of the reduced-form VAR shocks.

There is one important difference between long-run and short-run SVAR models. As discussed by
Amisano and Giannini (1997, chap. 6), in the short-run model the constraints are applied directly to
the parameters in A and B. Then A and B interact with the estimated parameters of the underlying
VAR. In contrast, in a long-run model, the constraints are placed on functions of the estimated VAR
parameters. Although estimation and inference of the parameters in C is straightforward, obtaining
the asymptotic standard errors of the structural IRFs requires untenable assumptions. For this reason,
irf create does not estimate the asymptotic standard errors of the structural IRFs generated by
long-run SVAR models. However, bootstrap standard errors are still available.

An introduction to dynamic-multiplier functions for VARs

A dynamic-multiplier function measures the effect of a unit change in an exogenous variable on the
endogenous variables over time. Per Lütkepohl (2005, chap. 10), if the VAR with exogenous variables
is stable, it can be rewritten as

yt =

∞∑
i=0

Dixt−i +

∞∑
i=0

Φiut−i

where the Di are the dynamic-multiplier functions. (See Methods and formulas for details.) Some
authors refer to the dynamic-multiplier functions as transfer functions because they specify how a
unit change in an exogenous variable is “transferred” to the endogenous variables.

Technical note
irf create computes dynamic-multiplier functions only after var. After short-run SVAR models,

the dynamic multipliers from the VAR are the same as those from the SVAR. The dynamic multipliers
for long-run SVARs have not yet been worked out.

An introduction to forecast-error variance decompositions for VARs

Another measure of the effect of the innovations in variable k on variable j is the FEVD. This
method, which is also known as innovation accounting, measures the fraction of the error in forecasting
variable j after h periods that is attributable to the orthogonalized innovations in variable k. Because
deriving the FEVD requires orthogonalizing the ut innovations, the FEVD is always predicated upon
a choice of P.

292 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Lütkepohl (2005, sec. 2.2.2) shows that the h-step forecast error can be written as

yt+h − ŷt(h) =

h−1∑
i=0

Φiut+h−i (4)

where yt+h is the value observed at time t + h and ŷt(h) is the h-step-ahead predicted value for
yt+h that was made at time t.

Because the ut are contemporaneously correlated, their distinct contributions to the forecast error
cannot be ascertained. However, if we choose a P such that Σ = PP′, as above, we can orthogonalize
the ut into wt = P−1ut. We can then ascertain the relative contribution of the distinct elements of
wt. Thus we can rewrite (4) as

yt+h − ŷt(h) =

h−1∑
i=0

ΦiPP−1ut+h−i

=

h−1∑
i=0

Θiwt+h−i

Because the forecast errors can be written in terms of the orthogonalized errors, the forecast-
error variance can be written in terms of the orthogonalized error variances. Forecast-error variance
decompositions measure the fraction of the total forecast-error variance that is attributable to each
orthogonalized shock.

Technical note

The details in this note are not critical to the discussion that follows. A forecast-error variance
decomposition is derived for a given P. Per Lütkepohl (2005, sec. 2.3.3), letting θmn,i be the m, nth
element of Θi, we can express the h-step forecast error of the jth component of yt as

yj,t+h − ŷj(h) =

h−1∑
i=0

θj1,1w1,t+h−i + · · ·+ θjK,iwK,t+h−i

=

K∑
k=1

θjk,0wk,t+h + · · ·+ θjk,h−1wk,t+1

The wt, which were constructed using P, are mutually orthogonal with unit variance. This allows
us to compute easily the mean squared error (MSE) of the forecast of variable j at horizon h in terms
of the contributions of the components of wt. Specifically,

E[{yj,t+h − yj,t(h)}2] =

K∑
k=1

(θ2
jk,0 + · · ·+ θ2

jk,h−1)

The kth term in the sum above is interpreted as the contribution of the orthogonalized innovations
in variable k to the h-step forecast error of variable j. Note that the kth element in the sum above
can be rewritten as

(θ2
jk,0 + · · ·+ θ2

jk,h−1) =

h−1∑
i=0

(
e′jΘkek

)2

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 293

where ei is the ith column of IK . Normalizing by the forecast error for variable j at horizon h yields

ωjk,h =

∑h−1
i=0

(
e′jΘkek

)2
MSE{yj,t(h)}

where MSE{yj,t(h)} =
∑h−1
i=0

∑K
k=1 θ

2
jk,i.

Because the FEVD depends on the choice of P, there are different forecast-error variance de-
compositions associated with each distinct P. irf create can estimate the FEVD for a VAR or an
SVAR. For a VAR, P is the Cholesky decomposition of Σ̂. For an SVAR, P is the estimated structural
decomposition, P = Â−1B̂ for short-run models and P = Ĉ for long-run SVAR models. Due to the
same complications that arose with the structural impulse–response functions, the asymptotic standard
errors of the structural FEVD are not available after long-run SVAR models, but bootstrap standard
errors are still available.

IRF results for VECMs

An introduction to impulse–response functions for VECMs

As discussed in [TS] vec intro, the VECM is a reparameterization of the VAR that is especially
useful for fitting VARs with cointegrating variables. This implies that the estimated parameters for
the corresponding VAR model can be backed out from the estimated parameters of the VECM model.
This relationship means we can use the VAR form of the cointegrating VECM to discuss the IRFs for
VECMs.

Consider a cointegrating VAR with one lag with no constant or trend,

yt = Ayt−1 + ut (5)

where yt is a K × 1 vector of endogenous, first-difference stationary variables among which there
are 1 ≤ r < K cointegration equations; A is K×K matrix of parameters; and ut is a K× 1 vector
of i.i.d. disturbances.

We developed intuition for the IRFs from a stationary VAR by rewriting the VAR as an infinite-
order vector moving-average (VMA) process. While the Granger representation theorem establishes
the existence of a VMA formulation of this model, because the cointegrating VAR is not stable, the
inversion is not nearly so intuitive. (See Johansen [1995, chapters 3 and 4] for more details.) For this
reason, we use (5) to develop intuition for the IRFs from a cointegrating VAR.

Suppose that K is 3, that u1 = (1, 0, 0), and that we want to analyze the time paths of the
variables in y conditional on the initial values y0 = 0, A, and the condition that there are no more
shocks to the system, that is, 0 = u2 = u3 = · · · . These assumptions and (5) imply that

y1 = u1

y2 = Ay1 = Au1

y3 = Ay2 = A2u1

294 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

and so on. The ith-row element of the first column of As contains the effect of the unit shock to the
first variable after s periods. The first column of As contains the IRF of a unit impulse to the first
variable after s periods. We could deduce the IRFs of a unit impulse to any of the other variables by
administering the unit shock to one of them instead of to the first variable. Thus we can see that the
(i, j)th element of As contains the unit IRF from variable j to variable i after s periods. By starting
with orthogonalized shocks of the form P−1ut, we can use the same logic to derive the OIRFs to be
AsP.

For the stationary VAR, stability implies that all the eigenvalues of A have moduli strictly less than
one, which in turn implies that all the elements of As → 0 as s → ∞. This implies that all the
IRFs from a stationary VAR taper off to zero as s→∞. In contrast, in a cointegrating VAR, some of
the eigenvalues of A are 1, while the remaining eigenvalues have moduli strictly less than 1. This
implies that in cointegrating VARs some of the elements of As are not going to zero as s → ∞,
which in turn implies that some of the IRFs and OIRFs are not going to zero as s→∞. The fact that
the IRFs and OIRFs taper off to zero for stationary VARs but not for cointegrating VARs is one of the
key differences between the two models.

When the IRF or OIRF from the innovation in one variable to another tapers off to zero as time
goes on, the innovation to the first variable is said to have a transitory effect on the second variable.
When the IRF or OIRF does not go to zero, the effect is said to be permanent.

Note that, because some of the IRFs and OIRFs do not taper off to zero, some of the cumulative
IRFs and OIRFs diverge over time.

An introduction to forecast-error variance decompositions for VECMs

The results from An introduction to impulse–response functions for VECMs can be used to show
that the interpretation of FEVDs for a finite number of steps in cointegrating VARs is essentially the
same as in the stationary case. Because the MSE of the forecast is diverging, this interpretation is valid
only for a finite number of steps. (See [TS] vec intro and [TS] fcast compute for more information
on this point.)

IRF results for ARIMA and ARFIMA

A covariance-stationary additive ARMA(p, q) model can be written as

ρ(Lp)(yt − xtβ) = θ(Lq)εt

where
ρ(Lp) = 1− ρ1L− ρ2L

2 − · · · − ρpLp

θ(Lq) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

and Ljyt = yt−j .

We can rewrite the above model as an infinite-order moving-average process

yt = xtβ+ ψ(L)εt

where

ψ(L) =
θ(L)

ρ(L)
= 1 + ψ1L+ ψ2L

2 + · · · (6)

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 295

This representation shows the impact of the past innovations on the current yt. The ith coefficient
describes the response of yt to a one-time impulse in εt−i, holding everything else constant. The ψi
coefficients are collectively referred to as the impulse–response function of the ARMA model. For a
covariance-stationary series, the ψi coefficients decay exponentially.

A covariance-stationary multiplicative seasonal ARMA model, often abbreviated SARMA, of order
(p, q)× (P,Q)s can be written as

ρ(Lp)ρs(L
P)(yt − xtβ) = θ(Lq)θs(L

Q)εt

where
ρs(L

P) = (1− ρs,1Ls − ρs,2L2s − · · · − ρs,PLPs)
θs(L

Q) = (1 + θs,1L
s + θs,2L

2s + · · ·+ θs,QL
Qs)

with ρ(Lp) and θ(Lq) defined as above.

We can express this model as an additive ARMA model by multiplying the terms and imposing
nonlinear constraints on multiplied coefficients. For example, consider the SARMA model given by

(1− ρ1L)(1− ρ4,1L
4)yt = εt

Expanding the above equation and solving for yt yields

yt = ρ1yt−1 + ρ4,1yt−4 − ρ1ρ4,1yt−5 + εt

or, in ARMA terms,

yt = ρ1yt−1 + ρ4yt−4 + ρ5yt−5 + εt

subject to the constraint ρ5 = −ρ1ρ4,1.

Once we have obtained an ARMA representation of a SARMA process, we obtain the IRFs from (6).

An ARFIMA(p, d, q) model can be written as

ρ(Lp)(1− L)d(yt − xtβ) = θ(Lq)εt

with (1− L)d denoting a fractional integration operation.

Solving for yt, we obtain
yt = xtβ+ (1− L)−dψ(L)εt

This makes it clear that the impulse–response function for an ARFIMA model corresponds to a
fractionally differenced impulse–response function for an ARIMA model. Because of the fractional
differentiation, the ψi coefficients decay very slowly; see Remarks and examples in [TS] arfima.

Methods and formulas
Methods and formulas are presented under the following headings:

Impulse–response function formulas for VARs
Dynamic-multiplier function formulas for VARs
Forecast-error variance decomposition formulas for VARs
Impulse–response function formulas for VECMs
Algorithms for bootstrapping the VAR IRF and FEVD standard errors
Impulse–response function formulas for ARIMA and ARFIMA

296 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Impulse–response function formulas for VARs

The previous discussion implies that there are three different choices of P that can be used to
obtain distinct Θi. P is the Cholesky decomposition of Σ for the OIRFs. For the structural IRFs,
P = A−1B for short-run models, and P = C for long-run models. We will distinguish between
the three by defining Θoi to be the OIRFs, Θsr

i to be the short-run structural IRFs, and Θlr
i to be the

long-run structural IRFs.

We also define P̂c to be the Cholesky decomposition of Σ̂, P̂sr = Â−1B̂ to be the short-run
structural decomposition, and P̂lr = Ĉ to be the long-run structural decomposition.

Given estimates of the Âi and Σ̂ from var or svar, the estimates of the simple IRFs and the
OIRFs are, respectively,

Φ̂i =

i∑
j=1

Φ̂i−jÂj

and
Θ̂
o

i = Φ̂iP̂c

where Âj = 0K for j > p.

Given the estimates Â and B̂, or Ĉ, from svar, the estimates of the structural IRFs are either

Θ̂
sr

i = Φ̂iP̂sr

or
Θ̂

lr

i = Φ̂iP̂lr

The estimated structural IRFs stored in an IRF file with the variable name sirf may be from
either a short-run model or a long-run model, depending on the estimation results used to create the
IRFs. As discussed in [TS] irf describe, you can easily determine whether the structural IRFs were
generated from a short-run or a long-run SVAR model using irf describe.

Following Lütkepohl (2005, sec. 3.7), estimates of the cumulative IRFs and the cumulative
orthogonalized impulse–response functions (COIRFs) at period n are, respectively,

Ψ̂n =

n∑
i=0

Φ̂i

and

Ξ̂n =

n∑
i=0

Θ̂i

The asymptotic standard errors of the different impulse–response functions are obtained by
applications of the delta method. See Lütkepohl (2005, sec. 3.7) and Amisano and Giannini (1997,
chap. 4) for the derivations. See Serfling (1980, sec. 3.3) for a discussion of the delta method. In
presenting the variance–covariance matrix estimators, we make extensive use of the vec() operator,
where vec(X) is the vector obtained by stacking the columns of X.

Lütkepohl (2005, sec. 3.7) derives the asymptotic VCEs of vec(Φi), vec(Θoi), vec(Ψ̂n), and
vec(Ξ̂n). Because vec(Φi) is K2× 1, the asymptotic VCE of vec(Φi) is K2×K2, and it is given by

GiΣ̂α̂G′i

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 297

where
Gi =

∑i−1
m=0 J(M̂′)(i−1−m) ⊗ Φ̂m Gi is K2×K2p

J = (IK ,0K , . . . ,0K) J is K×Kp

M̂ =

Â1 Â2 . . . Âp−1 Âp

IK 0K . . . 0K 0K
0K IK 0K 0K

...
. . .

...
...

0K 0K . . . IK 0K

 M̂ is Kp×Kp

The Âi are the estimates of the coefficients on the lagged variables in the VAR, and Σ̂
α̂

is the VCE

matrix of α̂ = vec(Â1, . . . , Âp). Σ̂
α̂

is a K2p×K2p matrix whose elements come from the VCE
of the VAR coefficient estimator. As such, this VCE is the VCE of the constrained estimator if there
are any constraints placed on the VAR coefficients.

The K2 ×K2 asymptotic VCE matrix for vec(Ψ̂n) after n periods is given by

FnΣ̂α̂F′n

where

Fn =

n∑
i=1

Gi

The K2×K2 asymptotic VCE matrix of the vectorized, orthogonalized, IRFs at horizon i, vec(Θoi),
is

CiΣ̂α̂C′i + CiΣ̂σ̂C
′
i

298 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

where

C0 = 0 C0 is K2×K2p

Ci = (P̂′c ⊗ IK)Gi, i = 1, 2, . . . Ci is K2×K2p

Ci = (IK ⊗ Φi)H, i = 0, 1, . . . Ci is K2×K2

H = L′K

{
LKNK(P̂c ⊗ IK)L′K

}−1

H is K2×K (K+1)
2

LK solves vech(F) = LK vec(F) LK is K (K+1)
2 ×K2

for F K ×K and symmetric

KK solves KKvec(G) = vec(G′) for any K ×K matrix G KK is K2×K2

NK = 1
2 (IK2 + KK) NK is K2×K2

Σ̂
σ̂

= 2D+
K(Σ̂⊗ Σ̂)D+

K Σ̂
σ̂

is K (K+1)
2 ×K (K+1)

2

D+
K = (D′KDK)

−1
D′K D+

K
is K (K+1)

2 ×K2

DK solves DKvech(F) = vec(F) for F K ×K and symmetric DK is K2×K (K+1)
2

vech(X) =

x11

x21
...

xK1

x22
...

xK2
...

xKK

for X K ×K vech(X) is K (K+1)

2 ×1

Note that Σ̂
σ̂

is the VCE of vech(Σ̂). More details about LK , KK , DK and vech() are available in
Lütkepohl (2005, sec. A.12). Finally, as Lütkepohl (2005, 113–114) discusses, D+

K is the Moore–
Penrose inverse of DK .

As discussed in Amisano and Giannini (1997, chap. 6), the asymptotic standard errors of the
structural IRFs are available for short-run SVAR models but not for long-run SVAR models. Following
Amisano and Giannini (1997, chap. 5), the asymptotic K2×K2 VCE of the short-run structural IRFs
after i periods, when a maximum of h periods are estimated, is the i, i block of

Σ̂(h)ij = G̃iΣ̂α̂G̃′j +
{

IK ⊗ (JM̂iJ′)
}
Σ(0)

{
IK ⊗ (JM̂jJ′)

}′

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 299

where
G̃0 = 0K G0 is K2×K2p

G̃i =
∑i−1
k=0

{
P̂′srJ(M̂′)i−1−k ⊗

(
JM̂kJ′

)}
Gi is K2×K2p

Σ̂(0) = Q2Σ̂WQ′2 Σ̂(0) is K2×K2

Σ̂W = Q1Σ̂ABQ′1 Σ̂W is K2×K2

Q2 = P̂′sr ⊗ P̂sr Q2 is K2×K2

Q1 =
{

(IK ⊗ B̂−1), (−P̂′−1
sr ⊗B−1)

}
Q1 is K2×2K2

and Σ̂AB is the 2K2 × 2K2 VCE of the estimator of vec(A,B).

Dynamic-multiplier function formulas for VARs

This section provides the details of how irf create estimates the dynamic-multiplier functions
and their asymptotic standard errors.

A pth order vector autoregressive model (VAR) with exogenous variables may be written as

yt = v + A1yt−1 + · · ·+ Apyt−p + B0xt + B1xt−1 + · · ·+ Bsxt−s + ut

where all the notation is the same as above except that the s K × R matrices B1,B2, . . . ,Bs are
explicitly included and s is the number of lags of the R exogenous variables in the model.

Lütkepohl (2005) shows that the dynamic-multipliers Di are consistently estimated by

D̂i = JxÃ
i
xB̂x i ∈ {0, 1, . . .}

where
Jx = (IK ,0K , . . . ,0K) J is K×(Kp+Rs)

Ãx =

[
M̂ B̂
0̃ Ĩ

]
Ãx is (Kp+Rs)×(Kp+Rs)

B̂ =

B̂1 B̂2 . . . B̂s

0̈ 0̈ . . . 0̈
...

...
. . .

...
0̈ 0̈ . . . 0̈

 B̂ is Kp×Rs

Ĩ =

0R 0R . . . 0R 0R
IR 0R . . . 0R 0R
0R IR 0R 0R

...
. . .

...
...

0R 0R . . . IR 0R

 Ĩ is Rs×Rs

B̂′x =
[
B̃′ Ï′

]
B̂′x is R×(Kp+Rs)

B̃′ =
[
B̂′0 0̈′ · · · 0̈′

]
B̃ is R×Kp

Ï′ = [IR 0R · · ·0R] Ï is R×Rs

and 0̈ is a K ×R matrix of 0s and 0̃ is a Rs×Kp matrix of 0s.

300 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Consistent estimators of the cumulative dynamic-multiplier functions are given by

Di =

i∑
j=0

D̂j

Letting βx = vec(A1A2 · · ·ApB1B2 · · ·BsB0) and letting Σ
β̂x

be the asymptotic variance–

covariance estimator (VCE) of β̂x, Lütkepohl shows that an asymptotic VCE of D̂i is G̃iΣβ̂x
G̃′i

where

G̃i =

(
i−1∑
j=0

B′xÃ
i−1−j
x ⊗ JxÃ

j
xJ
′
x, IR ⊗ JxÃ

j
xJx

)

Similarly, an asymptotic VCE of Di is
(∑i

j=0 G̃j

)
Σ
β̂x

(∑i
j=0 G̃′j

)
.

Forecast-error variance decomposition formulas for VARs

This section provides details of how irf create estimates the Cholesky FEVD, the structural
FEVD, and their standard errors. Beginning with the Cholesky-based forecast-error decompositions,
the fraction of the h-step-ahead forecast-error variance of variable j that is attributable to the Cholesky
orthogonalized innovations in variable k can be estimated as

ω̂jk,h =

∑h−1
i=0 (e′jΘ̂iek)2

M̂SEj(h)

where MSEj(h) is the jth diagonal element of

h−1∑
i=0

Φ̂iΣ̂Φ̂
′
i

(See Lütkepohl [2005, 109] for a discussion of this result.) ω̂jk,h and MSEj(h) are scalars. The square
of the standard error of ω̂jk,h is

djk,hΣ̂αd′jk,h + djk,hΣ̂σdjk,h

where

djk,h = 2
MSEj(h)2

∑h−1
i=0

{
MSEj(h)(e′jΦ̂iP̂cek)(e′kP̂

′
c ⊗ e′j)Gi

−(e′jΦiP̂cek)2
∑h−1
m=0(e′jΦ̂mΣ̂⊗ e′j)Gm

}
djk,h is 1×K2p

djk,h =
∑h−1
i=0

{
MSEj(h)(e′jΦ̂iPcek)(e′k ⊗ e′jΦ̂i)H

−(e′jΦ̂iP̂cek)2
∑h−1
m=0(e′jΦ̂m ⊗ ejΦ̂m)DK

}
1

MSEj(h)2 djk,h is 1×K (K+1)
2

G0 = 0 G0 is K2×K2p

and DK is the K2 ×K{(K + 1)/2} duplication matrix defined previously.

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 301

For the structural forecast-error decompositions, we follow Amisano and Giannini (1997, sec. 5.2).
They define the matrix of structural forecast-error decompositions at horizon s, when a maximum of
h periods are estimated, as

Ŵs = F̂−1
s
̂̃
Ms for s = 1, . . . , h+ 1

F̂s =

(
s−1∑
i=0

Θ̂
sr

i Θ̂
sr′
i

)
� IK

̂̃
Ms =

s−1∑
i=0

Θ̂
sr

i � Θ̂
sr

i

where � is the Hadamard, or element-by-element, product.

The K2 ×K2 asymptotic VCE of vec(Ŵs) is given by

Z̃sΣ(h)Z̃′s

where Σ̂(h) is as derived previously, and

Z̃s =

{
∂vec(Ŵs)

∂vec(Θ̂
sr

0)
,
∂vec(Ŵs)

∂vec(Θ̂
sr

1)
, · · · , ∂vec(Ŵs)

∂vec(Θ̂
sr

h)

}
∂vec(Ŵs)

∂vec(Θ̂
sr

j)
= 2

{
(IK ⊗ F̂−1

s)D̃(Θ̂
sr

j)− (Ŵ′
s ⊗ F̂−1

s)D̃(IK)NK(Θ̂
sr

j ⊗ IK)
}

If X is an n× n matrix, then D̃(X) is the n2 × n2 matrix with vec(X) on the diagonal and zeros
in all the off-diagonal elements, and NK is as defined previously.

Impulse–response function formulas for VECMs

We begin by providing the formulas for backing out the estimates of the Ai from the Γi estimated
by vec. As discussed in [TS] vec intro, the VAR in (1) can be rewritten as a VECM:

∆yt = v + Πyt−1 + Γ1∆yt−1 + Γp−1∆yp−2 + εt

vec estimates Π and the Γi. Johansen (1995, 25) notes that

Π =

p∑
i=1

Ai − IK (6)

where IK is the K-dimensional identity matrix, and

Γi = −
p∑

j=i+1

Aj (7)

302 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

Defining

Γ = IK −
p−1∑
i=1

Γi

and using (6) and (7) allow us to solve for the Ai as

A1 = Π + Γ1 + IK

Ai = Γi − Γi−1 for i = {2, . . . , p− 1}

and
Ap = −Γp−1

Using these formulas, we can back out estimates of Ai from the estimates of the Γi and Π produced
by vec. Then we simply use the formulas for the IRFs and OIRFs presented in Impulse–response
function formulas for VARs.

The running sums of the IRFs and OIRFs over the steps within each impulse–response pair are the
cumulative IRFs and OIRFs.

Algorithms for bootstrapping the VAR IRF and FEVD standard errors

irf create offers two bootstrap algorithms for estimating the standard errors of the various IRFs
and FEVDs. Both var and svar contain estimators for the coefficients in a VAR that are conditional on
the first p observations. The two bootstrap algorithms are also conditional on the first p observations.

Specifying the bs option calculates the standard errors by bootstrapping the residuals. For a
bootstrap with R repetitions, this method uses the following algorithm:

1. Fit the model and save the estimated parameters.

2. Use the estimated coefficients to calculate the residuals.

3. Repeat steps 3a to 3c R times.

3a. Draw a simple random sample of size T with replacement from the residuals. The
random samples are drawn over the K×1 vectors of residuals. When the tth vector is
drawn, all K residuals are selected. This preserves the contemporaneous correlations
among the residuals.

3b. Use the p initial observations, the sampled residuals, and the estimated coefficients to
construct a new sample dataset.

3c. Fit the model and calculate the different IRFs and FEVDs.

3d. Save these estimates as observation r in the bootstrapped dataset.

4. For each IRF and FEVD, the estimated standard deviation from the R bootstrapped estimates
is the estimated standard error of that impulse–response function or forecast-error variance
decomposition.

Specifying the bsp option estimates the standard errors by a multivariate normal parametric
bootstrap. The algorithm for the multivariate normal parametric bootstrap is identical to the one
above, with the exception that 3a is replaced by 3a(bsp):

3a(bsp). Draw T pseudovariates from a multivariate normal distribution with covariance matrix
Σ̂.

irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs 303

Impulse–response function formulas for ARIMA and ARFIMA

The previous discussion showed that a SARMA process can be rewritten as an ARMA process and
that for an ARMA process, we can express ψ(L) in terms of θ(L) and ρ(L),

ψ(L) =
θ(L)

ρ(L)

Expanding the above, we obtain

ψ0 + ψ1L+ ψ2L
2 + · · · = 1 + θ1L+ θ2L

2 + · · ·
1− ρ1L− ρ2L2 − · · ·

Given the estimate of the autoregressive terms ρ̂ and the moving-average terms θ̂, the IRF is
obtained by solving the above equation for the ψ weights. The ψi are calculated using the recursion

ψ̂i = θ̂i +

p∑
j=1

φ̂jψ̂i−j

with ψ0 = 1 and θi = 0 for i > max(p, q + 1).

The asymptotic standard errors for the IRF for ARMA are calculated using the delta method;
see Serfling (1980, sec. 3.3) for a discussion of the delta method. Let Σ̂ be the estimate of the
variance–covariance matrix for ρ̂ and θ̂, and let Ψ be a matrix of derivatives of ψi with respect to
ρ̂ and θ̂. Then the standard errors for ψ̂i are calculated as

ΨiΣ̂Ψ′i

The IRF for the ARFIMA(p, d, q) model is obtained by applying the filter (1−L)−d to ψ(L). The
filter is given by Hassler and Kokoszka (2010) as

(1− L)−d =

∞∑
i=0

biL
i

with b0 = 1 and subsequent bi calculated by the recursion

b̂i =
d̂+ i− 1

i
b̂i−1

The resulting IRF is then given by

φ̂i =

i∑
j=0

ψ̂j b̂i−j

The asymptotic standard errors for the IRF for ARFIMA are calculated using the delta method. Let
Σ̂ be the estimate of the variance–covariance matrix for ρ̂, θ̂, and d̂, and let Φ be a matrix of
derivatives of φi with respect to ρ̂, θ̂, and d̂. Then the standard errors for φ̂i are calculated as

ΦiΣ̂Φ′i

304 irf create — Obtain IRFs, dynamic-multiplier functions, and FEVDs

References
Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.

Christiano, L. J., M. Eichenbaum, and C. L. Evans. 1999. Monetary policy shocks: What have we learned and to
what end? In Handbook of Macroeconomics: Volume 1A, ed. J. B. Taylor and M. Woodford. New York: Elsevier.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Hassler, U., and P. Kokoszka. 2010. Impulse responses of fractionally integrated processes with long memory.
Econometric Theory 26: 1855–1861.

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Serfling, R. J. 1980. Approximation Theorems of Mathematical Statistics. New York: Wiley.

Sims, C. A. 1980. Macroeconomics and reality. Econometrica 48: 1–48.

Stock, J. H., and M. W. Watson. 2001. Vector autoregressions. Journal of Economic Perspectives 15: 101–115.

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html

Title

irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf ctable makes a table or a combined table of IRF results. A table is made for specified

combinations of named IRF results, impulse variables, response variables, and statistics. irf ctable
combines these tables into one table, unless separate tables are requested.

irf ctable operates on the active IRF file; see [TS] irf set.

Quick start
Combine tables of an orthogonalized IRF myirf and cumulative IRF mycirf for dependent variables

y1 and y2

irf ctable (myirf y1 y2 oirf) (mycirf y1 y2 cirf)

As above, but suppress confidence intervals and add a title
irf ctable (myirf y1 y2 oirf) (mycirf y1 y2 cirf), noci ///

title("My Title")

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Combined tables

305

306 irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs

Syntax
irf ctable (spec1)

[
(spec2) . . .

[
(specN)

]] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
)

irfname is the name of a set of IRF results in the active IRF file. impulsevar should be specified as an
endogenous variable for all statistics except dm and cdm; for those, specify as an exogenous variable.
responsevar is an endogenous variable name. stat is one or more statistics from the list below:

stat Description

irf impulse–response function
oirf orthogonalized impulse–response function
dm dynamic-multiplier function
cirf cumulative impulse–response function
coirf cumulative orthogonalized impulse–response function
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition
sirf structural impulse–response function
sfevd structural forecast-error variance decomposition

options Description

set(filename) make filename active
noci do not report confidence intervals
stderror include standard errors for each statistic
individual make an individual table for each combination
title("text") use text as overall table title
step(#) set common maximum step
level(#) set confidence level; default is level(95)

spec options Description

noci do not report confidence intervals
stderror include standard errors for each statistic
level(#) set confidence level; default is level(95)

ititle("text") use text as individual subtitle for specific table

spec options may be specified within a table specification, globally, or both. When specified in a table specification,
the spec options affect only the specification in which they are used. When supplied globally, the spec options
affect all table specifications. When specified in both places, options for the table specification take precedence.

ititle() does not appear in the dialog box.

irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs 307

Options
set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the

active file is used.

noci suppresses reporting of the confidence intervals for each statistic. noci is assumed when the
model was fit by vec because no confidence intervals were estimated.

stderror specifies that standard errors for each statistic also be included in the table.

individual places each block, or (speck), in its own table. By default, irf ctable combines all
the blocks into one table.

title("text") specifies a title for the table or the set of tables.

step(#) specifies the maximum number of steps to use for all tables. By default, each table is
constructed using all steps available.

level(#) specifies the default confidence level, as a percentage, for confidence intervals, when they
are reported. The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals.

The following option is available with irf ctable but is not shown in the dialog box:

ititle("text") specifies an individual subtitle for a specific table. ititle() may be specified only
when the individual option is also specified.

Remarks and examples
If you have not read [TS] irf, please do so.

Also see [TS] irf table for a slightly easier to use, but less powerful, table command.

irf ctable creates a series of tables from IRF results. The information enclosed within each set
of parentheses,

(irfname impulsevar responsevar stat
[
, spec options

]
)

forms a request for a specific table.

The first part—irfname impulsevar responsevar—identifies a set of IRF estimates or a set of variance
decomposition estimates. The next part—stat—specifies which statistics are to be included in the
table. The last part—spec options—includes the noci, level(), and stderror options, and places
(or suppresses) additional columns in the table.

Each specific table displays the requested statistics corresponding to the specified combination of
irfname, impulsevar, and responsevar over the step horizon. By default, all the individual tables are
combined into one table. Also by default, all the steps, or periods, available are included in the table.
You can use the step() option to impose a common maximum for all tables.

Example 1

In example 1 of [TS] irf table, we fit a model using var and we saved the IRFs for two different
orderings. The commands we used were

. use http://www.stata-press.com/data/r14/lutkepohl2

. var dln_inv dln_inc dln_consump

. irf set results4

. irf create ordera, step(8)

. irf create orderb, order(dln_inc dln_inv dln_consump) step(8)

308 irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs

We then formed the desired table by typing

. irf table oirf fevd, impulse(dln_inc) response(dln_consump) noci std
> title("Ordera versus orderb")

Using irf ctable, we can form the equivalent table by typing

. irf ctable (ordera dln_inc dln_consump oirf fevd)
> (orderb dln_inc dln_consump oirf fevd),
> noci std title("Ordera versus orderb")

Ordera versus orderb

(1) (1) (1) (1)
step oirf S.E. fevd S.E.

0 .005123 .000878 0 0
1 .001635 .000984 .288494 .077483
2 .002948 .000993 .294288 .073722
3 -.000221 .000662 .322454 .075562
4 .000811 .000586 .319227 .074063
5 .000462 .000333 .322579 .075019
6 .000044 .000275 .323552 .075371
7 .000151 .000162 .323383 .075314
8 .000091 .000114 .323499 .075386

(2) (2) (2) (2)
step oirf S.E. fevd S.E.

0 .005461 .000925 0 0
1 .001578 .000988 .327807 .08159
2 .003307 .001042 .328795 .077519
3 -.00019 .000676 .370775 .080604
4 .000846 .000617 .366896 .079019
5 .000491 .000349 .370399 .079941
6 .000069 .000292 .371487 .080323
7 .000158 .000172 .371315 .080287
8 .000096 .000122 .371438 .080366

(1) irfname = ordera, impulse = dln_inc, and response = dln_consump
(2) irfname = orderb, impulse = dln_inc, and response = dln_consump

The output is displayed in one table. Because the table did not fit horizontally, it automatically
wrapped. At the bottom of the table is a list of keys that appear at the top of each column. The
results in the table above indicate that the orthogonalized IRFs do not change by much. Because the
estimated forecast-error variances do change, we might want to produce two tables that contain the
estimated forecast-error variance decompositions and their 95% confidence intervals:

irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs 309

. irf ctable (ordera dln_inc dln_consump fevd)
> (orderb dln_inc dln_consump fevd), individual

Table 1

(1) (1) (1)
step fevd Lower Upper

0 0 0 0
1 .288494 .13663 .440357
2 .294288 .149797 .43878
3 .322454 .174356 .470552
4 .319227 .174066 .464389
5 .322579 .175544 .469613
6 .323552 .175826 .471277
7 .323383 .17577 .470995
8 .323499 .175744 .471253

95% lower and upper bounds reported
(1) irfname = ordera, impulse = dln_inc, and response = dln_consump

Table 2

(2) (2) (2)
step fevd Lower Upper

0 0 0 0
1 .327807 .167893 .487721
2 .328795 .17686 .48073
3 .370775 .212794 .528757
4 .366896 .212022 .52177
5 .370399 .213718 .52708
6 .371487 .214058 .528917
7 .371315 .213956 .528674
8 .371438 .213923 .528953

95% lower and upper bounds reported
(2) irfname = orderb, impulse = dln_inc, and response = dln_consump

Because we specified the individual option, the output contains two tables, one for each specific
table command. At the bottom of each table is a list of the keys used in that table and a note indicating
the level of the confidence intervals that we requested. The results from table 1 and table 2 indicate
that each estimated function is well within the confidence interval of the other, so we conclude that
the functions are not significantly different.

310 irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs

Stored results
irf ctable stores the following in r():

Scalars
r(ncols) number of columns in all tables
r(k umax) number of distinct keys
r(k) number of specific table commands

Macros
r(key#) #th key
r(tnotes) list of keys applied to each column

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf describe — Describe an IRF file

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf describe describes the specification of the estimation command and the specification of the

IRF used to create the IRF results that are saved in an IRF file.

Quick start
Short summary of all IRF results in the active IRF file

irf describe

Summary of model and IRF specification for irf1 in the active IRF file
irf describe irf1

As above, but for irf1 in IRF file myirf.irf

irf describe irf1, using(myirf)

As above, and also set myirf.irf as the active IRF file
irf describe irf1, set(myirf)

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > Manage IRF results and files > Describe IRF file

311

312 irf describe — Describe an IRF file

Syntax
irf describe

[
irf resultslist

] [
, options

]
options Description

set(filename) make filename active
using(irf filename) describe irf filename without making active
detail show additional details of IRF results
variables show underlying structure of the IRF dataset

Options

set(filename) specifies the IRF file to be described and set; see [TS] irf set. If filename is specified
without an extension, .irf is assumed.

using(irf filename) specifies the IRF file to be described. The active IRF file, if any, remains
unchanged. If irf filename is specified without an extension, .irf is assumed.

detail specifies that irf describe display detailed information about each set of IRF results.
detail is implied when irf resultslist is specified.

variables is a programmer’s option; additionally displays the output produced by the describe
command.

Remarks and examples

If you have not read [TS] irf, please do so.

irf describe specified without irf resultslist provides a short summary of the model used to
create each set of results in an IRF file. If irf resultslist is specified, then irf describe provides
details of the model specification and the IRF specification used to create each set of IRF results. If
set() or using() is not specified, the IRF results of the active IRF file are described.

Example 1

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk
(output omitted)

irf describe — Describe an IRF file 313

We create three sets of IRF results:

. irf create order1, set(myirfs, replace)
(file myirfs.irf created)
(file myirfs.irf now active)
(file myirfs.irf updated)

. irf create order2, order(dln_inc dln_inv dln_consump)
(file myirfs.irf updated)

. irf create order3, order(dln_inc dln_consump dln_inv)
(file myirfs.irf updated)

. irf describe
Contains irf results from myirfs.irf (dated 11 Nov 2014 09:22)

irfname model endogenous variables and order (*)

order1 var dln_inv dln_inc dln_consump
order2 var dln_inc dln_inv dln_consump
order3 var dln_inc dln_consump dln_inv

(*) order is relevant only when model is var

The output reveals the order in which we specified the variables.

. irf describe order1

irf results for order1

Estimation specification
model: var
endog: dln_inv dln_inc dln_consump

sample: quarterly data from 1960q4 to 1978q4
lags: 1 2

constant: constant
exog: none

exogvars: none
exlags: none
varcns: unconstrained

IRF specification
step: 8

order: dln_inv dln_inc dln_consump
std error: asymptotic

reps: none

Here we see a summary of the model we fit as well as the specification of the IRFs.

314 irf describe — Describe an IRF file

Stored results
irf describe stores the following in r():

Scalars
r(N) number of observations in the IRF file
r(k) number of variables in the IRF file
r(width) width of dataset in the IRF file
r(N max) maximum number of observations
r(k max) maximum number of variables
r(widthmax) maximum width of the dataset
r(changed) flag indicating that data have changed since last saved

Macros
r(version) version of IRF results file
r(irfnames) names of IRF results in the IRF file
r(irfname model) var, sr var, lr var, or vec
r(irfname order) Cholesky order assumed in IRF estimates
r(irfname exog) exogenous variables, and their lags, in VAR or underlying VAR
r(irfname exogvar) exogenous variables in VAR or underlying VAR
r(irfname constant) constant or noconstant
r(irfname lags) lags in model
r(irfname exlags) lags of exogenous variables in model
r(irfname tmin) minimum value of timevar in the estimation sample
r(irfname tmax) maximum value of timevar in the estimation sample
r(irfname timevar) name of tsset timevar
r(irfname tsfmt) format of timevar in the estimation sample
r(irfname varcns) unconstrained or colon-separated list of constraints placed on

VAR coefficients
r(irfname svarcns) "." or colon-separated list of constraints placed on SVAR coefficients
r(irfname step) maximum step in IRF estimates
r(irfname stderror) asymptotic, bs, bsp, or none, depending on type

of standard errors specified to irf create
r(irfname reps) "." or number of bootstrap replications performed
r(irfname version) version of IRF file that originally held irfname IRF results
r(irfname rank) "." or number of cointegrating equations
r(irfname trend) "." or trend() specified in vec
r(irfname veccns) "." or constraints placed on VECM parameters
r(irfname sind) "." or normalized seasonal indicators included in vec

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf drop — Drop IRF results from the active IRF file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
irf drop removes IRF results from the active IRF file.

Quick start
Drop impulse–response functions irf1 and irf2 from the active IRF file

irf drop irf1 irf2

Drop irf1 and irf2 from the IRF file myirfs.irf

irf drop irf1 irf2, set(myirfs)

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > Manage IRF results and files > Drop IRF results

315

316 irf drop — Drop IRF results from the active IRF file

Syntax
irf drop irf resultslist

[
, set(filename)

]
Option

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

Remarks and examples

If you have not read [TS] irf, please do so.

Example 1

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk
(output omitted)

We create three sets of IRF results:

. irf create order1, set(myirfs, replace)
(file myirfs.irf created)
(file myirfs.irf now active)
(file myirfs.irf updated)

. irf create order2, order(dln_inc dln_inv dln_consump)
(file myirfs.irf updated)

. irf create order3, order(dln_inc dln_consump dln_inv)
(file myirfs.irf updated)

. irf describe
Contains irf results from myirfs.irf (dated 11 Nov 2014 09:22)

irfname model endogenous variables and order (*)

order1 var dln_inv dln_inc dln_consump
order2 var dln_inc dln_inv dln_consump
order3 var dln_inc dln_consump dln_inv

(*) order is relevant only when model is var

irf drop — Drop IRF results from the active IRF file 317

Now let’s remove order1 and order2 from myirfs.irf.

. irf drop order1 order2
(order1 dropped)
(order2 dropped)
file myirfs.irf updated

. irf describe
Contains irf results from myirfs.irf (dated 11 Nov 2014 09:22)

irfname model endogenous variables and order (*)

order3 var dln_inc dln_consump dln_inv

(*) order is relevant only when model is var

order1 and order2 have been dropped.

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf graph graphs impulse–response functions (IRFs), dynamic-multiplier functions, and forecast-

error variance decompositions (FEVDs) over time.

Quick start
Graph impulse–response function for dependent variables y1 and y2 given an unexpected shock to

y1

irf graph irf, impulse(y1) response(y2)

As above, but for orthogonalized shocks
irf graph oirf, impulse(y1) response(y2)

As above, but begin the plot with the third forecast period
irf graph oirf, impulse(y1) response(y2) lstep(3)

As above, but with a separate graph for each IRF in the current IRF file
irf graph oirf, impulse(y1) response(y2) lstep(3) individual

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Graphs by impulse or response

318

irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs 319

Syntax
irf graph stat

[
, options

]
stat Description

irf impulse–response function
oirf orthogonalized impulse–response function
dm dynamic-multiplier function
cirf cumulative impulse–response function
coirf cumulative orthogonalized impulse–response function
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition
sirf structural impulse–response function
sfevd structural forecast-error variance decomposition

Notes: 1. No statistic may appear more than once.
2. If confidence intervals are included (the default), only two statistics may be included.
3. If confidence intervals are suppressed (option noci), up to four statistics may be included.

options Description

Main

set(filename) make filename active
irf(irfnames) use irfnames IRF result sets
impulse(impulsevar) use impulsevar as impulse variables
response(endogvars) use endogenous variables as response variables
noci suppress confidence bands
level(#) set confidence level; default is level(95)

lstep(#) use # for first step
ustep(#) use # for maximum step

Advanced

individual graph each combination individually
iname(namestub

[
, replace

]
) stub for naming the individual graphs

isaving(filenamestub
[
, replace

]
) stub for saving the individual graphs to files

Plots

plot#opts(cline options) affect rendition of the line plotting the # stat

CI plots

ci#opts(area options) affect rendition of the confidence interval for the # stat

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

byopts(by option) how subgraphs are combined, labeled, etc.

320 irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs

Options

� � �
Main �

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

irf(irfnames) specifies the IRF result sets to be used. If irf() is not specified, each of the results in
the active IRF file is used. (Files often contain just one set of IRF results saved under one irfname;
in that case, those results are used.)

impulse(impulsevar) and response(endogvars) specify the impulse and response variables. Usually
one of each is specified, and one graph is drawn. If multiple variables are specified, a separate
subgraph is drawn for each impulse–response combination. If impulse() and response() are
not specified, subgraphs are drawn for all combinations of impulse and response variables.

impulsevar should be specified as an endogenous variable for all statistics except dm or cdm; for
those, specify as an exogenous variable.

noci suppresses graphing the confidence interval for each statistic. noci is assumed when the model
was fit by vec because no confidence intervals were estimated.

level(#) specifies the default confidence level, as a percentage, for confidence intervals, when they
are reported. The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals. Also see [TS] irf cgraph for a graph command that allows the
confidence level to vary over the graphs.

lstep(#) specifies the first step, or period, to be included in the graphs. lstep(0) is the default.

ustep(#), # ≥ 1, specifies the maximum step, or period, to be included in the graphs.

� � �
Advanced �

individual specifies that each graph be displayed individually. By default, irf graph combines
the subgraphs into one image. When individual is specified, byopts() may not be specified,
but the isaving() and iname() options may be specified.

iname(namestub
[
, replace

]
) specifies that the ith individual graph be stored in memory under

the name namestubi, which must be a valid Stata name of 24 characters or fewer. iname() may
be specified only with the individual option.

isaving(filenamestub
[
, replace

]
) specifies that the ith individual graph should be saved to disk

in the current working directory under the name filenamestubi.gph. isaving() may be specified
only when the individual option is also specified.

� � �
Plots �

plot1opts(cline options), . . . , plot4opts(cline options) affect the rendition of the plotted statis-
tics (the stat). plot1opts() affects the rendition of the first statistic; plot2opts(), the second;
and so on. cline options are as described in [G-3] cline options.

� � �
CI plots �

ci1opts(area options) and ci2opts(area options) affect the rendition of the confidence intervals
for the first (ci1opts()) and second (ci2opts()) statistics in stat. area options are as described
in [G-3] area options.

irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs 321

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk
(see [G-3] saving option). The saving() and name() options may not be combined with the
individual option.

byopts(by option) is as documented in [G-3] by option and may not be specified when individual
is specified. byopts() affects how the subgraphs are combined, labeled, etc.

Remarks and examples
If you have not read [TS] irf, please do so.

Also see [TS] irf cgraph, which produces combined graphs; [TS] irf ograph, which produces
overlaid graphs; and [TS] irf table, which displays results in tabular form.

irf graph produces one or more graphs and displays them arrayed into one image unless the
individual option is specified, in which case the individual graphs are displayed separately. Each
individual graph consists of all the specified stat and represents one impulse–response combination.

Because all the specified stat appear on the same graph, putting together statistics with very
different scales is not recommended. For instance, sometimes sirf and oirf are on similar scales
while irf is on a different scale. In such cases, combining sirf and oirf on the same graph looks
fine, but combining either with irf produces an uninformative graph.

Example 1

Suppose that we have results generated from two different SVAR models. We want to know whether
the shapes of the structural IRFs and the structural FEVDs are similar in the two models. We are also
interested in knowing whether the structural IRFs and the structural FEVDs differ significantly from
their Cholesky counterparts.

Filling in the background, we have previously issued the commands:

. use http://www.stata-press.com/data/r14/lutkepohl2

. mat a = (., 0, 0\0,.,0\.,.,.)

. mat b = I(3)

. svar dln_inv dln_inc dln_consump, aeq(a) beq(b)

. irf create modela, set(results3) step(8)

. svar dln_inc dln_inv dln_consump, aeq(a) beq(b)

. irf create modelb, step(8)

322 irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs

To see whether the shapes of the structural IRFs and the structural FEVDs are similar in the two
models, we type

. irf graph oirf sirf, impulse(dln_inc) response(dln_consump)

−.005

0

.005

.01

0 2 4 6 8 0 2 4 6 8

modela, dln_inc, dln_consump modelb, dln_inc, dln_consump

95% CI for oirf 95% CI for sirf

orthogonalized irf structural irf

step

Graphs by irfname, impulse variable, and response variable

The graph reveals that the oirf and the sirf estimates are essentially the same for both models and
that the shapes of the functions are very similar for the two models.

To see whether the structural IRFs and the structural FEVDs differ significantly from their Cholesky
counterparts, we type

. irf graph fevd sfevd, impulse(dln_inc) response(dln_consump) lstep(1)
> legend(cols(1))

.1

.2

.3

.4

.5

0 2 4 6 8 0 2 4 6 8

modela, dln_inc, dln_consump modelb, dln_inc, dln_consump

95% CI for fevd

95% CI for sfevd

fraction of mse due to impulse

(structural) fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs 323

This combined graph reveals that the shapes of these functions are also similar for the two models.
However, the graph illuminates one minor difference between them: In modela, the estimated structural
FEVD is slightly larger than the Cholesky-based estimates, whereas in modelb the Cholesky-based
estimates are slightly larger than the structural estimates. For both models, however, the structural
estimates are close to the center of the wide confidence intervals for the two estimates.

Example 2

Let’s focus on the results from modela. Suppose that we were interested in examining how
dln consump responded to impulses in its own structural innovations, structural innovations to
dln inc, and structural innovations to dln inv. We type

. irf graph sirf, irf(modela) response(dln_consump)

−.005

0

.005

.01

−.005

0

.005

.01

0 2 4 6 8

0 2 4 6 8

modela, dln_consump, dln_consump modela, dln_inc, dln_consump

modela, dln_inv, dln_consump

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

The upper-left graph shows the structural IRF of an innovation in dln consump on dln consump. It
indicates that the identification restrictions used in modela imply that a positive shock to dln consump
causes an increase in dln consump, followed by a decrease, followed by an increase, and so on,
until the effect dies out after roughly 5 periods.

The upper-right graph shows the structural IRF of an innovation in dln inc on dln consump,
indicating that a positive shock to dln inc causes an increase in dln consump, which dies out after
4 or 5 periods.

Technical note
[TS] irf table contains a technical note warning you to be careful in naming variables when you

fit models. What is said there applies equally here.

324 irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs

Stored results
irf graph stores the following in r():

Scalars
r(k) number of graphs

Macros
r(stats) statlist r(byopts) contents of byopts()
r(irfname) resultslist r(saving) supplied saving() option
r(impulse) impulselist r(name) supplied name() option
r(response) responselist r(individual) individual or blank
r(plot#) contents of plot#opts() r(isaving) contents of saving()
r(ci) level applied to confidence r(iname) contents of name()

intervals or noci r(subtitle#) subtitle for individual graph #
r(ciopts#) contents of ci#opts()

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf ograph displays plots of irf results on one graph (one pair of axes).

To become familiar with this command, type db irf ograph.

Quick start
Graph of an orthogonalized IRF myirf overlayed on cumulative IRF mycirf for dependent variables

y1 and y2

irf ograph (myirf y1 y2 oirf) (mycirf y1 y2 cirf)

As above, and include confidence bands and add a title
irf cgraph (myirf y1 y2 oirf) (mycirf y1 y2 cirf), ci ///

title("My Title")

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Overlaid graph

325

326 irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

Syntax

irf ograph (spec1)
[
(spec2) . . .

[
(spec15)

]] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
)

irfname is the name of a set of IRF results in the active IRF file or “.”, which means the first named
result in the active IRF file. impulsevar should be specified as an endogenous variable for all statistics
except dm and cdm; for those, specify as an exogenous variable. responsevar is an endogenous variable
name. stat is one or more statistics from the list below:

stat Description

irf impulse–response function
oirf orthogonalized impulse–response function
dm dynamic-multiplier function
cirf cumulative impulse–response function
coirf cumulative orthogonalized impulse–response function
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition
sirf structural impulse–response function
sfevd structural forecast-error variance decomposition

options Description

Plots

plot options define the IRF plots
set(filename) make filename active

Options

common options level and steps

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

Main

set(filename) make filename active
irf(irfnames) use irfnames IRF result sets
impulse(impulsevar) use impulsevar as impulse variables
response(endogvars) use endogenous variables as response variables
ci add confidence bands to the graph

irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs 327

spec options Description

Options

common options level and steps

Plot

cline options affect rendition of the plotted lines

CI plot

ciopts(area options) affect rendition of the confidence intervals

common options Description

Options

level(#) set confidence level; default is level(95)

lstep(#) use # for first step
ustep(#) use # for maximum step

common options may be specified within a plot specification, globally, or in both. When specified in a plot
specification, the common options affect only the specification in which they are used. When supplied globally,
the common options affect all plot specifications. When supplied in both places, options in the plot specification
take precedence.

Options

� � �
Plots �

plot options defines the IRF plots and are found under the Main, Plot, and CI plot tabs.

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

� � �
Main �

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

irf(irfnames) specifies the IRF result sets to be used. If irf() is not specified, each of the results in
the active IRF file is used. (Files often contain just one set of IRF results saved under one irfname;
in that case, those results are used.)

impulse(varlist) and response(endogvars) specify the impulse and response variables. Usually
one of each is specified, and one graph is drawn. If multiple variables are specified, a separate
subgraph is drawn for each impulse–response combination. If impulse() and response() are
not specified, subgraphs are drawn for all combinations of impulse and response variables.

ci adds confidence bands to the graph. The noci option may be used within a plot specification to
suppress its confidence bands when the ci option is supplied globally.

� � �
Plot �

cline options affect the rendition of the plotted lines; see [G-3] cline options.

328 irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands for the plotted statistic; see
[G-3] area options. ciopts() implies ci.

� � �
Options �

level(#) specifies the confidence level, as a percentage, for confidence bands; see [U] 20.7 Specifying
the width of confidence intervals.

lstep(#) specifies the first step, or period, to be included in the graph. lstep(0) is the default.

ustep(#), # ≥ 1, specifies the maximum step, or period, to be included.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
If you have not read [TS] irf, please do so.

irf ograph overlays plots of IRFs and FEVDs on one graph.

Example 1

We have previously issued the commands:

. use http://www.stata-press.com/data/r14/lutkepohl2

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk

. irf create order1, step(10) set(myirf1, new)

. irf create order2, step(10) order(dln_inc dln_inv dln_consump)

irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs 329

We now wish to compare the oirf for impulse dln inc and response dln consump for two different
Cholesky orderings:

. irf ograph (order1 dln_inc dln_consump oirf)
> (order2 dln_inc dln_consump oirf)

−
.0

0
2

0
.0

0
2

.0
0

4
.0

0
6

0 2 4 6 8 10
step

order1: oirf of dln_inc −> dln_consump

order2: oirf of dln_inc −> dln_consump

Technical note
Graph options allow you to change the appearance of each plot. The following graph contains the

plots of the FEVDs (FEVDs) for impulse dln inc and each response using the results from the first
collection of results in the active IRF file (using the “.” shortcut). In the second plot, we supply the
clpat(dash) option (an abbreviation for clpattern(dash)) to give the line a dashed pattern. In
the third plot, we supply the m(o) clpat(dash dot) recast(connected) options to get small
circles connected by a line with a dash–dot pattern; the cilines option plots the confidence bands
by using lines instead of areas. We use the title() option to add a descriptive title to the graph
and supply the ci option globally to add confidence bands to all the plots.

330 irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

. irf ograph (. dln_inc dln_inc fevd)
> (. dln_inc dln_consump fevd, clpat(dash))
> (. dln_inc dln_inv fevd, cilines m(o) clpat(dash_dot)
> recast(connected))
> , ci title("Comparison of forecast-error variance decomposition")

0
.2

.4
.6

.8
1

0 2 4 6 8 10
step

95% CI of fevd of dln_inc −> dln_inc

95% CI of fevd of dln_inc −> dln_consump

95% CI of fevd of dln_inc −> dln_inv

fevd of dln_inc −> dln_inc

fevd of dln_inc −> dln_consump

fevd of dln_inc −> dln_inv

Comparison of forecast−error variance decomposition

The clpattern() option is described in [G-3] connect options, msymbol() is described in
[G-3] marker options, title() is described in [G-3] title options, and recast() is described
in [G-3] advanced options.

Stored results
irf ograph stores the following in r():

Scalars
r(plots) number of plot specifications
r(ciplots) number of plotted confidence bands

Macros
r(irfname#) irfname from (spec#)
r(impulse#) impulse from (spec#)
r(response#) response from (spec#)
r(stat#) statistics from (spec#)
r(ci#) level from (spec#) or noci

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf rename — Rename an IRF result in an IRF file

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
irf rename changes the name of a set of IRF results saved in the active IRF file.

Quick start
Rename impulse–response function oldirf in the current file to newirf

irf rename oldirf newirf

As above, but for IRF file myirfs.irf

irf rename oldirf newirf, set(myirfs)

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > Manage IRF results and files > Rename IRF results

Syntax
irf rename oldname newname

[
, set(filename)

]
Option

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

Remarks and examples

If you have not read [TS] irf, please do so.

Example 1

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lags(1/2) dfk
(output omitted)

331

332 irf rename — Rename an IRF result in an IRF file

We create three sets of IRF results:

. irf create original, set(myirfs, replace)
(file myirfs.irf created)
(file myirfs.irf now active)
(file myirfs.irf updated)

. irf create order2, order(dln_inc dln_inv dln_consump)
(file myirfs.irf updated)

. irf create order3, order(dln_inc dln_consump dln_inv)
(file myirfs.irf updated)

. irf describe
Contains irf results from myirfs.irf (dated 11 Nov 2014 09:22)

irfname model endogenous variables and order (*)

original var dln_inv dln_inc dln_consump
order2 var dln_inc dln_inv dln_consump
order3 var dln_inc dln_consump dln_inv

(*) order is relevant only when model is var

Now let’s rename IRF result original to order1.

. irf rename original order1
(81 real changes made)
original renamed to order1

. irf describe
Contains irf results from myirfs.irf (dated 11 Nov 2014 09:22)

irfname model endogenous variables and order (*)

order1 var dln_inv dln_inc dln_consump
order2 var dln_inc dln_inv dln_consump
order3 var dln_inc dln_consump dln_inv

(*) order is relevant only when model is var

original has been renamed to order1.

Stored results
irf rename stores the following in r():

Macros
r(irfnames) irfnames after rename
r(oldnew) oldname newname

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf set — Set the active IRF file

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf set without arguments reports the identity of the active IRF file, if there is one. irf set

with a filename specifies that the file be created and set as the active file. irf set, clear specifies
that, if any IRF file is set, it be unset and that there be no active IRF file.

Quick start
Display filename of active IRF file

irf set

Set file myirfs.irf as the active file and create it if it does not exist
irf set myirfs

Set file myirfs.irf as the active file, but replace myirfs.irf if it exists
irf set myirfs, replace

Clear the active IRF file so that no files are active
irf set, clear

Note: irf commands can be used after var, svar, vec, arima, or arfima; see [TS] var, [TS] var
svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > Manage IRF results and files > Set active IRF file

333

334 irf set — Set the active IRF file

Syntax
Report identity of active file

irf set

Set, and if necessary create, active file

irf set irf filename
[
, replace

]
Clear any active IRF file

irf set, clear

If irf filename is specified without an extension, .irf is assumed.

Options
replace specifies that if irf filename already exists, the file is to be erased and a new, empty IRF

file is to be created in its place. If it does not already exist, a new, empty file is created.

clear unsets the active IRF file.

Remarks and examples

If you have not read [TS] irf, please do so.

irf set reports the identity of the active IRF file:

. irf set
no irf file active

irf set irf filename creates and sets an IRF file:

. irf set results1
(file results1.irf now active)

We specified the name results1, and results1.irf became the active file.

irf set irf filename can also be used to create a new file:

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inc dln_consump, exog(l.dln_inv)
(output omitted)

. irf set results2
(file results2.irf created)
(file results2.irf now active)

. irf create order1
(file results2.irf updated)

irf set — Set the active IRF file 335

Stored results
irf set stores the following in r():

Macros
r(Orville) name of active IRF file, if there is an active IRF

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] irf describe — Describe an IRF file

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
irf table makes a table of the values of the requested statistics at each time since impulse. Each

column represents a combination of an impulse variable and a response variable for each statistic
from the named IRF results.

Quick start
Table of impulse–response function for dependent variables y1 and y2 given an unexpected shock to

y1

irf table irf, impulse(y1) response(y2)

As above, but for orthogonalized shocks
irf table oirf, impulse(y1) response(y2)

As above, but with 3 as the common maximum step horizon for all tables
irf table oirf, impulse(y1) response(y2) step(3)

As above, but with a separate table for each IRF in the active IRF file
irf table oirf, impulse(y1) response(y2) step(3) individual

Note: irf commands may be used only after var, svar, vec, arima, or arfima; see [TS] var,
[TS] var svar, [TS] vec, [TS] arima, or [TS] arfima.

Menu
Statistics > Multivariate time series > IRF and FEVD analysis > Tables by impulse or response

336

irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs 337

Syntax
irf table

[
stat
] [

, options
]

stat Description

Main

irf impulse–response function
oirf orthogonalized impulse–response function
dm dynamic-multiplier function
cirf cumulative impulse–response function
coirf cumulative orthogonalized impulse–response function
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition
sirf structural impulse–response function
sfevd structural forecast-error variance decomposition

If stat is not specified, all statistics are included, unless option nostructural is also specified, in which case
sirf and sfevd are excluded. You may specify more than one stat.

options Description

Main

set(filename) make filename active
irf(irfnames) use irfnames IRF result sets
impulse(impulsevar) use impulsevar as impulse variables
response(endogvars) use endogenous variables as response variables
individual make an individual table for each result set
title("text") use text for overall table title

Options

level(#) set confidence level; default is level(95)

noci suppress confidence intervals
stderror include standard errors in the tables
nostructural suppress sirf and sfevd from the default list of statistics
step(#) use common maximum step horizon # for all tables

Options

� � �
Main �

set(filename) specifies the file to be made active; see [TS] irf set. If set() is not specified, the
active file is used.

All results are obtained from one IRF file. If you have results in different files that you want in
one table, use irf add to copy results into one file; see [TS] irf add.

irf(irfnames) specifies the IRF result sets to be used. If irf() is not specified, all the results in the
active IRF file are used. (Files often contain just one set of IRF results, saved under one irfname;
in that case, those results are used. When there are multiple IRF results, you may also wish to
specify the individual option.)

338 irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs

impulse(impulsevar) specifies the impulse variables for which the statistics are to be reported. If
impulse() is not specified, each model variable, in turn, is used. impulsevar should be specified
as an endogenous variable for all statistics except dm or cdm; for those, specify as an exogenous
variable.

response(endogvars) specifies the response variables for which the statistics are to be reported. If
response() is not specified, each endogenous variable, in turn, is used.

individual specifies that each set of IRF results be placed in its own table, with its own title and
footer. By default, irf table places all the IRF results in one table with one title and one footer.
individual may not be combined with title().

title("text") specifies a title for the overall table.

� � �
Options �

level(#) specifies the default confidence level, as a percentage, for confidence intervals, when they
are reported. The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals.

noci suppresses reporting of the confidence intervals for each statistic. noci is assumed when the
model was fit by vec because no confidence intervals were estimated.

stderror specifies that standard errors for each statistic also be included in the table.

nostructural specifies that stat, when not specified, exclude sirf and sfevd.

step(#) specifies the maximum step horizon for all tables. If step() is not specified, each table is
constructed using all steps available.

Remarks and examples
If you have not read [TS] irf, please do so.

Also see [TS] irf graph, which produces output in graphical form, and see [TS] irf ctable, which
also produces tabular output. irf ctable is more difficult to use but provides more control over
how tables are formed.

Example 1

We have fit a model with var, and we saved the IRFs from two different orderings. The commands
we previously used were

. use http://www.stata-press.com/data/r14/lutkepohl2

. var dln_inv dln_inc dln_consump

. irf set results4

. irf create ordera, step(8)

. irf create orderb, order(dln_inc dln_inv dln_consump) step(8)

irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs 339

We now wish to compare the two orderings:

. irf table oirf fevd, impulse(dln_inc) response(dln_consump) noci std
> title("Ordera versus orderb")

Ordera versus orderb

(1) (1) (1) (1)
step oirf S.E. fevd S.E.

0 .005123 .000878 0 0
1 .001635 .000984 .288494 .077483
2 .002948 .000993 .294288 .073722
3 -.000221 .000662 .322454 .075562
4 .000811 .000586 .319227 .074063
5 .000462 .000333 .322579 .075019
6 .000044 .000275 .323552 .075371
7 .000151 .000162 .323383 .075314
8 .000091 .000114 .323499 .075386

(2) (2) (2) (2)
step oirf S.E. fevd S.E.

0 .005461 .000925 0 0
1 .001578 .000988 .327807 .08159
2 .003307 .001042 .328795 .077519
3 -.00019 .000676 .370775 .080604
4 .000846 .000617 .366896 .079019
5 .000491 .000349 .370399 .079941
6 .000069 .000292 .371487 .080323
7 .000158 .000172 .371315 .080287
8 .000096 .000122 .371438 .080366

(1) irfname = ordera, impulse = dln_inc, and response = dln_consump
(2) irfname = orderb, impulse = dln_inc, and response = dln_consump

The output is displayed as a “single” table; because the table did not fit horizontally, it wrapped
automatically. At the bottom of the table is a definition of the keys that appear at the top of each
column. The results in the table above indicate that the orthogonalized IRFs do not change by much.

340 irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs

Example 2

Because the estimated FEVDs do change significantly, we might want to produce two tables that
contain the estimated FEVDs and their 95% confidence intervals:

. irf table fevd, impulse(dln_inc) response(dln_consump) individual

Results from ordera

(1) (1) (1)
step fevd Lower Upper

0 0 0 0
1 .288494 .13663 .440357
2 .294288 .149797 .43878
3 .322454 .174356 .470552
4 .319227 .174066 .464389
5 .322579 .175544 .469613
6 .323552 .175826 .471277
7 .323383 .17577 .470995
8 .323499 .175744 .471253

95% lower and upper bounds reported
(1) irfname = ordera, impulse = dln_inc, and response = dln_consump

Results from orderb

(1) (1) (1)
step fevd Lower Upper

0 0 0 0
1 .327807 .167893 .487721
2 .328795 .17686 .48073
3 .370775 .212794 .528757
4 .366896 .212022 .52177
5 .370399 .213718 .52708
6 .371487 .214058 .528917
7 .371315 .213956 .528674
8 .371438 .213923 .528953

95% lower and upper bounds reported
(1) irfname = orderb, impulse = dln_inc, and response = dln_consump

Because we specified the individual option, the output contains two tables, one for each set of
IRF results. Examining the results in the tables indicates that each of the estimated functions is well
within the confidence interval of the other, so we conclude that the functions are not significantly
different.

Technical note
Be careful in how you name variables when you fit models. Say that you fit one model with var

and used time-series operators to form one of the endogenous variables

. var d.ln_inv . . .

and in another model, you created a new variable:

. generate dln_inv = d.ln_inv

. var dln_inv . . .

irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs 341

Say that you saved IRF results from both (perhaps they differ in the number of lags). Now you
wish to use irf table to compare them. You would not be able to specify response(d.ln inv)
or response(dln inv) because neither variable is in both models. Similarly, you could not specify
impulse(d.ln inv) or impulse(dln inv) for the same reason.

All is not lost; if impulse() is not specified, all endogenous variables are used, and similarly if
response() is not specified, so you could obtain the result you desired by simply not specifying
the options, but you will also obtain a lot more, besides. If you want to specify the impulse() or
response() options, be sure to name variables consistently.

Also, you may forget how the endogenous variables were named. If so, irf describe, detail
can provide the answer. In irf describe’s output, the endogenous variables are listed next to
endog.

Stored results
If the individual option is not specified, irf table stores the following in r():

Scalars
r(ncols) number of columns in table
r(k umax) number of distinct keys
r(k) number of specific table commands

Macros
r(key#) #th key
r(tnotes) list of keys applied to each column

If the individual option is specified, then for each irfname, irf table stores the following in
r():

Scalars
r(irfname ncols) number of columns in table for irfname
r(irfname k umax) number of distinct keys in table for irfname
r(irfname k) number of specific table commands used to create table for irfname

Macros
r(irfname key#) #th key for irfname table
r(irfname tnotes) list of keys applied to each column in table for irfname

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

Title

mgarch — Multivariate GARCH models

Description Syntax Remarks and examples References Also see

Description
mgarch estimates the parameters of multivariate generalized autoregressive conditional-

heteroskedasticity (MGARCH) models. MGARCH models allow both the conditional mean and the
conditional covariance to be dynamic.

The general MGARCH model is so flexible that not all the parameters can be estimated. For this
reason, there are many MGARCH models that parameterize the problem more parsimoniously.

mgarch implements four commonly used parameterizations: the diagonal vech model, the constant
conditional correlation model, the dynamic conditional correlation model, and the time-varying
conditional correlation model.

Syntax

mgarch model eq
[

eq . . . eq
] [

if
] [

in
] [

, . . .
]

Family model

Vech
Diagonal vech dvech

Conditional correlation
constant conditional correlation ccc

dynamic conditional correlation dcc

varying conditional correlation vcc

Remarks and examples

Remarks are presented under the following headings:

An introduction to MGARCH models
Diagonal vech MGARCH models
Conditional correlation MGARCH models

Constant conditional correlation MGARCH model
Dynamic conditional correlation MGARCH model
Varying conditional correlation MGARCH model

Error distributions and quasimaximum likelihood
Treatment of missing data

342

mgarch — Multivariate GARCH models 343

An introduction to MGARCH models

Multivariate GARCH models allow the conditional covariance matrix of the dependent variables to
follow a flexible dynamic structure and allow the conditional mean to follow a vector-autoregressive
(VAR) structure.

The general MGARCH model is too flexible for most problems. There are many restricted MGARCH
models in the literature because there is no parameterization that always provides an optimal trade-off
between flexibility and parsimony.

mgarch implements four commonly used parameterizations: the diagonal vech (DVECH) model,
the constant conditional correlation (CCC) model, the dynamic conditional correlation (DCC) model,
and the time-varying conditional correlation (VCC) model.

Bollerslev, Engle, and Wooldridge (1988); Bollerslev, Engle, and Nelson (1994); Bauwens,
Laurent, and Rombouts (2006); Silvennoinen and Teräsvirta (2009); and Engle (2009) provide general
introductions to MGARCH models. We provide a quick introduction organized around the models
implemented in mgarch.

We give a formal definition of the general MGARCH model to establish notation that facilitates
comparisons of the models. The general MGARCH model is given by

yt = Cxt + εt

εt = H
1/2
t νt

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht; and

νt is an m×1 vector of zero-mean, unit-variance, and independent and identically distributed
innovations.

In the general MGARCH model, Ht is a matrix generalization of univariate GARCH models. For
example, in a general MGARCH model with one autoregressive conditional heteroskedastic (ARCH)
term and one GARCH term,

vech (Ht) = s + Avech
(
εt−1ε

′
t−1

)
+ Bvech (Ht−1) (1)

where the vech() function stacks the unique elements that lie on or below the main diagonal in a
symmetric matrix into a vector, s is a vector of parameters, and A and B are conformable matrices
of parameters. Because this model uses the vech() function to extract and model the unique elements
of Ht, it is also known as the VECH model.

Because it is a conditional covariance matrix, Ht must be positive definite. Equation (1) can be
used to show that the parameters in s, A, and B are not uniquely identified and that further restrictions
must be placed on s, A, and B to ensure that Ht is positive definite for all t.

344 mgarch — Multivariate GARCH models

The various MGARCH models proposed in the literature differ in how they trade off flexibility
and parsimony in their specifications for Ht. Increased flexibility allows a model to capture more
complex Ht processes. Increased parsimony makes parameter estimation feasible for more datasets.
An important measure of the flexibility–parsimony trade-off is how fast the number of model parameters
increases with the number of time series m, because many applied models use multiple time series.

Diagonal vech MGARCH models

Bollerslev, Engle, and Wooldridge (1988) derived the diagonal vech (DVECH) model by restricting
A and B to be diagonal. Although the DVECH model is much more parsimonious than the general
model, it can only handle a few series because the number of parameters grows quadratically with
the number of series. For example, there are 3m(m + 1)/2 parameters in a DVECH(1,1) model for
Ht.

Despite the large number of parameters, the diagonal structure implies that each conditional variance
and each conditional covariance depends on its own past but not on the past of the other conditional
variances and covariances. Formally, in the DVECH(1,1) model each element of Ht is modeled by

hij,t = sij + aijεi,(t−1)εj,(t−1) + bijhij,(t−1)

Parameter estimation can be difficult because it requires that Ht be positive definite for each
t. The requirement that Ht be positive definite for each t imposes complicated restrictions on the
off-diagonal elements.

See [TS] mgarch dvech for more details about this model.

Conditional correlation MGARCH models

Conditional correlation (CC) models use nonlinear combinations of univariate GARCH models to
represent the conditional covariances. In each of the conditional correlation models, the conditional
covariance matrix is positive definite by construction and has a simple structure, which facilitates
parameter estimation. CC models have a slower parameter growth rate than DVECH models as the
number of time series increases.

In CC models, Ht is decomposed into a matrix of conditional correlations Rt and a diagonal
matrix of conditional variances Dt:

Ht = D
1/2
t RtD

1/2
t (2)

where each conditional variance follows a univariate GARCH process and the parameterizations of Rt

vary across models.

Equation (2) implies that

hij,t = ρij,tσi,tσj,t (3)

where σ2
i,t is modeled by a univariate GARCH process. Equation (3) highlights that CC models use

nonlinear combinations of univariate GARCH models to represent the conditional covariances and that
the parameters in the model for ρij,t describe the extent to which the errors from equations i and j
move together.

mgarch — Multivariate GARCH models 345

Comparing (1) and (2) shows that the number of parameters increases more slowly with the number
of time series in a CC model than in a DVECH model.

The three CC models implemented in mgarch differ in how they parameterize Rt.

Constant conditional correlation MGARCH model

Bollerslev (1990) proposed a CC MGARCH model in which the correlation matrix is time invariant.
It is for this reason that the model is known as a constant conditional correlation (CCC) MGARCH
model. Restricting Rt to a constant matrix reduces the number of parameters and simplifies the
estimation but may be too strict in many empirical applications.

See [TS] mgarch ccc for more details about this model.

Dynamic conditional correlation MGARCH model

Engle (2002) introduced a dynamic conditional correlation (DCC) MGARCH model in which the
conditional quasicorrelations Rt follow a GARCH(1,1)-like process. (As described by Engle [2009]
and Aielli [2009], the parameters in Rt are not standardized to be correlations and are thus known
as quasicorrelations.) To preserve parsimony, all the conditional quasicorrelations are restricted to
follow the same dynamics. The DCC model is significantly more flexible than the CCC model without
introducing an unestimable number of parameters for a reasonable number of series.

See [TS] mgarch dcc for more details about this model.

Varying conditional correlation MGARCH model

Tse and Tsui (2002) derived the varying conditional correlation (VCC) MGARCH model in which the
conditional correlations at each period are a weighted sum of a time-invariant component, a measure
of recent correlations among the residuals, and last period’s conditional correlations. For parsimony,
all the conditional correlations are restricted to follow the same dynamics.

See [TS] mgarch vcc for more details about this model.

Error distributions and quasimaximum likelihood

By default, mgarch dvech, mgarch ccc, mgarch dcc, and mgarch vcc estimate the parameters
of MGARCH models by maximum likelihood (ML), assuming that the errors come from a multivariate
normal distribution. Both the ML estimator and the quasi–maximum likelihood (QML) estimator,
which drops the normality assumption, are assumed to be consistent and normally distributed in large
samples; see Jeantheau (1998), Berkes and Horváth (2003), Comte and Lieberman (2003), Ling and
McAleer (2003), and Fiorentini and Sentana (2007). Specify vce(robust) to estimate the parameters
by QML. The QML parameter estimates are the same as the ML estimates, but the VCEs are different.

Based on low-level assumptions, Jeantheau (1998), Comte and Lieberman (2003), and Ling and
McAleer (2003) prove that some of the ML and QML estimators implemented in mgarch are consistent
and asymptotically normal. Based on higher-level assumptions, Fiorentini and Sentana (2007) prove
that all the ML and QML estimators implemented in mgarch are consistent and asymptotically normal.
The low-level assumption proofs specify the technical restrictions on the data-generating processes
more precisely than the high-level proofs, but they do not cover as many models or cases as the
high-level proofs.

346 mgarch — Multivariate GARCH models

It is generally accepted that there could be more low-level theoretical work done to substantiate
the claims that the ML and QML estimators are consistent and asymptotically normally distributed.
These widely applied estimators have been subjected to many Monte Carlo studies that show that the
large-sample theory performs well in finite samples.

The distribution(t) option causes the mgarch commands to estimate the parameters of the
corresponding model by ML assuming that the errors come from a multivariate Student t distribution.

The choice between the multivariate normal and the multivariate t distributions is one between
robustness and efficiency. If the disturbances come from a multivariate Student t, then the ML
estimates based on the multivariate Student t assumption will be consistent and efficient, while the
QML estimates based on the multivariate normal assumption will be consistent but not efficient. In
contrast, if the disturbances come from a well-behaved distribution that is neither multivariate Student
t nor multivariate normal, then the ML estimates based on the multivariate Student t assumption
will not be consistent, while the QML estimates based on the multivariate normal assumption will be
consistent but not efficient.

Fiorentini and Sentana (2007) compare the ML and QML estimators implemented in mgarch and
provide many useful technical results pertaining to the estimators.

Treatment of missing data

mgarch allows for gaps due to missing data. The unconditional expectations are substituted for
the dynamic components that cannot be computed because of gaps. This method of handling gaps
can only handle the case in which g/T goes to zero as T goes to infinity, where g is the number of
observations lost to gaps in the data and T is the number of nonmissing observations.

References
Aielli, G. P. 2009. Dynamic Conditional Correlations: On Properties and Estimation. Working paper, Dipartimento di

Statistica, University of Florence, Florence, Italy.

Bauwens, L., S. Laurent, and J. V. K. Rombouts. 2006. Multivariate GARCH models: A survey. Journal of Applied
Econometrics 21: 79–109.

Berkes, I., and L. Horváth. 2003. The rate of consistency of the quasi-maximum likelihood estimator. Statistics and
Probability Letters 61: 133–143.

Bollerslev, T. 1990. Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH
model. Review of Economics and Statistics 72: 498–505.

Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. ARCH models. In Vol. 4 of Handbook of Econometrics, ed.
R. F. Engle and D. L. McFadden. Amsterdam: Elsevier.

Bollerslev, T., R. F. Engle, and J. M. Wooldridge. 1988. A capital asset pricing model with time-varying covariances.
Journal of Political Economy 96: 116–131.

Comte, F., and O. Lieberman. 2003. Asymptotic theory for multivariate GARCH processes. Journal of Multivariate
Analysis 84: 61–84.

Engle, R. F. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional
heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–350.

. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton, NJ: Princeton University
Press.

Fiorentini, G., and E. Sentana. 2007. On the efficiency and consistency of likelihood estimation in multivari-
ate conditionally heteroskedastic dynamic regression models. Working paper 0713, CEMFI, Madrid, Spain.
ftp://ftp.cemfi.es/wp/07/0713.pdf.

Jeantheau, T. 1998. Strong consistency of estimators for multivariate ARCH models. Economic Theory 14: 70–86.

ftp://ftp.cemfi.es/wp/07/0713.pdf

mgarch — Multivariate GARCH models 347

Ling, S., and M. McAleer. 2003. Asymptotic theory for a vector ARM–GARCH model. Economic Theory 19:
280–310.

Silvennoinen, A., and T. Teräsvirta. 2009. Multivariate GARCH models. In Handbook of Financial Time Series, ed.
T. G. Andersen, R. A. Davis, J.-P. Kreiß, and T. Mikosch, 201–229. New York: Springer.

Tse, Y. K., and A. K. C. Tsui. 2002. A multivariate generalized autoregressive conditional heteroscedasticity model
with time-varying correlations. Journal of Business & Economic Statistics 20: 351–362.

Also see
[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

mgarch ccc — Constant conditional correlation multivariate GARCH models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mgarch ccc estimates the parameters of constant conditional correlation (CCC) multivariate general-
ized autoregressive conditionally heteroskedastic (MGARCH) models in which the conditional variances
are modeled as univariate generalized autoregressive conditionally heteroskedastic (GARCH) models
and the conditional covariances are modeled as nonlinear functions of the conditional variances. The
conditional correlation parameters that weight the nonlinear combinations of the conditional variance
are constant in the CCC MGARCH model.

The CCC MGARCH model is less flexible than the dynamic conditional correlation MGARCH model
(see [TS] mgarch dcc) and varying conditional correlation MGARCH model (see [TS] mgarch vcc),
which specify GARCH-like processes for the conditional correlations. The conditional correlation
MGARCH models are more parsimonious than the diagonal vech MGARCH model (see [TS] mgarch
dvech).

Quick start
Fit constant conditional correlation multivariate GARCH with first- and second-order ARCH components

for dependent variables y1 and y2 using tsset data
mgarch ccc (y1 y2), arch(1 2)

Add regressors x1 and x2 and first-order GARCH component
mgarch ccc (y1 y2 = x1 x2), arch(1 2) garch(1)

Add z1 to the model for the conditional heteroskedasticity
mgarch ccc (y1 y2 = x1 x2), arch(1 2) garch(1) het(z1)

Menu
Statistics > Multivariate time series > Multivariate GARCH

348

mgarch ccc — Constant conditional correlation multivariate GARCH models 349

Syntax

mgarch ccc eq
[

eq . . . eq
] [

if
] [

in
] [

, options
]

where each eq has the form

(depvars =
[

indepvars
] [

, eqoptions
]
)

options Description

Model

arch(numlist) ARCH terms for all equations
garch(numlist) GARCH terms for all equations
het(varlist) include varlist in the specification of the conditional variance

for all equations
distribution(dist

[
#
]
) use dist distribution for errors [may be gaussian

(synonym normal) or t; default is gaussian]
unconcentrated perform optimization on unconcentrated log likelihood
constraints(numlist) apply linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) initial values for the coefficients; seldom used

coeflegend display legend instead of statistics

eqoptions Description

noconstant suppress constant term in the mean equation
arch(numlist) ARCH terms
garch(numlist) GARCH terms
het(varlist) include varlist in the specification of the conditional variance

You must tsset your data before using mgarch ccc; see [TS] tsset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvars, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

350 mgarch ccc — Constant conditional correlation multivariate GARCH models

Options

� � �
Model �

arch(numlist) specifies the ARCH terms for all equations in the model. By default, no ARCH terms
are specified.

garch(numlist) specifies the GARCH terms for all equations in the model. By default, no GARCH
terms are specified.

het(varlist) specifies that varlist be included in the specification of the conditional variance for all
equations. This varlist enters the variance specification collectively as multiplicative heteroskedas-
ticity.

distribution(dist
[

#
]
) specifies the assumed distribution for the errors. dist may be gaussian,

normal, or t.

gaussian and normal are synonyms; each causes mgarch ccc to assume that the errors come
from a multivariate normal distribution. # cannot be specified with either of them.

t causes mgarch ccc to assume that the errors follow a multivariate Student t distribution, and
the degree-of-freedom parameter is estimated along with the other parameters of the model. If
distribution(t #) is specified, then mgarch ccc uses a multivariate Student t distribution
with # degrees of freedom. # must be greater than 2.

unconcentrated specifies that optimization be performed on the unconcentrated log likelihood. The
default is to start with the concentrated log likelihood.

constraints(numlist) specifies linear constraints to apply to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, specifies to use the observed information matrix (OIM) estimator.

vce(robust) specifies to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch ccc to begin
the optimization algorithm with the values in b0. b0 must be a row vector, and the number of
columns must equal the number of parameters in the model.

The following option is available with mgarch ccc but is not shown in the dialog box:

coeflegend; see [R] estimation options.

mgarch ccc — Constant conditional correlation multivariate GARCH models 351

Eqoptions

noconstant suppresses the constant term in the mean equation.

arch(numlist) specifies the ARCH terms in the equation. By default, no ARCH terms are specified.
This option may not be specified with model-level arch().

garch(numlist) specifies the GARCH terms in the equation. By default, no GARCH terms are specified.
This option may not be specified with model-level garch().

het(varlist) specifies that varlist be included in the specification of the conditional variance. This
varlist enters the variance specification collectively as multiplicative heteroskedasticity. This option
may not be specified with model-level het().

Remarks and examples
We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH

models and the methods implemented in mgarch ccc.

MGARCH models are dynamic multivariate regression models in which the conditional variances
and covariances of the errors follow an autoregressive-moving-average structure. The CCC MGARCH
model uses a nonlinear combination of univariate GARCH models in which the cross-equation weights
are time invariant to model the conditional covariance matrix of the disturbances.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their
specifications for a time-varying conditional covariance matrix of the disturbances, denoted by Ht.
In the conditional correlation family of MGARCH models, the diagonal elements of Ht are modeled
as univariate GARCH models, whereas the off-diagonal elements are modeled as nonlinear functions
of the diagonal terms. In the CCC MGARCH model,

hij,t = ρij
√
hii,thjj,t

where the diagonal elements hii,t and hjj,t follow univariate GARCH processes and ρij is a time-
invariate weight interpreted as a conditional correlation.

In the dynamic conditional correlation (DCC) and varying conditional correlation (VCC) MGARCH
models discussed in [TS] mgarch dcc and [TS] mgarch vcc, the ρij are allowed to vary over
time. Although the conditional-correlation structure provides a useful trade-off between parsimony
and flexibility in the DCC MGARCH and VCC MGARCH models, the time-invariant parameterization
used in the CCC MGARCH model is generally viewed as too restrictive for many applications; see
Silvennoinen and Teräsvirta (2009). The baseline CCC MGARCH estimates are frequently compared
with DCC MGARCH and VCC MGARCH estimates.

Technical note

Formally, the CCC MGARCH model derived by Bollerslev (1990) can be written as

yt = Cxt + εt

εt = H
1/2
t νt

Ht = D
1/2
t RD

1/2
t

352 mgarch ccc — Constant conditional correlation multivariate GARCH models

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht;

νt is an m× 1 vector of normal, independent, and identically distributed innovations;

Dt is a diagonal matrix of conditional variances,

Dt =

σ2

1,t 0 · · · 0
0 σ2

2,t · · · 0
...

...
. . .

...
0 0 · · · σ2

m,t

in which each σ2

i,t evolves according to a univariate GARCH model of the form

σ2
i,t = si +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

by default, or

σ2
i,t = exp(γizi,t) +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

when the het() option is specified, where γt is a 1× p vector of parameters, zi is a p× 1
vector of independent variables including a constant term, the αj’s are ARCH parameters,
and the βj’s are GARCH parameters; and

R is a matrix of time-invariant unconditional correlations of the standardized residuals
D
−1/2
t εt,

R =

1 ρ12 · · · ρ1m

ρ12 1 · · · ρ2m
...

...
. . .

...
ρ1m ρ2m · · · 1

This model is known as the constant conditional correlation MGARCH model because R is time

invariant.

Some examples

Example 1: Model with common covariates

We have daily data on the stock returns of three car manufacturers—Toyota, Nissan, and Honda,
from January 2, 2003, to December 31, 2010—in the variables toyota, nissan, and honda. We
model the conditional means of the returns as a first-order vector autoregressive process and the
conditional covariances as a CCC MGARCH process in which the variance of each disturbance term
follows a GARCH(1,1) process. We specify the noconstant option, because the returns have mean
zero. The estimated constants in the variance equations are near zero in this example because of how
the data are scaled.

mgarch ccc — Constant conditional correlation multivariate GARCH models 353

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. mgarch ccc (toyota nissan honda = L.toyota L.nissan L.honda, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing concentrated log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16898.994
Iteration 1: log likelihood = 17008.914
Iteration 2: log likelihood = 17156.946
Iteration 3: log likelihood = 17249.527
Iteration 4: log likelihood = 17287.251
Iteration 5: log likelihood = 17313.5
Iteration 6: log likelihood = 17335.087
Iteration 7: log likelihood = 17356.534
Iteration 8: log likelihood = 17376.051
Iteration 9: log likelihood = 17400.035
(switching technique to nr)
Iteration 10: log likelihood = 17423.634
Iteration 11: log likelihood = 17440.261
Iteration 12: log likelihood = 17446.381
Iteration 13: log likelihood = 17447.614
Iteration 14: log likelihood = 17447.645
Iteration 15: log likelihood = 17447.645

Optimizing unconcentrated log likelihood

Iteration 0: log likelihood = 17447.645
Iteration 1: log likelihood = 17447.651
Iteration 2: log likelihood = 17447.651

Constant conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(9) = 17.46
Log likelihood = 17447.65 Prob > chi2 = 0.0420

Coef. Std. Err. z P>|z| [95% Conf. Interval]

toyota
toyota

L1. -.0537817 .0353211 -1.52 0.128 -.1230098 .0154463

nissan
L1. .026686 .024841 1.07 0.283 -.0220015 .0753734

honda
L1. -.0043073 .0302761 -0.14 0.887 -.0636473 .0550327

ARCH_toyota
arch
L1. .0615321 .0087313 7.05 0.000 .0444191 .0786452

garch
L1. .9213798 .0110412 83.45 0.000 .8997395 .9430201

_cons 4.42e-06 1.12e-06 3.93 0.000 2.21e-06 6.62e-06

354 mgarch ccc — Constant conditional correlation multivariate GARCH models

nissan
toyota

L1. -.0232321 .0400563 -0.58 0.562 -.1017411 .0552769

nissan
L1. -.0299552 .0309362 -0.97 0.333 -.0905891 .0306787

honda
L1. .0369229 .0360532 1.02 0.306 -.0337401 .1075859

ARCH_nissan
arch
L1. .0740294 .0119353 6.20 0.000 .0506366 .0974222

garch
L1. .9102548 .0142328 63.95 0.000 .882359 .9381506

_cons 6.36e-06 1.76e-06 3.61 0.000 2.91e-06 9.81e-06

honda
toyota

L1. -.0378616 .036792 -1.03 0.303 -.1099727 .0342495

nissan
L1. .0551649 .0272559 2.02 0.043 .0017443 .1085855

honda
L1. -.0431919 .0331268 -1.30 0.192 -.1081193 .0217354

ARCH_honda
arch
L1. .0433036 .0070224 6.17 0.000 .0295399 .0570674

garch
L1. .939117 .010131 92.70 0.000 .9192605 .9589735

_cons 5.02e-06 1.31e-06 3.83 0.000 2.45e-06 7.59e-06

corr(toyota,
nissan) .6532264 .0128035 51.02 0.000 .628132 .6783208

corr(toyota,
honda) .7185412 .0108132 66.45 0.000 .6973477 .7397346

corr(nissan,
honda) .6298972 .0135336 46.54 0.000 .6033717 .6564226

The iteration log has three parts: the dots from the search for initial values, the iteration log from
optimizing the concentrated log likelihood, and the iteration log from maximizing the unconcentrated
log likelihood. A detailed discussion of the optimization methods can be found in Methods and
formulas.

The header describes the estimation sample and reports a Wald test against the null hypothesis
that all the coefficients on the independent variables in the mean equations are zero. Here the null
hypothesis is rejected at the 5% level.

The output table first presents results for the mean or variance parameters used to model each
dependent variable. Subsequently, the output table presents results for the conditional correlation
parameters. For example, the conditional correlation between the standardized residuals for Toyota
and Nissan is estimated to be 0.65.

mgarch ccc — Constant conditional correlation multivariate GARCH models 355

The output above indicates that we may not need all the vector autoregressive parameters, but that
each of the univariate ARCH, univariate GARCH, and conditional correlation parameters are statistically
significant. That the estimated conditional correlation parameters are positive and significant indicates
that the returns on these stocks rise or fall together.

That the conditional correlations are time invariant is a restrictive assumption. The DCC MGARCH
model and the VCC MGARCH model nest the CCC MGARCH model. When we test the time-invariance
assumption with Wald tests on the parameters of these more general models in [TS] mgarch dcc and
[TS] mgarch vcc, we reject the null hypothesis that these conditional correlations are time invariant.

Example 2: Model with covariates that differ by equation

We improve the previous example by removing the insignificant parameters from the model. To
remove these parameters, we specify the honda equation separately from the toyota and nissan
equations:

. mgarch ccc (toyota nissan = , noconstant) (honda = L.nissan, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing concentrated log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16886.88
Iteration 1: log likelihood = 16974.779
Iteration 2: log likelihood = 17147.893
Iteration 3: log likelihood = 17247.473
Iteration 4: log likelihood = 17285.549
Iteration 5: log likelihood = 17311.153
Iteration 6: log likelihood = 17333.588
Iteration 7: log likelihood = 17353.717
Iteration 8: log likelihood = 17374.895
Iteration 9: log likelihood = 17400.669
(switching technique to nr)
Iteration 10: log likelihood = 17425.661
Iteration 11: log likelihood = 17436.789
Iteration 12: log likelihood = 17439.74
Iteration 13: log likelihood = 17439.865
Iteration 14: log likelihood = 17439.866

Optimizing unconcentrated log likelihood

Iteration 0: log likelihood = 17439.865
Iteration 1: log likelihood = 17439.872
Iteration 2: log likelihood = 17439.872

356 mgarch ccc — Constant conditional correlation multivariate GARCH models

Constant conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(1) = 1.81
Log likelihood = 17439.87 Prob > chi2 = 0.1781

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .0619604 .0087942 7.05 0.000 .044724 .0791968

garch
L1. .9208961 .0110995 82.97 0.000 .8991414 .9426508

_cons 4.43e-06 1.13e-06 3.94 0.000 2.23e-06 6.64e-06

ARCH_nissan
arch
L1. .0773095 .012328 6.27 0.000 .0531471 .1014719

garch
L1. .906088 .0147303 61.51 0.000 .8772171 .9349589

_cons 6.77e-06 1.85e-06 3.66 0.000 3.14e-06 .0000104

honda
nissan

L1. .0186628 .0138575 1.35 0.178 -.0084975 .0458231

ARCH_honda
arch
L1. .0433741 .006996 6.20 0.000 .0296622 .0570861

garch
L1. .9391094 .0100707 93.25 0.000 .9193712 .9588476

_cons 5.02e-06 1.31e-06 3.83 0.000 2.45e-06 7.60e-06

corr(toyota,
nissan) .652299 .0128271 50.85 0.000 .6271583 .6774396

corr(toyota,
honda) .7189531 .0108005 66.57 0.000 .6977845 .7401218

corr(nissan,
honda) .628435 .0135653 46.33 0.000 .6018475 .6550225

It turns out that the coefficient on L1.nissan in the honda equation is now statistically insignificant.
We could further improve the model by removing L1.nissan from the model.

As expected, removing the insignificant parameters from conditional mean equations had almost
no effect on the estimated conditional variance parameters.

There is no mean equation for Toyota or Nissan. In [TS] mgarch ccc postestimation, we discuss
prediction from models without covariates.

mgarch ccc — Constant conditional correlation multivariate GARCH models 357

Example 3: Model with constraints

Here we fit a bivariate CCC MGARCH model for the Toyota and Nissan shares. We believe that
the shares of these car manufacturers follow the same process, so we impose the constraints that the
ARCH and the GARCH coefficients are the same for the two companies.

. constraint 1 _b[ARCH_toyota:L.arch] = _b[ARCH_nissan:L.arch]

. constraint 2 _b[ARCH_toyota:L.garch] = _b[ARCH_nissan:L.garch]

. mgarch ccc (toyota nissan = , noconstant), arch(1) garch(1) constraints(1 2)

Calculating starting values....

Optimizing concentrated log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 10317.225
Iteration 1: log likelihood = 10630.464
Iteration 2: log likelihood = 10865.964
Iteration 3: log likelihood = 11063.329

(output omitted)
Iteration 8: log likelihood = 11273.962
Iteration 9: log likelihood = 11274.409
(switching technique to nr)
Iteration 10: log likelihood = 11274.494
Iteration 11: log likelihood = 11274.499
Iteration 12: log likelihood = 11274.499

Optimizing unconcentrated log likelihood

Iteration 0: log likelihood = 11274.499
Iteration 1: log likelihood = 11274.501
Iteration 2: log likelihood = 11274.501

Constant conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,015
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 11274.5 Prob > chi2 = .

(1) [ARCH_toyota]L.arch - [ARCH_nissan]L.arch = 0
(2) [ARCH_toyota]L.garch - [ARCH_nissan]L.garch = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .0742678 .0095464 7.78 0.000 .0555572 .0929785

garch
L1. .9131674 .0111558 81.86 0.000 .8913024 .9350323

_cons 3.77e-06 1.02e-06 3.71 0.000 1.78e-06 5.77e-06

ARCH_nissan
arch
L1. .0742678 .0095464 7.78 0.000 .0555572 .0929785

garch
L1. .9131674 .0111558 81.86 0.000 .8913024 .9350323

_cons 5.30e-06 1.36e-06 3.89 0.000 2.63e-06 7.97e-06

corr(toyota,
nissan) .651389 .0128482 50.70 0.000 .6262071 .6765709

358 mgarch ccc — Constant conditional correlation multivariate GARCH models

We could test our constraints by fitting the unconstrained model and performing a likelihood-ratio
test. The results indicate that the restricted model is preferable.

Example 4: Model with a GARCH term

In this example, we have data on fictional stock returns for the Acme and Anvil corporations and
we believe that the movement of the two stocks is governed by different processes. We specify one
ARCH and one GARCH term for the conditional variance equation for Acme and two ARCH terms for
the conditional variance equation for Anvil. In addition, we include the lagged value of the stock
return for Apex, the main subsidiary of Anvil corporation, in the variance equation of Anvil. For
Acme, we have data on the changes in an index of futures prices of products related to those produced
by Acme in afrelated. For Anvil, we have data on the changes in an index of futures prices of
inputs used by Anvil in afinputs.

mgarch ccc — Constant conditional correlation multivariate GARCH models 359

. use http://www.stata-press.com/data/r14/acmeh

. mgarch ccc (acme = afrelated, noconstant arch(1) garch(1))
> (anvil = afinputs, arch(1/2) het(L.apex))

Calculating starting values....

Optimizing concentrated log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = -12996.245
Iteration 1: log likelihood = -12609.982
Iteration 2: log likelihood = -12563.103
Iteration 3: log likelihood = -12554.73
Iteration 4: log likelihood = -12554.542
Iteration 5: log likelihood = -12554.534
Iteration 6: log likelihood = -12554.534
Iteration 7: log likelihood = -12554.534

Optimizing unconcentrated log likelihood

Iteration 0: log likelihood = -12554.534
Iteration 1: log likelihood = -12554.533

Constant conditional correlation MGARCH model

Sample: 1 - 2500 Number of obs = 2,499
Distribution: Gaussian Wald chi2(2) = 2212.30
Log likelihood = -12554.53 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

acme
afrelated .9175148 .0651088 14.09 0.000 .7899039 1.045126

ARCH_acme
arch
L1. .0798719 .0169526 4.71 0.000 .0466455 .1130983

garch
L1. .7336823 .0601569 12.20 0.000 .6157768 .8515877

_cons 2.880836 .760206 3.79 0.000 1.39086 4.370812

anvil
afinputs -1.015561 .0226437 -44.85 0.000 -1.059942 -.97118

_cons .0703606 .0211689 3.32 0.001 .0288703 .1118508

ARCH_anvil
arch
L1. .4893288 .0286012 17.11 0.000 .4332714 .5453862
L2. .2782296 .0208172 13.37 0.000 .2374287 .3190305

apex
L1. 1.894972 .0616293 30.75 0.000 1.774181 2.015763

_cons .1034111 .0735512 1.41 0.160 -.0407466 .2475688

corr(acme,
anvil) -.5354047 .0143275 -37.37 0.000 -.563486 -.5073234

The results indicate that increases in the futures prices for related products lead to higher returns on
the Acme stock, and increased input prices lead to lower returns on the Anvil stock. In the conditional
variance equation for Anvil, the coefficient on L1.apex is positive and significant, which indicates
that an increase in the return on the Apex stock leads to more variability in the return on the Anvil
stock. That the estimated conditional correlation between the two returns is −0.54 indicates that these

360 mgarch ccc — Constant conditional correlation multivariate GARCH models

returns tend to move in opposite directions; in other words, an increase in the return for the Acme
stock tends to be associated with a decrease in the return for the Anvil stock, and vice versa.

Stored results
mgarch ccc stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k extra) number of extra estimates added to b
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(estdf) 1 if distribution parameter was estimated, 0 otherwise
e(usr) user-provided distribution parameter
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(N gaps) number of gaps
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mgarch
e(model) ccc
e(cmdline) command as typed
e(depvar) names of dependent variables
e(covariates) list of covariates
e(dv eqs) dependent variables with mean equations
e(indeps) independent variables in each equation
e(tvar) time variable
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian or t
e(arch) specified ARCH terms
e(garch) specified GARCH terms
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

mgarch ccc — Constant conditional correlation multivariate GARCH models 361

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators
e(pinfo) parameter information, used by predict

Functions
e(sample) marks estimation sample

Methods and formulas
mgarch ccc estimates the parameters of the CCC MGARCH model by maximum likelihood. The

unconcentrated log-likelihood function based on the multivariate normal distribution for observation t
is

lt = −0.5m log(2π)− 0.5log {det (R)} − log
{

det
(
D

1/2
t

)}
− 0.5ε̃tR

−1ε̃′t (1)

where ε̃t = D
−1/2
t εt is an m×1 vector of standardized residuals, εt = yt−Cxt. The log-likelihood

function is
∑T
t=1 lt.

If we assume that νt follow a multivariate t distribution with degrees of freedom (df) greater than
2, then the unconcentrated log-likelihood function for observation t is

lt = log Γ

(
df +m

2

)
− log Γ

(
df
2

)
− m

2
log {(df− 2)π}

− 0.5log {det (R)} − log
{

det
(
D

1/2
t

)}
− df +m

2
log

(
1 +

ε̃tR
−1ε̃′t

df− 2

)
(2)

The correlation matrix R can be concentrated out of (1) and (2) by defining the (i, j)th element
of R as

ρ̂ij =

(
T∑
t=1

ε̃itε̃jt

)(T∑
t=1

ε̃2it

)− 1
2
(T∑
t=1

ε̃2jt

)− 1
2

mgarch ccc starts the optimization process with the concentrated log-likelihood function.

The starting values for the parameters in the mean equations and the initial residuals ε̂t are
obtained by least-squares regression. The starting values for the parameters in the variance equations
are obtained by a procedure proposed by Gourieroux and Monfort (1997, sec. 6.2.2). If the optimization
is started with the unconcentrated log likelihood, then the initial values for the parameters in R are
calculated from the standardized residuals ε̃t.

362 mgarch ccc — Constant conditional correlation multivariate GARCH models

GARCH estimators require initial values that can be plugged in for εt−iε′t−i and Ht−j when
t− i < 1 and t− j < 1. mgarch ccc substitutes an estimator of the unconditional covariance of the
disturbances

Σ̂ = T−1
T∑
t=1

̂̂εt̂̂ε′t (3)

for εt−iε′t−i when t − i < 1 and for Ht−j when t − j < 1, where ̂̂εt is the vector of residuals
calculated using the estimated parameters.

mgarch ccc requires a sample size that at the minimum is equal to the number of parameters in
the model plus twice the number of equations.

mgarch ccc uses numerical derivatives in maximizing the log-likelihood function.

References
Bollerslev, T. 1990. Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH

model. Review of Economics and Statistics 72: 498–505.

Gourieroux, C. S., and A. Monfort. 1997. Time Series and Dynamic Models. Trans. ed. G. M. Gallo. Cambridge:
Cambridge University Press.

Silvennoinen, A., and T. Teräsvirta. 2009. Multivariate GARCH models. In Handbook of Financial Time Series, ed.
T. G. Andersen, R. A. Davis, J.-P. Kreis̈, and T. Mikosch, 201–229. Berlin: Springer.

Also see
[TS] mgarch ccc postestimation — Postestimation tools for mgarch ccc

[TS] mgarch — Multivariate GARCH models

[TS] tsset — Declare data to be time-series data

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

mgarch ccc postestimation — Postestimation tools for mgarch ccc

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after mgarch ccc:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

363

364 mgarch ccc postestimation — Postestimation tools for mgarch ccc

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and condi-
tional variances, covariances, and correlations. All predictions are available as static one-step-ahead
predictions or as dynamic multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
variance conditional variances and covariances
correlation conditional correlations

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) names of equations for which predictions are made
dynamic(time constant) begin dynamic forecast at specified time

Options for predict

� � �
Main �

xb, the default, calculates the linear predictions of the dependent variables.

residuals calculates the residuals.

variance predicts the conditional variances and conditional covariances.

correlation predicts the conditional correlations.

� � �
Options �

equation(eqnames) specifies the equation for which the predictions are calculated. Use this option
to predict a statistic for a particular equation. Equation names, such as equation(income), are
used to identify equations.

mgarch ccc postestimation — Postestimation tools for mgarch ccc 365

One equation name may be specified when predicting the dependent variable, the residuals, or
the conditional variance. For example, specifying equation(income) causes predict to predict
income, and specifying variance equation(income) causes predict to predict the conditional
variance of income.

Two equations may be specified when predicting a conditional variance or covariance. For ex-
ample, specifying equation(income, consumption) variance causes predict to predict the
conditional covariance of income and consumption.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with residuals.

margins

Description for margins

margins estimates margins of response for linear predictions and conditional variances, covariances,
and correlations. All predictions are available as static one-step-ahead predictions or as dynamic
multistep predictions, and you can control when dynamic predictions begin.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
variance conditional variances and covariances
correlation conditional correlations
residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

366 mgarch ccc postestimation — Postestimation tools for mgarch ccc

Remarks and examples
We assume that you have already read [TS] mgarch ccc. In this entry, we use predict after

mgarch ccc to make in-sample and out-of-sample forecasts.

Example 1: Dynamic forecasts

In this example, we obtain dynamic forecasts for the Toyota, Nissan, and Honda stock returns
modeled in example 2 of [TS] mgarch ccc. In the output below, we reestimate the parameters of the
model, use tsappend (see [TS] tsappend) to extend the data, and use predict to obtain in-sample
one-step-ahead forecasts and dynamic forecasts of the conditional variances of the returns. We graph
the forecasts below.

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. quietly mgarch ccc (toyota nissan = , noconstant)
> (honda = L.nissan, noconstant), arch(1) garch(1)

. tsappend, add(50)

. predict H*, variance dynamic(2016)

0
.0

0
1

.0
0

2
.0

0
3

01jan2009 01jul2009 01jan2010 01jul2010 01jan2011
Date

Variance prediction (toyota,toyota), dynamic(2016)

Variance prediction (nissan,nissan), dynamic(2016)

Variance prediction (honda,honda), dynamic(2016)

Recent in-sample one-step-ahead forecasts are plotted to the left of the vertical line in the above
graph, and the dynamic out-of-sample forecasts appear to the right of the vertical line. The graph
shows the tail end of the huge increase in return volatility that took place in 2008 and 2009. It also
shows that the dynamic forecasts quickly converge.

Methods and formulas
All one-step predictions are obtained by substituting the parameter estimates into the model. The

estimated unconditional variance matrix of the disturbances, Σ̂, is the initial value for the ARCH and
GARCH terms. The postestimation routines recompute Σ̂ using the prediction sample, the parameter
estimates stored in e(b), and (3) in Methods and formulas of [TS] mgarch ccc.

For observations in which the residuals are missing, the estimated unconditional variance matrix
of the disturbances is used in place of the outer product of the residuals.

mgarch ccc postestimation — Postestimation tools for mgarch ccc 367

Dynamic predictions of the dependent variables use previously predicted values beginning in the
period specified by dynamic().

Dynamic variance predictions are implemented by substituting Σ̂ for the outer product of the
residuals beginning in the period specified in dynamic().

Also see
[TS] mgarch ccc — Constant conditional correlation multivariate GARCH models

[U] 20 Estimation and postestimation commands

Title

mgarch dcc — Dynamic conditional correlation multivariate GARCH models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mgarch dcc estimates the parameters of dynamic conditional correlation (DCC) multivariate
generalized autoregressive conditionally heteroskedastic (MGARCH) models in which the conditional
variances are modeled as univariate generalized autoregressive conditionally heteroskedastic (GARCH)
models and the conditional covariances are modeled as nonlinear functions of the conditional variances.
The conditional quasicorrelation parameters that weight the nonlinear combinations of the conditional
variances follow the GARCH-like process specified in Engle (2002).

The DCC MGARCH model is about as flexible as the closely related varying conditional correlation
MGARCH model (see [TS] mgarch vcc), more flexible than the conditional correlation MGARCH
model (see [TS] mgarch ccc), and more parsimonious than the diagonal vech MGARCH model (see
[TS] mgarch dvech).

Quick start
Fit dynamic conditional correlation multivariate GARCH with first- and second-order ARCH components

for dependent variables y1 and y2 using tsset data
mgarch dcc (y1 y2), arch(1 2)

Add regressors x1 and x2 and first-order GARCH component
mgarch dcc (y1 y2 = x1 x2), arch(1 2) garch(1)

Add z1 to the model for the conditional heteroskedasticity
mgarch dcc (y1 y2 = x1 x2), arch(1 2) garch(1) het(z1)

Menu
Statistics > Multivariate time series > Multivariate GARCH

368

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 369

Syntax

mgarch dcc eq
[

eq . . . eq
] [

if
] [

in
] [

, options
]

where each eq has the form

(depvars =
[

indepvars
] [

, eqoptions
]
)

options Description

Model

arch(numlist) ARCH terms for all equations
garch(numlist) GARCH terms for all equations
het(varlist) include varlist in the specification of the conditional variance

for all equations
distribution(dist

[
#
]
) use dist distribution for errors [may be gaussian

(synonym normal) or t; default is gaussian]
constraints(numlist) apply linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) initial values for the coefficients; seldom used

coeflegend display legend instead of statistics

eqoptions Description

noconstant suppress constant term in the mean equation
arch(numlist) ARCH terms
garch(numlist) GARCH terms
het(varlist) include varlist in the specification of the conditional variance

You must tsset your data before using mgarch dcc; see [TS] tsset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvars, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

370 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

Options

� � �
Model �

arch(numlist) specifies the ARCH terms for all equations in the model. By default, no ARCH terms
are specified.

garch(numlist) specifies the GARCH terms for all equations in the model. By default, no GARCH
terms are specified.

het(varlist) specifies that varlist be included in the specification of the conditional variance for all
equations. This varlist enters the variance specification collectively as multiplicative heteroskedas-
ticity.

distribution(dist
[

#
]
) specifies the assumed distribution for the errors. dist may be gaussian,

normal, or t.

gaussian and normal are synonyms; each causes mgarch dcc to assume that the errors come
from a multivariate normal distribution. # may not be specified with either of them.

t causes mgarch dcc to assume that the errors follow a multivariate Student t distribution, and
the degree-of-freedom parameter is estimated along with the other parameters of the model. If
distribution(t #) is specified, then mgarch dcc uses a multivariate Student t distribution
with # degrees of freedom. # must be greater than 2.

constraints(numlist) specifies linear constraints to apply to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, specifies to use the observed information matrix (OIM) estimator.

vce(robust) specifies to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch dcc to begin
the optimization algorithm with the values in b0. b0 must be a row vector, and the number of
columns must equal the number of parameters in the model.

The following option is available with mgarch dcc but is not shown in the dialog box:

coeflegend; see [R] estimation options.

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 371

Eqoptions

noconstant suppresses the constant term in the mean equation.

arch(numlist) specifies the ARCH terms in the equation. By default, no ARCH terms are specified.
This option may not be specified with model-level arch().

garch(numlist) specifies the GARCH terms in the equation. By default, no GARCH terms are specified.
This option may not be specified with model-level garch().

het(varlist) specifies that varlist be included in the specification of the conditional variance. This
varlist enters the variance specification collectively as multiplicative heteroskedasticity. This option
may not be specified with model-level het().

Remarks and examples
We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH

models and the methods implemented in mgarch dcc.

MGARCH models are dynamic multivariate regression models in which the conditional variances
and covariances of the errors follow an autoregressive-moving-average structure. The DCC MGARCH
model uses a nonlinear combination of univariate GARCH models with time-varying cross-equation
weights to model the conditional covariance matrix of the errors.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their
specifications for a time-varying conditional covariance matrix of the disturbances, denoted by Ht.
In the conditional correlation family of MGARCH models, the diagonal elements of Ht are modeled
as univariate GARCH models, whereas the off-diagonal elements are modeled as nonlinear functions
of the diagonal terms. In the DCC MGARCH model,

hij,t = ρij,t
√
hii,thjj,t

where the diagonal elements hii,t and hjj,t follow univariate GARCH processes and ρij,t follows the
dynamic process specified in Engle (2002) and discussed below.

Because the ρij,t varies with time, this model is known as the DCC GARCH model.

Technical note
The DCC GARCH model proposed by Engle (2002) can be written as

yt = Cxt + εt

εt = H
1/2
t νt

Ht = D
1/2
t RtD

1/2
t

Rt = diag(Qt)
−1/2

Qtdiag(Qt)
−1/2

Qt = (1− λ1 − λ2)R + λ1 ε̃t−1ε̃
′
t−1 + λ2Qt−1 (1)

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

372 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht;

νt is an m× 1 vector of normal, independent, and identically distributed innovations;

Dt is a diagonal matrix of conditional variances,

Dt =

σ2

1,t 0 · · · 0
0 σ2

2,t · · · 0
...

...
. . .

...
0 0 · · · σ2

m,t

in which each σ2

i,t evolves according to a univariate GARCH model of the form

σ2
i,t = si +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

by default, or

σ2
i,t = exp(γizi,t) +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

when the het() option is specified, where γt is a 1× p vector of parameters, zi is a p× 1
vector of independent variables including a constant term, the αj’s are ARCH parameters,
and the βj’s are GARCH parameters;

Rt is a matrix of conditional quasicorrelations,

Rt =

1 ρ12,t · · · ρ1m,t

ρ12,t 1 · · · ρ2m,t

...
...

. . .
...

ρ1m,t ρ2m,t · · · 1

ε̃t is an m× 1 vector of standardized residuals, D

−1/2
t εt; and

λ1 and λ2 are parameters that govern the dynamics of conditional quasicorrelations. λ1 and
λ2 are nonnegative and satisfy 0 ≤ λ1 + λ2 < 1.

When Qt is stationary, the R matrix in (1) is a weighted average of the unconditional covariance
matrix of the standardized residuals ε̃t, denoted by R, and the unconditional mean of Qt, denoted by
Q. Because R 6= Q, as shown by Aielli (2009), R is neither the unconditional correlation matrix nor
the unconditional mean of Qt. For this reason, the parameters in R are known as quasicorrelations;
see Aielli (2009) and Engle (2009) for discussions.

Some examples

Example 1: Model with common covariates

We have daily data on the stock returns of three car manufacturers—Toyota, Nissan, and Honda,
from January 2, 2003, to December 31, 2010—in the variables toyota, nissan and honda. We
model the conditional means of the returns as a first-order vector autoregressive process and the
conditional covariances as a DCC MGARCH process in which the variance of each disturbance term
follows a GARCH(1,1) process.

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 373

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. mgarch dcc (toyota nissan honda = L.toyota L.nissan L.honda, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16902.435
Iteration 1: log likelihood = 17005.448
Iteration 2: log likelihood = 17157.958
Iteration 3: log likelihood = 17267.363
Iteration 4: log likelihood = 17318.29
Iteration 5: log likelihood = 17353.029
Iteration 6: log likelihood = 17369.115
Iteration 7: log likelihood = 17388.035
Iteration 8: log likelihood = 17401.254
Iteration 9: log likelihood = 17435.556
(switching technique to nr)
Iteration 10: log likelihood = 17451.739
Iteration 11: log likelihood = 17476.882
Iteration 12: log likelihood = 17478.382
Iteration 13: log likelihood = 17483.858
Iteration 14: log likelihood = 17484.886
Iteration 15: log likelihood = 17484.95
Iteration 16: log likelihood = 17484.95

Refining estimates

Iteration 0: log likelihood = 17484.95
Iteration 1: log likelihood = 17484.95

Dynamic conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(9) = 19.54
Log likelihood = 17484.95 Prob > chi2 = 0.0210

Coef. Std. Err. z P>|z| [95% Conf. Interval]

toyota
toyota

L1. -.0510867 .0339825 -1.50 0.133 -.1176911 .0155177

nissan
L1. .0297829 .0247455 1.20 0.229 -.0187173 .0782832

honda
L1. -.0162824 .0300323 -0.54 0.588 -.0751447 .0425799

ARCH_toyota
arch
L1. .0608223 .0086687 7.02 0.000 .043832 .0778127

garch
L1. .9222203 .0111055 83.04 0.000 .9004539 .9439866

_cons 4.47e-06 1.15e-06 3.90 0.000 2.22e-06 6.72e-06

374 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

nissan
toyota

L1. -.0056722 .0389348 -0.15 0.884 -.0819829 .0706386

nissan
L1. -.0287097 .0309379 -0.93 0.353 -.0893468 .0319275

honda
L1. .015498 .0358802 0.43 0.666 -.0548259 .0858218

ARCH_nissan
arch
L1. .0844244 .0128192 6.59 0.000 .0592992 .1095496

garch
L1. .89942 .0151125 59.51 0.000 .8698 .92904

_cons 7.21e-06 1.93e-06 3.74 0.000 3.43e-06 .000011

honda
toyota

L1. -.0272415 .0361819 -0.75 0.452 -.0981566 .0436737

nissan
L1. .0617491 .0271378 2.28 0.023 .0085599 .1149382

honda
L1. -.063507 .0332918 -1.91 0.056 -.1287578 .0017437

ARCH_honda
arch
L1. .0490134 .0073695 6.65 0.000 .0345693 .0634574

garch
L1. .9331125 .0103686 89.99 0.000 .9127905 .9534346

_cons 5.35e-06 1.35e-06 3.95 0.000 2.69e-06 8.00e-06

corr(toyota,
nissan) .6689537 .0168019 39.81 0.000 .6360226 .7018849

corr(toyota,
honda) .7259623 .0140155 51.80 0.000 .6984925 .7534321

corr(nissan,
honda) .6335651 .0180409 35.12 0.000 .5982056 .6689247

Adjustment
lambda1 .0315281 .0088382 3.57 0.000 .0142054 .0488507
lambda2 .8704093 .0613336 14.19 0.000 .7501977 .9906209

The iteration log has three parts: the dots from the search for initial values, the iteration log from
optimizing the log likelihood, and the iteration log from the refining step. A detailed discussion of
the optimization methods is in Methods and formulas.

The header describes the estimation sample and reports a Wald test against the null hypothesis
that all the coefficients on the independent variables in the mean equations are zero. Here the null
hypothesis is rejected at the 5% level.

The output table first presents results for the mean or variance parameters used to model each
dependent variable. Subsequently, the output table presents results for the conditional quasicorrelations.

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 375

For example, the conditional quasicorrelation between the standardized residuals for Toyota and Nissan
is estimated to be 0.67. Finally, the output table presents results for the adjustment parameters λ1

and λ2. In the example at hand, the estimates for both λ1 and λ2 are statistically significant.

The DCC MGARCH model reduces to the CCC MGARCH model when λ1 = λ2 = 0. The output
below shows that a Wald test rejects the null hypothesis that λ1 = λ2 = 0 at all conventional levels.

. test _b[Adjustment:lambda1] = _b[Adjustment:lambda2] = 0

(1) [Adjustment]lambda1 - [Adjustment]lambda2 = 0
(2) [Adjustment]lambda1 = 0

chi2(2) = 1102.27
Prob > chi2 = 0.0000

These results indicate that the assumption of time-invariant conditional correlations maintained in
the CCC MGARCH model is too restrictive for these data.

Example 2: Model with covariates that differ by equation

We improve the previous example by removing the insignificant parameters from the model. To
remove these parameters, we specify the honda equation separately from the toyota and nissan
equations:

. mgarch dcc (toyota nissan = , noconstant) (honda = L.nissan, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16884.502
Iteration 1: log likelihood = 16970.755
Iteration 2: log likelihood = 17140.318
Iteration 3: log likelihood = 17237.807
Iteration 4: log likelihood = 17306.12
Iteration 5: log likelihood = 17342.533
Iteration 6: log likelihood = 17363.511
Iteration 7: log likelihood = 17392.501
Iteration 8: log likelihood = 17407.242
Iteration 9: log likelihood = 17448.702
(switching technique to nr)
Iteration 10: log likelihood = 17472.199
Iteration 11: log likelihood = 17475.842
Iteration 12: log likelihood = 17476.345
Iteration 13: log likelihood = 17476.35
Iteration 14: log likelihood = 17476.35

Refining estimates

Iteration 0: log likelihood = 17476.35
Iteration 1: log likelihood = 17476.35

376 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

Dynamic conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(1) = 2.21
Log likelihood = 17476.35 Prob > chi2 = 0.1374

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .0608188 .0086675 7.02 0.000 .0438308 .0778067

garch
L1. .9219957 .0111066 83.01 0.000 .9002271 .9437643

_cons 4.49e-06 1.14e-06 3.95 0.000 2.27e-06 6.72e-06

ARCH_nissan
arch
L1. .0876161 .01302 6.73 0.000 .0620974 .1131349

garch
L1. .8950964 .0152908 58.54 0.000 .865127 .9250658

_cons 7.69e-06 1.99e-06 3.86 0.000 3.79e-06 .0000116

honda
nissan

L1. .019978 .0134488 1.49 0.137 -.0063811 .0463371

ARCH_honda
arch
L1. .0488799 .0073767 6.63 0.000 .0344218 .063338

garch
L1. .9330047 .0103944 89.76 0.000 .912632 .9533774

_cons 5.42e-06 1.36e-06 3.98 0.000 2.75e-06 8.08e-06

corr(toyota,
nissan) .6668433 .0163209 40.86 0.000 .6348548 .6988317

corr(toyota,
honda) .7258101 .0137072 52.95 0.000 .6989446 .7526757

corr(nissan,
honda) .6313515 .0175454 35.98 0.000 .5969631 .6657399

Adjustment
lambda1 .0324493 .0074013 4.38 0.000 .0179429 .0469556
lambda2 .8574681 .0476274 18.00 0.000 .7641202 .950816

It turns out that the coefficient on L1.nissan in the honda equation is now statistically insignificant.
We could further improve the model by removing L1.nissan from the model.

There is no mean equation for Toyota or Nissan. In [TS] mgarch dcc postestimation, we discuss
prediction from models without covariates.

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 377

Example 3: Model with constraints

Here we fit a bivariate DCC MGARCH model for the Toyota and Nissan shares. We believe that
the shares of these car manufacturers follow the same process, so we impose the constraints that the
ARCH coefficients are the same for the two companies and that the GARCH coefficients are also the
same.

. constraint 1 _b[ARCH_toyota:L.arch] = _b[ARCH_nissan:L.arch]

. constraint 2 _b[ARCH_toyota:L.garch] = _b[ARCH_nissan:L.garch]

. mgarch dcc (toyota nissan = , noconstant), arch(1) garch(1) constraints(1 2)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 10307.609
Iteration 1: log likelihood = 10656.153
Iteration 2: log likelihood = 10862.137
Iteration 3: log likelihood = 10987.457
Iteration 4: log likelihood = 11062.347
Iteration 5: log likelihood = 11135.207
Iteration 6: log likelihood = 11245.619
Iteration 7: log likelihood = 11253.56
Iteration 8: log likelihood = 11294
Iteration 9: log likelihood = 11296.364
(switching technique to nr)
Iteration 10: log likelihood = 11296.76
Iteration 11: log likelihood = 11297.087
Iteration 12: log likelihood = 11297.091
Iteration 13: log likelihood = 11297.091

Refining estimates

Iteration 0: log likelihood = 11297.091
Iteration 1: log likelihood = 11297.091

378 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

Dynamic conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,015
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 11297.09 Prob > chi2 = .

(1) [ARCH_toyota]L.arch - [ARCH_nissan]L.arch = 0
(2) [ARCH_toyota]L.garch - [ARCH_nissan]L.garch = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .080889 .0103227 7.84 0.000 .060657 .1011211

garch
L1. .9060711 .0119107 76.07 0.000 .8827267 .9294156

_cons 4.21e-06 1.10e-06 3.83 0.000 2.05e-06 6.36e-06

ARCH_nissan
arch
L1. .080889 .0103227 7.84 0.000 .060657 .1011211

garch
L1. .9060711 .0119107 76.07 0.000 .8827267 .9294156

_cons 5.92e-06 1.47e-06 4.03 0.000 3.04e-06 8.80e-06

corr(toyota,
nissan) .6646283 .0187793 35.39 0.000 .6278215 .7014351

Adjustment
lambda1 .0446559 .0123017 3.63 0.000 .020545 .0687668
lambda2 .8686054 .0510884 17.00 0.000 .7684739 .968737

We could test our constraints by fitting the unconstrained model and performing a likelihood-ratio
test. The results indicate that the restricted model is preferable.

Example 4: Model with a GARCH term

In this example, we have data on fictional stock returns for the Acme and Anvil corporations, and
we believe that the movement of the two stocks is governed by different processes. We specify one
ARCH and one GARCH term for the conditional variance equation for Acme and two ARCH terms for
the conditional variance equation for Anvil. In addition, we include the lagged value of the stock
return for Apex, the main subsidiary of Anvil corporation, in the variance equation of Anvil. For
Acme, we have data on the changes in an index of futures prices of products related to those produced
by Acme in afrelated. For Anvil, we have data on the changes in an index of futures prices of
inputs used by Anvil in afinputs.

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 379

. use http://www.stata-press.com/data/r14/acmeh

. mgarch dcc (acme = afrelated, noconstant arch(1) garch(1))
> (anvil = afinputs, arch(1/2) het(L.apex))

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = -13260.522

(output omitted)
Iteration 9: log likelihood = -12362.876
(switching technique to nr)
Iteration 10: log likelihood = -12362.876

Refining estimates

Iteration 0: log likelihood = -12362.876
Iteration 1: log likelihood = -12362.876

Dynamic conditional correlation MGARCH model

Sample: 1 - 2500 Number of obs = 2,499
Distribution: Gaussian Wald chi2(2) = 2596.18
Log likelihood = -12362.88 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

acme
afrelated .950805 .0557082 17.07 0.000 .841619 1.059991

ARCH_acme
arch
L1. .1063295 .015716 6.77 0.000 .0755266 .1371324

garch
L1. .7556294 .0391568 19.30 0.000 .6788836 .8323752

_cons 2.197566 .458343 4.79 0.000 1.29923 3.095901

anvil
afinputs -1.015657 .0209959 -48.37 0.000 -1.056808 -.9745054

_cons .0808653 .019445 4.16 0.000 .0427538 .1189767

ARCH_anvil
arch
L1. .5261675 .0281586 18.69 0.000 .4709777 .5813572
L2. .2866454 .0196504 14.59 0.000 .2481314 .3251595

apex
L1. 1.953173 .0594862 32.83 0.000 1.836582 2.069763

_cons -.0062964 .0710842 -0.09 0.929 -.1456188 .1330261

corr(acme,
anvil) -.5600358 .0326358 -17.16 0.000 -.6240008 -.4960708

Adjustment
lambda1 .1904321 .0154449 12.33 0.000 .1601607 .2207035
lambda2 .7147267 .0226204 31.60 0.000 .6703916 .7590618

380 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

The results indicate that increases in the futures prices for related products lead to higher returns on
the Acme stock, and increased input prices lead to lower returns on the Anvil stock. In the conditional
variance equation for Anvil, the coefficient on L1.apex is positive and significant, which indicates
that an increase in the return on the Apex stock leads to more variability in the return on the Anvil
stock.

Stored results
mgarch dcc stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k extra) number of extra estimates added to b
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(estdf) 1 if distribution parameter was estimated, 0 otherwise
e(usr) user-provided distribution parameter
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(N gaps) number of gaps
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mgarch
e(model) dcc
e(cmdline) command as typed
e(depvar) names of dependent variables
e(covariates) list of covariates
e(dv eqs) dependent variables with mean equations
e(indeps) independent variables in each equation
e(tvar) time variable
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian or t
e(arch) specified ARCH terms
e(garch) specified GARCH terms
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix

mgarch dcc — Dynamic conditional correlation multivariate GARCH models 381

e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators
e(pinfo) parameter information, used by predict

Functions
e(sample) marks estimation sample

Methods and formulas
mgarch dcc estimates the parameters of the DCC MGARCH model by maximum likelihood. The

log-likelihood function based on the multivariate normal distribution for observation t is

lt = −0.5m log(2π)− 0.5log {det (Rt)} − log
{

det
(
D

1/2
t

)}
− 0.5ε̃tR

−1
t ε̃′t

where ε̃t = D
−1/2
t εt is an m×1 vector of standardized residuals, εt = yt−Cxt. The log-likelihood

function is
∑T
t=1 lt.

If we assume that νt follow a multivariate t distribution with degrees of freedom (df) greater than
2, then the log-likelihood function for observation t is

lt = log Γ

(
df +m

2

)
− log Γ

(
df
2

)
− m

2
log {(df− 2)π}

− 0.5log {det (Rt)} − log
{

det
(
D

1/2
t

)}
− df +m

2
log

(
1 +

ε̃tR
−1
t ε̃′t

df− 2

)

The starting values for the parameters in the mean equations and the initial residuals ε̂t are
obtained by least-squares regression. The starting values for the parameters in the variance equations
are obtained by a procedure proposed by Gourieroux and Monfort (1997, sec. 6.2.2). The starting
values for the quasicorrelation parameters are calculated from the standardized residuals ε̃t. Given
the starting values for the mean and variance equations, the starting values for the parameters λ1 and
λ2 are obtained from a grid search performed on the log likelihood.

The initial optimization step is performed in the unconstrained space. Once the maximum is found,
we impose the constraints λ1 ≥ 0, λ2 ≥ 0, and 0 ≤ λ1 + λ2 < 1, and maximize the log likelihood
in the constrained space. This step is reported in the iteration log as the refining step.

GARCH estimators require initial values that can be plugged in for εt−iε′t−i and Ht−j when
t− i < 1 and t− j < 1. mgarch dcc substitutes an estimator of the unconditional covariance of the
disturbances

Σ̂ = T−1
T∑
t=1

̂̂εt̂̂ε′t (2)

for εt−iε′t−i when t − i < 1 and for Ht−j when t − j < 1, where ̂̂εt is the vector of residuals
calculated using the estimated parameters.

mgarch dcc uses numerical derivatives in maximizing the log-likelihood function.

382 mgarch dcc — Dynamic conditional correlation multivariate GARCH models

References
Aielli, G. P. 2009. Dynamic Conditional Correlations: On Properties and Estimation. Working paper, Dipartimento di

Statistica, University of Florence, Florence, Italy.

Engle, R. F. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional
heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–350.

. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton, NJ: Princeton University
Press.

Gourieroux, C. S., and A. Monfort. 1997. Time Series and Dynamic Models. Trans. ed. G. M. Gallo. Cambridge:
Cambridge University Press.

Also see
[TS] mgarch dcc postestimation — Postestimation tools for mgarch dcc

[TS] mgarch — Multivariate GARCH models

[TS] tsset — Declare data to be time-series data

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

mgarch dcc postestimation — Postestimation tools for mgarch dcc

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after mgarch dcc:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

383

384 mgarch dcc postestimation — Postestimation tools for mgarch dcc

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and condi-
tional variances, covariances, and correlations. All predictions are available as static one-step-ahead
predictions or as dynamic multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
variance conditional variances and covariances
correlation conditional correlations

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) names of equations for which predictions are made
dynamic(time constant) begin dynamic forecast at specified time

Options for predict

� � �
Main �

xb, the default, calculates the linear predictions of the dependent variables.

residuals calculates the residuals.

variance predicts the conditional variances and conditional covariances.

correlation predicts the conditional correlations.

� � �
Options �

equation(eqnames) specifies the equation for which the predictions are calculated. Use this option
to predict a statistic for a particular equation. Equation names, such as equation(income), are
used to identify equations.

mgarch dcc postestimation — Postestimation tools for mgarch dcc 385

One equation name may be specified when predicting the dependent variable, the residuals, or
the conditional variance. For example, specifying equation(income) causes predict to predict
income, and specifying variance equation(income) causes predict to predict the conditional
variance of income.

Two equations may be specified when predicting a conditional variance or covariance. For ex-
ample, specifying equation(income, consumption) variance causes predict to predict the
conditional covariance of income and consumption.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with residuals.

margins

Description for margins

margins estimates margins of response for linear predictions and conditional variances, covariances,
and correlations. All predictions are available as static one-step-ahead predictions or as dynamic
multistep predictions, and you can control when dynamic predictions begin.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
variance conditional variances and covariances
correlation conditional correlations
residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

386 mgarch dcc postestimation — Postestimation tools for mgarch dcc

Remarks and examples
We assume that you have already read [TS] mgarch dcc. In this entry, we use predict after

mgarch dcc to make in-sample and out-of-sample forecasts.

Example 1: Dynamic forecasts

In this example, we obtain dynamic forecasts for the Toyota, Nissan, and Honda stock returns
modeled in example 2 of [TS] mgarch dcc. In the output below, we reestimate the parameters of the
model, use tsappend (see [TS] tsappend) to extend the data, and use predict to obtain in-sample
one-step-ahead forecasts and dynamic forecasts of the conditional variances of the returns. We graph
the forecasts below.

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. quietly mgarch dcc (toyota nissan = , noconstant)
> (honda = L.nissan, noconstant), arch(1) garch(1)

. tsappend, add(50)

. predict H*, variance dynamic(2016)

0
.0

0
1

.0
0

2
.0

0
3

01jan2009 01jul2009 01jan2010 01jul2010 01jan2011
Date

Variance prediction (toyota,toyota), dynamic(2016)

Variance prediction (nissan,nissan), dynamic(2016)

Variance prediction (honda,honda), dynamic(2016)

Recent in-sample one-step-ahead forecasts are plotted to the left of the vertical line in the above
graph, and the dynamic out-of-sample forecasts appear to the right of the vertical line. The graph
shows the tail end of the huge increase in return volatility that took place in 2008 and 2009. It also
shows that the dynamic forecasts quickly converge.

Methods and formulas
All one-step predictions are obtained by substituting the parameter estimates into the model. The

estimated unconditional variance matrix of the disturbances, Σ̂, is the initial value for the ARCH and
GARCH terms. The postestimation routines recompute Σ̂ using the prediction sample, the parameter
estimates stored in e(b), and (2) in Methods and formulas of [TS] mgarch dcc.

For observations in which the residuals are missing, the estimated unconditional variance matrix
of the disturbances is used in place of the outer product of the residuals.

mgarch dcc postestimation — Postestimation tools for mgarch dcc 387

Dynamic predictions of the dependent variables use previously predicted values beginning in the
period specified by dynamic().

Dynamic variance predictions are implemented by substituting Σ̂ for the outer product of the
residuals beginning in the period specified in dynamic().

Also see
[TS] mgarch dcc — Dynamic conditional correlation multivariate GARCH models

[U] 20 Estimation and postestimation commands

Title

mgarch dvech — Diagonal vech multivariate GARCH models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mgarch dvech estimates the parameters of diagonal vech (DVECH) multivariate generalized au-
toregressive conditionally heteroskedastic (MGARCH) models in which each element of the conditional
correlation matrix is parameterized as a linear function of its own past and past shocks.

DVECH MGARCH models are less parsimonious than the conditional correlation models discussed
in [TS] mgarch ccc, [TS] mgarch dcc, and [TS] mgarch vcc because the number of parameters in
DVECH MGARCH models increases more rapidly with the number of series modeled.

Quick start
Fit diagonal vech multivariate GARCH with first- and second-order ARCH components for dependent

variables y1 and y2 using tsset data
mgarch dvech (y1 y2), arch(1 2)

Add regressors x1 and x2 and first-order GARCH component
mgarch dvech (y1 y2 = x1 x2), arch(1 2) garch(1)

Menu
Statistics > Multivariate time series > Multivariate GARCH

388

mgarch dvech — Diagonal vech multivariate GARCH models 389

Syntax

mgarch dvech eq
[

eq . . . eq
] [

if
] [

in
] [

, options
]

where each eq has the form

(depvars =
[

indepvars
] [

, noconstant
]
)

options Description

Model

arch(numlist) ARCH terms
garch(numlist) GARCH terms
distribution(dist

[
#
]
) use dist distribution for errors (may be gaussian,

normal, or t; default is gaussian)
constraints(numlist) apply linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) initial values for the coefficients; seldom used
svtechnique(algorithm spec)starting-value maximization algorithm
sviterate(#) number of starting-value iterations; default is sviterate(25)

coeflegend display legend instead of statistics

You must tsset your data before using mgarch dvech; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvars and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant term(s).

arch(numlist) specifies the ARCH terms in the model. By default, no ARCH terms are specified.

garch(numlist) specifies the GARCH terms in the model. By default, no GARCH terms are specified.

distribution(dist
[

#
]
) specifies the assumed distribution for the errors. dist may be gaussian,

normal, or t.

390 mgarch dvech — Diagonal vech multivariate GARCH models

gaussian and normal are synonyms; each causes mgarch dvech to assume that the errors come
from a multivariate normal distribution. # cannot be specified with either of them.

t causes mgarch dvech to assume that the errors follow a multivariate Student t distribution, and
the degree-of-freedom parameter is estimated along with the other parameters of the model. If
distribution(t #) is specified, then mgarch dvech uses a multivariate Student t distribution
with # degrees of freedom. # must be greater than 2.

constraints(numlist) specifies linear constraints to apply to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, specifies to use the observed information matrix (OIM) estimator.

vce(robust) specifies to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch dvech to begin
the optimization algorithm with the values in b0. b0 must be a row vector, and the number of
columns must equal the number of parameters in the model.

svtechnique(algorithm spec) and sviterate(#) specify options for the starting-value search
process.

svtechnique(algorithm spec) specifies the algorithm used to search for initial values. The
syntax for algorithm spec is the same as for the technique() option; see [R] maximize.
svtechnique(bhhh 5 nr 16000) is the default. This option may not be specified with
from().

sviterate(#) specifies the maximum number of iterations that the search algorithm may
perform. The default is sviterate(25). This option may not be specified with from().

The following option is available with mgarch dvech but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH

models and the methods implemented in mgarch dvech.

mgarch dvech — Diagonal vech multivariate GARCH models 391

MGARCH models are dynamic multivariate regression models in which the conditional variances
and covariances of the errors follow an autoregressive-moving-average structure. The DVECH MGARCH
model parameterizes each element of the current conditional covariance matrix as a linear function
of its own past and past shocks.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their
specifications for a time-varying conditional covariance matrix of the disturbances, denoted by Ht.
In a DVECH MGARCH model with one ARCH term and one GARCH term, the (i, j)th element of
conditional covariance matrix is modeled by

hij,t = sij + aijεi,t−1εj,t−1 + bijhij,t−1

where sij , aij , and bij are parameters and εt−1 is the vector of errors from the previous period. This
expression shows the linear form in which each element of the current conditional covariance matrix
is a function of its own past and past shocks.

Technical note
The general vech MGARCH model developed by Bollerslev, Engle, and Wooldridge (1988) can be

written as

yt = Cxt + εt (1)

εt = H
1/2
t νt (2)

ht = s +

p∑
i=1

Aivech(εt−iε′t−i) +

q∑
j=1

Bjht−j (3)

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht;

νt is an m× 1 vector of independent and identically distributed innovations;

ht = vech(Ht);

the vech() function stacks the lower diagonal elements of a symmetric matrix into a column
vector, for example,

vech
(

1 2
2 3

)
= (1, 2, 3)′

s is an m(m+ 1)/2× 1 vector of parameters;

each Ai is an {m(m+ 1)/2} × {m(m+ 1)/2} matrix of parameters; and

each Bj is an {m(m+ 1)/2} × {m(m+ 1)/2} matrix of parameters.

Bollerslev, Engle, and Wooldridge (1988) argued that the general-vech MGARCH model in (1)–(3)
was too flexible to fit to data, so they proposed restricting the matrices Ai and Bj to be diagonal
matrices. It is for this restriction that the model is known as a diagonal vech MGARCH model. The
diagonal vech MGARCH model can also be expressed by replacing (3) with

392 mgarch dvech — Diagonal vech multivariate GARCH models

Ht = S +

p∑
i=1

Ai � εt−iε′t−i +

q∑
j=1

Bj �Ht−j (3′)

where S is an m × m symmetric parameter matrix; each Ai is an m × m symmetric parameter
matrix; � is the elementwise or Hadamard product; and each Bj is an m×m symmetric parameter
matrix. In (3′), A and B are symmetric but not diagonal matrices because we used the Hadamard
product. The matrices are diagonal in the vech representation of (3) but not in the Hadamard-product
representation of (3′).

The Hadamard-product representation in (3′) clarifies that each element in Ht depends on its
past values and the past values of the corresponding ARCH terms. Although this representation does
not allow cross-covariance effects, it is still quite flexible. The rapid rate at which the number of
parameters grows with m, p, or q is one aspect of the model’s flexibility.

Some examples

Example 1: Model with common covariates

We have data on a secondary market rate of a six-month U.S. Treasury bill, tbill, and on
Moody’s seasoned AAA corporate bond yield, bond. We model the first-differences of tbill and the
first-differences of bond as a VAR(1) with an ARCH(1) term.

. use http://www.stata-press.com/data/r14/irates4
(St. Louis Fed (FRED) financial data)

. mgarch dvech (D.bond D.tbill = LD.bond LD.tbill), arch(1)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = 3569.2723
Iteration 1: log likelihood = 3708.4561

(output omitted)
Iteration 6: log likelihood = 4183.8853
Iteration 7: log likelihood = 4184.2424
(switching technique to nr)
Iteration 8: log likelihood = 4184.4141
Iteration 9: log likelihood = 4184.5973
Iteration 10: log likelihood = 4184.5975

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = 4184.5975
Iteration 1: log likelihood = 4200.6303
Iteration 2: log likelihood = 4208.5342
Iteration 3: log likelihood = 4212.426
Iteration 4: log likelihood = 4215.2373
(switching technique to nr)
Iteration 5: log likelihood = 4217.0676
Iteration 6: log likelihood = 4221.5706
Iteration 7: log likelihood = 4221.6576
Iteration 8: log likelihood = 4221.6577

mgarch dvech — Diagonal vech multivariate GARCH models 393

Diagonal vech MGARCH model

Sample: 3 - 2456 Number of obs = 2,454
Distribution: Gaussian Wald chi2(4) = 1183.52
Log likelihood = 4221.658 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.bond
bond
LD. .2967674 .0247149 12.01 0.000 .2483271 .3452077

tbill
LD. .0947949 .0098683 9.61 0.000 .0754533 .1141364

_cons .0003991 .00143 0.28 0.780 -.0024036 .0032019

D.tbill
bond
LD. .0108373 .0301501 0.36 0.719 -.0482558 .0699304

tbill
LD. .4344747 .0176497 24.62 0.000 .3998819 .4690675

_cons .0011611 .0021033 0.55 0.581 -.0029612 .0052835

Sigma0
1_1 .004894 .0002006 24.40 0.000 .0045008 .0052871
2_1 .0040986 .0002396 17.10 0.000 .0036289 .0045683
2_2 .0115149 .0005227 22.03 0.000 .0104904 .0125395

L.ARCH
1_1 .4514942 .0456835 9.88 0.000 .3619562 .5410323
2_1 .2518879 .036736 6.86 0.000 .1798866 .3238893
2_2 .843368 .0608055 13.87 0.000 .7241914 .9625446

The output has three parts: an iteration log, a header, and an output table. The iteration log has
two parts: the first part reports the iterations from the process of searching for starting values, and
the second part reports the iterations from maximizing the log-likelihood function.

The header describes the estimation sample and reports a Wald test against the null hypothesis that
all the coefficients on the independent variables in each equation are zero. Here the null hypothesis
is rejected at all conventional levels.

The output table reports point estimates, standard errors, tests against zero, and confidence intervals
for the estimated coefficients, the estimated elements of S, and any estimated elements of A or B.
Here the output indicates that in the equation for D.tbill, neither the coefficient on LD.bond nor
the constant are statistically significant. The elements of S are reported in the Sigma0 equation. The
estimate of S[1, 1] is 0.005, and the estimate of S[2, 1] is 0.004. The ARCH term results are reported
in the L.ARCH equation. In the L.ARCH equation, 1 1 is the coefficient on the ARCH term for the
conditional variance of the first dependent variable, 2 1 is the coefficient on the ARCH term for the
conditional covariance between the first and second dependent variables, and 2 2 is the coefficient
on the ARCH term for the conditional variance of the second dependent variable.

394 mgarch dvech — Diagonal vech multivariate GARCH models

Example 2: Model with covariates that differ by equation

We improve the previous example by removing the insignificant parameters from the model:

. mgarch dvech (D.bond = LD.bond LD.tbill, noconstant)
> (D.tbill = LD.tbill, noconstant), arch(1)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = 3566.8824
Iteration 1: log likelihood = 3701.6181
Iteration 2: log likelihood = 3952.8048
Iteration 3: log likelihood = 4076.5164
Iteration 4: log likelihood = 4166.6842
Iteration 5: log likelihood = 4180.2998
Iteration 6: log likelihood = 4182.4545
Iteration 7: log likelihood = 4182.9563
(switching technique to nr)
Iteration 8: log likelihood = 4183.0293
Iteration 9: log likelihood = 4183.1112
Iteration 10: log likelihood = 4183.1113

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = 4183.1113
Iteration 1: log likelihood = 4202.0304
Iteration 2: log likelihood = 4210.2929
Iteration 3: log likelihood = 4215.7798
Iteration 4: log likelihood = 4217.7755
(switching technique to nr)
Iteration 5: log likelihood = 4219.0078
Iteration 6: log likelihood = 4221.4197
Iteration 7: log likelihood = 4221.433
Iteration 8: log likelihood = 4221.433

Diagonal vech MGARCH model

Sample: 3 - 2456 Number of obs = 2,454
Distribution: Gaussian Wald chi2(3) = 1197.76
Log likelihood = 4221.433 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.bond
bond
LD. .2941649 .0234734 12.53 0.000 .2481579 .3401718

tbill
LD. .0953158 .0098077 9.72 0.000 .076093 .1145386

D.tbill
tbill

LD. .4385945 .0136672 32.09 0.000 .4118072 .4653817

Sigma0
1_1 .0048922 .0002005 24.40 0.000 .0044993 .0052851
2_1 .0040949 .0002394 17.10 0.000 .0036256 .0045641
2_2 .0115043 .0005184 22.19 0.000 .0104883 .0125203

L.ARCH
1_1 .4519233 .045671 9.90 0.000 .3624099 .5414368
2_1 .2515474 .0366701 6.86 0.000 .1796752 .3234195
2_2 .8437212 .0600839 14.04 0.000 .7259589 .9614836

mgarch dvech — Diagonal vech multivariate GARCH models 395

We specified each equation separately to remove the insignificant parameters. All the parameter
estimates are statistically significant.

Example 3: Model with constraints

Here we analyze some fictional weekly data on the percentages of bad widgets found in the
factories of Acme Inc. and Anvil Inc. We model the levels as a first-order autoregressive process.
We believe that the adaptive management style in these companies causes the variances to follow
a diagonal vech MGARCH process with one ARCH term and one GARCH term. Furthermore, these
close competitors follow essentially the same process, so we impose the constraints that the ARCH
coefficients are the same for the two companies and that the GARCH coefficients are also the same.

Imposing these constraints yields

. use http://www.stata-press.com/data/r14/acme

. constraint 1 [L.ARCH]1_1 = [L.ARCH]2_2

. constraint 2 [L.GARCH]1_1 = [L.GARCH]2_2

. mgarch dvech (acme = L.acme) (anvil = L.anvil), arch(1) garch(1)
> constraints(1 2)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = -6087.0665 (not concave)
Iteration 1: log likelihood = -6022.2046
Iteration 2: log likelihood = -5986.6152
Iteration 3: log likelihood = -5976.5739
Iteration 4: log likelihood = -5974.4342
Iteration 5: log likelihood = -5974.4046
Iteration 6: log likelihood = -5974.4036
Iteration 7: log likelihood = -5974.4035

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = -5974.4035
Iteration 1: log likelihood = -5973.812
Iteration 2: log likelihood = -5973.8004
Iteration 3: log likelihood = -5973.7999
Iteration 4: log likelihood = -5973.7999

396 mgarch dvech — Diagonal vech multivariate GARCH models

Diagonal vech MGARCH model

Sample: 1969w35 - 1998w25 Number of obs = 1,499
Distribution: Gaussian Wald chi2(2) = 272.47
Log likelihood = -5973.8 Prob > chi2 = 0.0000

(1) [L.ARCH]1_1 - [L.ARCH]2_2 = 0
(2) [L.GARCH]1_1 - [L.GARCH]2_2 = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

acme
acme
L1. .3365278 .0255134 13.19 0.000 .2865225 .3865331

_cons 1.124611 .060085 18.72 0.000 1.006847 1.242376

anvil
anvil

L1. .3151955 .0263287 11.97 0.000 .2635922 .3667988

_cons 1.215786 .0642052 18.94 0.000 1.089947 1.341626

Sigma0
1_1 1.889237 .2168733 8.71 0.000 1.464173 2.314301
2_1 .4599576 .1139843 4.04 0.000 .2365525 .6833626
2_2 2.063113 .2454633 8.40 0.000 1.582014 2.544213

L.ARCH
1_1 .2813443 .0299124 9.41 0.000 .222717 .3399716
2_1 .181877 .0335393 5.42 0.000 .1161412 .2476128
2_2 .2813443 .0299124 9.41 0.000 .222717 .3399716

L.GARCH
1_1 .1487581 .0697531 2.13 0.033 .0120445 .2854716
2_1 .085404 .1446524 0.59 0.555 -.1981094 .3689175
2_2 .1487581 .0697531 2.13 0.033 .0120445 .2854716

We could test our constraints by fitting the unconstrained model and performing either a Wald or a
likelihood-ratio test. The results indicate that we might further restrict the time-invariant components
of the conditional variances to be the same across companies.

Example 4: Model with a GARCH term

Some models of financial data include no covariates or constant terms. For example, in modeling
fictional data on the stock returns of Acme Inc. and Anvil Inc., we found it best not to include
any covariates or constant terms. We include two ARCH terms and one GARCH term to model the
conditional variances.

mgarch dvech — Diagonal vech multivariate GARCH models 397

. use http://www.stata-press.com/data/r14/aacmer

. mgarch dvech (acme anvil = , noconstant), arch(1/2) garch(1)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = -18417.243 (not concave)
Iteration 1: log likelihood = -18215.005
Iteration 2: log likelihood = -18199.691
Iteration 3: log likelihood = -18136.699
Iteration 4: log likelihood = -18084.256
Iteration 5: log likelihood = -17993.662
Iteration 6: log likelihood = -17731.1
Iteration 7: log likelihood = -17629.505
(switching technique to nr)
Iteration 8: log likelihood = -17548.172
Iteration 9: log likelihood = -17544.987
Iteration 10: log likelihood = -17544.937
Iteration 11: log likelihood = -17544.937

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = -17544.937
Iteration 1: log likelihood = -17544.937

Diagonal vech MGARCH model

Sample: 1 - 5000 Number of obs = 5,000
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -17544.94 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Sigma0
1_1 1.026283 .0823348 12.46 0.000 .8649096 1.187656
2_1 .4300997 .0590294 7.29 0.000 .3144042 .5457952
2_2 1.019753 .0837146 12.18 0.000 .8556751 1.18383

L.ARCH
1_1 .2878739 .02157 13.35 0.000 .2455975 .3301504
2_1 .1036685 .0161446 6.42 0.000 .0720256 .1353114
2_2 .2034196 .019855 10.25 0.000 .1645044 .2423347

L2.ARCH
1_1 .1837825 .0274555 6.69 0.000 .1299706 .2375943
2_1 .0884425 .02208 4.01 0.000 .0451665 .1317185
2_2 .2025718 .0272639 7.43 0.000 .1491355 .256008

L.GARCH
1_1 .0782467 .053944 1.45 0.147 -.0274816 .183975
2_1 .2888104 .0818303 3.53 0.000 .1284261 .4491948
2_2 .201618 .0470584 4.28 0.000 .1093853 .2938508

The model test is omitted from the output, because there are no covariates in the model. The univariate
tests indicate that the included parameters fit the data well. In [TS] mgarch dvech postestimation,
we discuss prediction from models without covariates.

398 mgarch dvech — Diagonal vech multivariate GARCH models

Stored results
mgarch dvech stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k extra) number of extra estimates added to b
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(estdf) 1 if distribution parameter was estimated, 0 otherwise
e(usr) user-provided distribution parameter
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(N gaps) number of gaps
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mgarch
e(model) dvech
e(cmdline) command as typed
e(depvar) names of dependent variables
e(covariates) list of covariates
e(dv eqs) dependent variables with mean equations
e(indeps) independent variables in each equation
e(tvar) time variable
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian or t
e(arch) specified ARCH terms
e(garch) specified GARCH terms
e(svtechnique) maximization technique(s) for starting values
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

mgarch dvech — Diagonal vech multivariate GARCH models 399

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(hessian) Hessian matrix
e(A) estimates of A matrices
e(B) estimates of B matrices
e(S) estimates of Sigma0 matrix
e(Sigma) Sigma hat
e(V) variance–covariance matrix of the estimators
e(pinfo) parameter information, used by predict

Functions
e(sample) marks estimation sample

Methods and formulas
Recall that the diagonal vech MGARCH model can be written as

yt = Cxt + εt

εt = H
1/2
t νt

Ht = S +

p∑
i=1

Ai � εt−iε′t−i +

q∑
j=1

Bj �Ht−j

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht;

νt is an m× 1 vector of normal, independent, and identically distributed innovations;

S is an m×m symmetric matrix of parameters;

each Ai is an m×m symmetric matrix of parameters;

� is the elementwise or Hadamard product; and

each Bj is an m×m symmetric matrix of parameters.

mgarch dvech estimates the parameters by maximum likelihood. The log-likelihood function based
on the multivariate normal distribution for observation t is

lt = −0.5m log(2π)− 0.5log {det (Ht)} − 0.5εtH
−1
t ε′t

where εt = yt −Cxt. The log-likelihood function is
∑T
t=1 lt.

400 mgarch dvech — Diagonal vech multivariate GARCH models

If we assume that νt follow a multivariate t distribution with degrees of freedom (df) greater than
2, then the log-likelihood function for observation t is

lt = log Γ

(
df +m

2

)
− log Γ

(
df
2

)
− m

2
log {(df− 2)π}

− 0.5log {det (Ht)} −
df +m

2
log

(
1 +

εtH
−1
t ε′t

df− 2

)

mgarch dvech ensures that Ht is positive definite for each t.

By default, mgarch dvech performs an iterative search for starting values. mgarch dvech estimates
starting values for C by seemingly unrelated regression, uses these estimates to compute residuals ε̂t,
plugs ε̂t into the above log-likelihood function, and optimizes this log-likelihood function over the
parameters in Ht. This starting-value method plugs in consistent estimates of the parameters for the
conditional means of the dependent variables and then iteratively searches for the variance parameters
that maximize the log-likelihood function. Lütkepohl (2005, chap. 16) discusses this method as an
estimator for the variance parameters.

GARCH estimators require initial values that can be plugged in for εt−iε′t−i and Ht−j when
t− i < 1 and t− j < 1. mgarch dvech substitutes an estimator of the unconditional covariance of
the disturbances,

Σ̂ = T−1
T∑
t=1

̂̂εt̂̂ε′t (4)

for εt−iε′t−i when t − i < 1 and for Ht−j when t − j < 1, where ̂̂εt is the vector of residuals
calculated using the estimated parameters.

mgarch dvech uses analytic first and second derivatives in maximizing the log-likelihood function
based on the multivariate normal distribution. mgarch dvech uses numerical derivatives in maximizing
the log-likelihood function based on the multivariate t distribution.

References
Bollerslev, T., R. F. Engle, and J. M. Wooldridge. 1988. A capital asset pricing model with time-varying covariances.

Journal of Political Economy 96: 116–131.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] mgarch dvech postestimation — Postestimation tools for mgarch dvech

[TS] mgarch — Multivariate GARCH models

[TS] tsset — Declare data to be time-series data

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/imtsa.html

Title

mgarch dvech postestimation — Postestimation tools for mgarch dvech

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after mgarch dvech:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

401

402 mgarch dvech postestimation — Postestimation tools for mgarch dvech

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and conditional
variances and covariances. All predictions are available as static one-step-ahead predictions or as
dynamic multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
variance conditional variances and covariances

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) names of equations for which predictions are made
dynamic(time constant) begin dynamic forecast at specified time

Options for predict

� � �
Main �

xb, the default, calculates the linear predictions of the dependent variables.

residuals calculates the residuals.

variance predicts the conditional variances and conditional covariances.

� � �
Options �

equation(eqnames) specifies the equation for which the predictions are calculated. Use this option
to predict a statistic for a particular equation. Equation names, such as equation(income), are
used to identify equations.

One equation name may be specified when predicting the dependent variable, the residuals, or
the conditional variance. For example, specifying equation(income) causes predict to predict
income, and specifying variance equation(income) causes predict to predict the conditional
variance of income.

mgarch dvech postestimation — Postestimation tools for mgarch dvech 403

Two equations may be specified when predicting a conditional variance or covariance. For ex-
ample, specifying equation(income, consumption) variance causes predict to predict the
conditional covariance of income and consumption.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with residuals.

margins

Description for margins

margins estimates margins of response for linear predictions and conditional variances and
covariances. All predictions are available as static one-step-ahead predictions or as dynamic multistep
predictions, and you can control when dynamic predictions begin.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
variance conditional variances and covariances
correlation conditional correlations
residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

404 mgarch dvech postestimation — Postestimation tools for mgarch dvech

Remarks and examples
We assume that you have already read [TS] mgarch dvech. In this entry, we illustrate some of the

features of predict after using mgarch dvech to estimate the parameters of diagonal vech MGARCH
models.

Example 1: Dynamic forecasts

In example 3 of [TS] mgarch dvech, we obtained dynamic predictions for the Acme Inc. and
Anvil Inc. fictional widget data.

. use http://www.stata-press.com/data/r14/acme

. constraint 1 [L.ARCH]1_1 = [L.ARCH]2_2

. constraint 2 [L.GARCH]1_1 = [L.GARCH]2_2

. mgarch dvech (acme = L.acme) (anvil = L.anvil), arch(1) garch(1)
> constraints(1 2)

(output omitted)

Now we use tsappend (see [TS] tsappend) to extend the data, use predict to obtain the dynamic
predictions, and graph the predictions.

. tsappend, add(12)

. predict H*, variance dynamic(tw(1998w26))

. tsline H_acme_acme H_anvil_anvil if t>=tw(1995w25), legend(rows(2))

2
4

6
8

1
0

1995w26 1996w27 1997w26 1998w26
weekly date

variance prediction (acme, acme) dynamic(tw(1998w26))

variance prediction (anvil, anvil) dynamic(tw(1998w26))

The graph shows that the in-sample predictions are similar for the conditional variances of Acme
Inc. and Anvil Inc. and that the dynamic forecasts converge to similar levels. It also shows that
the ARCH and GARCH parameters cause substantial time-varying volatility. The predicted conditional
variance of acme ranges from lows of just over 2 to highs above 10.

mgarch dvech postestimation — Postestimation tools for mgarch dvech 405

Example 2: Predicting in-sample conditional variances

In this example, we obtain the in-sample predicted conditional variances of the returns for the
fictional Acme Inc., which we modeled in example 4 of [TS] mgarch dvech. First, we reestimate the
parameters of the model.

use http://www.stata-press.com/data/r14/aacmer, clear

. mgarch dvech (acme anvil = , noconstant), arch(1/2) garch(1)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = -18417.243 (not concave)
Iteration 1: log likelihood = -18215.005
Iteration 2: log likelihood = -18199.691
Iteration 3: log likelihood = -18136.699
Iteration 4: log likelihood = -18084.256
Iteration 5: log likelihood = -17993.662
Iteration 6: log likelihood = -17731.1
Iteration 7: log likelihood = -17629.505
(switching technique to nr)
Iteration 8: log likelihood = -17548.172
Iteration 9: log likelihood = -17544.987
Iteration 10: log likelihood = -17544.937
Iteration 11: log likelihood = -17544.937

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = -17544.937
Iteration 1: log likelihood = -17544.937

Diagonal vech MGARCH model

Sample: 1 - 5000 Number of obs = 5,000
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -17544.94 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Sigma0
1_1 1.026283 .0823348 12.46 0.000 .8649096 1.187656
2_1 .4300997 .0590294 7.29 0.000 .3144042 .5457952
2_2 1.019753 .0837146 12.18 0.000 .8556751 1.18383

L.ARCH
1_1 .2878739 .02157 13.35 0.000 .2455975 .3301504
2_1 .1036685 .0161446 6.42 0.000 .0720256 .1353114
2_2 .2034196 .019855 10.25 0.000 .1645044 .2423347

L2.ARCH
1_1 .1837825 .0274555 6.69 0.000 .1299706 .2375943
2_1 .0884425 .02208 4.01 0.000 .0451665 .1317185
2_2 .2025718 .0272639 7.43 0.000 .1491355 .256008

L.GARCH
1_1 .0782467 .053944 1.45 0.147 -.0274816 .183975
2_1 .2888104 .0818303 3.53 0.000 .1284261 .4491948
2_2 .201618 .0470584 4.28 0.000 .1093853 .2938508

406 mgarch dvech postestimation — Postestimation tools for mgarch dvech

Now we use predict to obtain the in-sample conditional variances of acme and use tsline (see
[TS] tsline) to graph the results.

. predict h_acme, variance eq(acme, acme)

. tsline h_acme

0
1

0
2

0
3

0
4

0
5

0
v
a

ri
a

n
c
e

 p
re

d
ic

ti
o

n
 (

a
c
m

e
,

a
c
m

e
)

0 1000 2000 3000 4000 5000
t

The graph shows that the predicted conditional variances vary substantially over time, as the
parameter estimates indicated.

Because there are no covariates in the model for acme, specifying xb puts a prediction of 0 in each
observation, and specifying residuals puts the value of the dependent variable into the prediction.

Methods and formulas
All one-step predictions are obtained by substituting the parameter estimates into the model. The

estimated unconditional variance matrix of the disturbances, Σ̂, is the initial value for the ARCH and
GARCH terms. The postestimation routines recompute Σ̂ using the prediction sample, the parameter
estimates stored in e(b), and (4) in Methods and formulas of [TS] mgarch dvech.

For observations in which the residuals are missing, the estimated unconditional variance matrix
of the disturbances is used in place of the outer product of the residuals.

Dynamic predictions of the dependent variables use previously predicted values beginning in the
period specified by dynamic().

Dynamic variance predictions are implemented by substituting Σ̂ for the outer product of the
residuals beginning in the period specified by dynamic().

Also see
[TS] mgarch dvech — Diagonal vech multivariate GARCH models

[U] 20 Estimation and postestimation commands

Title

mgarch vcc — Varying conditional correlation multivariate GARCH models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mgarch vcc estimates the parameters of varying conditional correlation (VCC) multivariate general-
ized autoregressive conditionally heteroskedastic (MGARCH) models in which the conditional variances
are modeled as univariate generalized autoregressive conditionally heteroskedastic (GARCH) models
and the conditional covariances are modeled as nonlinear functions of the conditional variances. The
conditional correlation parameters that weight the nonlinear combinations of the conditional variance
follow the GARCH-like process specified in Tse and Tsui (2002).

The VCC MGARCH model is about as flexible as the closely related dynamic conditional correlation
MGARCH model (see [TS] mgarch dcc), more flexible than the conditional correlation MGARCH model
(see [TS] mgarch ccc), and more parsimonious than the diagonal vech model (see [TS] mgarch
dvech).

Quick start
Fit varying conditional correlation multivariate GARCH with first- and second-order ARCH components

for dependent variables y1 and y2 using tsset data
mgarch vcc (y1 y2), arch(1 2)

Add regressors x1 and x2 and first-order GARCH component
mgarch vcc (y1 y2 = x1 x2), arch(1 2) garch(1)

Add z1 to the model for the conditional heteroskedasticity
mgarch vcc (y1 y2 = x1 x2), arch(1 2) garch(1) het(z1)

Menu
Statistics > Multivariate time series > Multivariate GARCH

407

408 mgarch vcc — Varying conditional correlation multivariate GARCH models

Syntax

mgarch vcc eq
[

eq . . . eq
] [

if
] [

in
] [

, options
]

where each eq has the form

(depvars =
[

indepvars
] [

, eqoptions
]
)

options Description

Model

arch(numlist) ARCH terms for all equations
garch(numlist) GARCH terms for all equations
het(varlist) include varlist in the specification of the conditional variance

for all equations
distribution(dist

[
#
]
) use dist distribution for errors [may be gaussian

(synonym normal) or t; default is gaussian]
constraints(numlist) apply linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) initial values for the coefficients; seldom used

coeflegend display legend instead of statistics

eqoptions Description

Model

noconstant suppress constant term in the mean equation
arch(numlist) ARCH terms
garch(numlist) GARCH terms
het(varlist) include varlist in the specification of the conditional variance

You must tsset your data before using mgarch vcc; see [TS] tsset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvars, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

mgarch vcc — Varying conditional correlation multivariate GARCH models 409

Options

� � �
Model �

arch(numlist) specifies the ARCH terms for all equations in the model. By default, no ARCH terms
are specified.

garch(numlist) specifies the GARCH terms for all equations in the model. By default, no GARCH
terms are specified.

het(varlist) specifies that varlist be included in the model in the specification of the conditional
variance for all equations. This varlist enters the variance specification collectively as multiplicative
heteroskedasticity.

distribution(dist
[

#
]
) specifies the assumed distribution for the errors. dist may be gaussian,

normal, or t.

gaussian and normal are synonyms; each causes mgarch vcc to assume that the errors come
from a multivariate normal distribution. # may not be specified with either of them.

t causes mgarch vcc to assume that the errors follow a multivariate Student t distribution, and
the degree-of-freedom parameter is estimated along with the other parameters of the model. If
distribution(t #) is specified, then mgarch vcc uses a multivariate Student t distribution
with # degrees of freedom. # must be greater than 2.

constraints(numlist) specifies linear constraints to apply to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, specifies to use the observed information matrix (OIM) estimator.

vce(robust) specifies to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch vcc to begin
the optimization algorithm with the values in b0. b0 must be a row vector, and the number of
columns must equal the number of parameters in the model.

The following option is available with mgarch vcc but is not shown in the dialog box:

coeflegend; see [R] estimation options.

410 mgarch vcc — Varying conditional correlation multivariate GARCH models

Eqoptions

noconstant suppresses the constant term in the mean equation.

arch(numlist) specifies the ARCH terms in the equation. By default, no ARCH terms are specified.
This option may not be specified with model-level arch().

garch(numlist) specifies the GARCH terms in the equation. By default, no GARCH terms are specified.
This option may not be specified with model-level garch().

het(varlist) specifies that varlist be included in the specification of the conditional variance. This
varlist enters the variance specification collectively as multiplicative heteroskedasticity. This option
may not be specified with model-level het().

Remarks and examples
We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH

models and the methods implemented in mgarch vcc.

MGARCH models are dynamic multivariate regression models in which the conditional variances
and covariances of the errors follow an autoregressive-moving-average structure. The VCC MGARCH
model uses a nonlinear combination of univariate GARCH models with time-varying cross-equation
weights to model the conditional covariance matrix of the errors.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their
specifications for a time-varying conditional covariance matrix of the disturbances, denoted by Ht.
In the conditional correlation family of MGARCH models, the diagonal elements of Ht are modeled
as univariate GARCH models, whereas the off-diagonal elements are modeled as nonlinear functions
of the diagonal terms. In the VCC MGARCH model,

hij,t = ρij,t
√
hii,thjj,t

where the diagonal elements hii,t and hjj,t follow univariate GARCH processes and ρij,t follows the
dynamic process specified in Tse and Tsui (2002) and discussed below.

Because the ρij,t varies with time, this model is known as the VCC GARCH model.

Technical note
The VCC GARCH model proposed by Tse and Tsui (2002) can be written as

yt = Cxt + εt

εt = H
1/2
t νt

Ht = D
1/2
t RtD

1/2
t

Rt = (1− λ1 − λ2)R + λ1Ψt−1 + λ2Rt−1 (1)

where

yt is an m× 1 vector of dependent variables;

C is an m× k matrix of parameters;

xt is a k × 1 vector of independent variables, which may contain lags of yt;

mgarch vcc — Varying conditional correlation multivariate GARCH models 411

H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht;

νt is an m× 1 vector of independent and identically distributed innovations;

Dt is a diagonal matrix of conditional variances,

Dt =

σ2

1,t 0 · · · 0
0 σ2

2,t · · · 0
...

...
. . .

...
0 0 · · · σ2

m,t

in which each σ2

i,t evolves according to a univariate GARCH model of the form

σ2
i,t = si +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

by default, or

σ2
i,t = exp(γizi,t) +

∑pi
j=1 αjε

2
i,t−j +

∑qi
j=1 βjσ

2
i,t−j

when the het() option is specified, where γt is a 1× p vector of parameters, zi is a p× 1
vector of independent variables including a constant term, the αj’s are ARCH parameters,
and the βj’s are GARCH parameters;

Rt is a matrix of conditional correlations,

Rt =

1 ρ12,t · · · ρ1m,t

ρ12,t 1 · · · ρ2m,t

...
...

. . .
...

ρ1m,t ρ2m,t · · · 1

R is the matrix of means to which the dynamic process in (1) reverts;

Ψt is the rolling estimator of the correlation matrix of ε̃t, which uses the previous m+ 1
observations; and

λ1 and λ2 are parameters that govern the dynamics of conditional correlations. λ1 and λ2

are nonnegative and satisfy 0 ≤ λ1 + λ2 < 1.

To differentiate this model from Engle (2002), Tse and Tsui (2002) call their model a VCC MGARCH
model.

Some examples

Example 1: Model with common covariates

We have daily data on the stock returns of three car manufacturers—Toyota, Nissan, and Honda,
from January 2, 2003, to December 31, 2010—in the variables toyota, nissan, and honda. We
model the conditional means of the returns as a first-order vector autoregressive process and the
conditional covariances as a VCC MGARCH process in which the variance of each disturbance term
follows a GARCH(1,1) process.

412 mgarch vcc — Varying conditional correlation multivariate GARCH models

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. mgarch vcc (toyota nissan honda = L.toyota L.nissan L.honda, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16901.2
Iteration 1: log likelihood = 17028.644
Iteration 2: log likelihood = 17145.905
Iteration 3: log likelihood = 17251.485
Iteration 4: log likelihood = 17306.115
Iteration 5: log likelihood = 17332.59
Iteration 6: log likelihood = 17353.617
Iteration 7: log likelihood = 17374.86
Iteration 8: log likelihood = 17398.526
Iteration 9: log likelihood = 17418.748
(switching technique to nr)
Iteration 10: log likelihood = 17442.552
Iteration 11: log likelihood = 17455.64
Iteration 12: log likelihood = 17463.593
Iteration 13: log likelihood = 17463.922
Iteration 14: log likelihood = 17463.925
Iteration 15: log likelihood = 17463.925

Refining estimates

Iteration 0: log likelihood = 17463.925
Iteration 1: log likelihood = 17463.925

Varying conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(9) = 17.67
Log likelihood = 17463.92 Prob > chi2 = 0.0392

Coef. Std. Err. z P>|z| [95% Conf. Interval]

toyota
toyota

L1. -.0565645 .0335696 -1.68 0.092 -.1223597 .0092307

nissan
L1. .0248101 .0252701 0.98 0.326 -.0247184 .0743385

honda
L1. .0035836 .0298895 0.12 0.905 -.0549986 .0621659

ARCH_toyota
arch
L1. .0602807 .0086799 6.94 0.000 .0432684 .0772929

garch
L1. .922469 .0110316 83.62 0.000 .9008474 .9440906

_cons 4.38e-06 1.12e-06 3.91 0.000 2.18e-06 6.58e-06

mgarch vcc — Varying conditional correlation multivariate GARCH models 413

nissan
toyota

L1. -.0196399 .0387112 -0.51 0.612 -.0955124 .0562326

nissan
L1. -.0306663 .031051 -0.99 0.323 -.091525 .0301925

honda
L1. .038315 .0354691 1.08 0.280 -.0312031 .1078331

ARCH_nissan
arch
L1. .0774228 .0119642 6.47 0.000 .0539733 .1008723

garch
L1. .9076856 .0139339 65.14 0.000 .8803756 .9349955

_cons 6.20e-06 1.70e-06 3.65 0.000 2.87e-06 9.53e-06

honda
toyota

L1. -.0358293 .0340492 -1.05 0.293 -.1025645 .030906

nissan
L1. .0544071 .0276156 1.97 0.049 .0002815 .1085327

honda
L1. -.0424383 .0326249 -1.30 0.193 -.106382 .0215054

ARCH_honda
arch
L1. .0458673 .0072714 6.31 0.000 .0316157 .0601189

garch
L1. .9369252 .0101755 92.08 0.000 .9169815 .9568689

_cons 4.99e-06 1.29e-06 3.85 0.000 2.45e-06 7.52e-06

corr(toyota,
nissan) .6643028 .0151086 43.97 0.000 .6346905 .6939151

corr(toyota,
honda) .7302093 .0126361 57.79 0.000 .705443 .7549755

corr(nissan,
honda) .6347321 .0159738 39.74 0.000 .603424 .6660401

Adjustment
lambda1 .0277374 .0086942 3.19 0.001 .010697 .0447778
lambda2 .8255525 .0755881 10.92 0.000 .6774025 .9737026

The output has three parts: an iteration log, a header, and an output table.

The iteration log has three parts: the dots from the search for initial values, the iteration log from
optimizing the log likelihood, and the iteration log from the refining step. A detailed discussion of
the optimization methods is in Methods and formulas.

The header describes the estimation sample and reports a Wald test against the null hypothesis
that all the coefficients on the independent variables in the mean equations are zero. Here the null
hypothesis is rejected at the 5% level.

414 mgarch vcc — Varying conditional correlation multivariate GARCH models

The output table first presents results for the mean or variance parameters used to model each
dependent variable. Subsequently, the output table presents results for the parameters in R. For
example, the estimate of the mean of the process that associates Toyota and Nissan is 0.66. Finally,
the output table presents results for the adjustment parameters λ1 and λ2. In the example at hand,
the estimates for both λ1 and λ2 are statistically significant.

The VCC MGARCH model reduces to the CCC MGARCH model when λ1 = λ2 = 0. The output
below shows that a Wald test rejects the null hypothesis that λ1 = λ2 = 0 at all conventional levels.

. test _b[Adjustment:lambda1] = _b[Adjustment:lambda2] = 0

(1) [Adjustment]lambda1 - [Adjustment]lambda2 = 0
(2) [Adjustment]lambda1 = 0

chi2(2) = 482.80
Prob > chi2 = 0.0000

These results indicate that the assumption of time-invariant conditional correlations maintained in
the CCC MGARCH model is too restrictive for these data.

Example 2: Model with covariates that differ by equation

We improve the previous example by removing the insignificant parameters from the model. To
accomplish that, we specify the honda equation separately from the toyota and nissan equations:

. mgarch vcc (toyota nissan = , noconstant) (honda = L.nissan, noconstant),
> arch(1) garch(1)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 16889.43
Iteration 1: log likelihood = 17002.567
Iteration 2: log likelihood = 17134.525
Iteration 3: log likelihood = 17233.192
Iteration 4: log likelihood = 17295.342
Iteration 5: log likelihood = 17326.347
Iteration 6: log likelihood = 17348.063
Iteration 7: log likelihood = 17363.988
Iteration 8: log likelihood = 17387.216
Iteration 9: log likelihood = 17404.734
(switching technique to nr)
Iteration 10: log likelihood = 17438.432 (not concave)
Iteration 11: log likelihood = 17450.002
Iteration 12: log likelihood = 17455.443
Iteration 13: log likelihood = 17455.971
Iteration 14: log likelihood = 17455.98
Iteration 15: log likelihood = 17455.98

Refining estimates

Iteration 0: log likelihood = 17455.98
Iteration 1: log likelihood = 17455.98 (backed up)

mgarch vcc — Varying conditional correlation multivariate GARCH models 415

Varying conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(1) = 1.62
Log likelihood = 17455.98 Prob > chi2 = 0.2032

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .0609064 .0087784 6.94 0.000 .0437011 .0781117

garch
L1. .921703 .0111493 82.67 0.000 .8998508 .9435552

_cons 4.42e-06 1.13e-06 3.91 0.000 2.20e-06 6.64e-06

ARCH_nissan
arch
L1. .0806598 .0123529 6.53 0.000 .0564486 .104871

garch
L1. .9035239 .014421 62.65 0.000 .8752592 .9317886

_cons 6.61e-06 1.79e-06 3.70 0.000 3.11e-06 .0000101

honda
nissan

L1. .0175565 .0137982 1.27 0.203 -.0094874 .0446005

ARCH_honda
arch
L1. .0461398 .0073048 6.32 0.000 .0318225 .060457

garch
L1. .9366096 .0102021 91.81 0.000 .9166139 .9566053

_cons 5.03e-06 1.31e-06 3.85 0.000 2.47e-06 7.59e-06

corr(toyota,
nissan) .6635251 .0150293 44.15 0.000 .6340682 .692982

corr(toyota,
honda) .7299703 .0124828 58.48 0.000 .7055045 .754436

corr(nissan,
honda) .6338207 .0158681 39.94 0.000 .6027198 .6649217

Adjustment
lambda1 .0285319 .0092448 3.09 0.002 .0104124 .0466514
lambda2 .8113923 .0854955 9.49 0.000 .6438242 .9789604

It turns out that the coefficient on L1.nissan in the honda equation is now statistically insignificant.
We could further improve the model by removing L1.nissan from the model.

There is no mean equation for Toyota or Nissan. In [TS] mgarch vcc postestimation, we discuss
prediction from models without covariates.

416 mgarch vcc — Varying conditional correlation multivariate GARCH models

Example 3: Model with constraints

Here we fit a bivariate VCC MGARCH model for the Toyota and Nissan shares. We believe that
the shares of these car manufacturers follow the same process, so we impose the constraints that the
ARCH coefficients are the same for the two companies and that the GARCH coefficients are also the
same.

. constraint 1 _b[ARCH_toyota:L.arch] = _b[ARCH_nissan:L.arch]

. constraint 2 _b[ARCH_toyota:L.garch] = _b[ARCH_nissan:L.garch]

. mgarch vcc (toyota nissan = , noconstant), arch(1) garch(1) constraints(1 2)

Calculating starting values....

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = 10326.298
Iteration 1: log likelihood = 10680.73
Iteration 2: log likelihood = 10881.388
Iteration 3: log likelihood = 11043.345
Iteration 4: log likelihood = 11122.459
Iteration 5: log likelihood = 11202.411
Iteration 6: log likelihood = 11253.657
Iteration 7: log likelihood = 11276.325
Iteration 8: log likelihood = 11279.823
Iteration 9: log likelihood = 11281.704
(switching technique to nr)
Iteration 10: log likelihood = 11282.313
Iteration 11: log likelihood = 11282.46
Iteration 12: log likelihood = 11282.461

mgarch vcc — Varying conditional correlation multivariate GARCH models 417

Refining estimates

Iteration 0: log likelihood = 11282.461
Iteration 1: log likelihood = 11282.461 (backed up)

Varying conditional correlation MGARCH model

Sample: 1 - 2015 Number of obs = 2,015
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 11282.46 Prob > chi2 = .

(1) [ARCH_toyota]L.arch - [ARCH_nissan]L.arch = 0
(2) [ARCH_toyota]L.garch - [ARCH_nissan]L.garch = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARCH_toyota
arch
L1. .0797459 .0101634 7.85 0.000 .059826 .0996659

garch
L1. .9063808 .0118211 76.67 0.000 .883212 .9295497

_cons 4.24e-06 1.10e-06 3.85 0.000 2.08e-06 6.40e-06

ARCH_nissan
arch
L1. .0797459 .0101634 7.85 0.000 .059826 .0996659

garch
L1. .9063808 .0118211 76.67 0.000 .883212 .9295497

_cons 5.91e-06 1.47e-06 4.03 0.000 3.03e-06 8.79e-06

corr(toyota,
nissan) .6720056 .0162585 41.33 0.000 .6401394 .7038718

Adjustment
lambda1 .0343012 .0128097 2.68 0.007 .0091945 .0594078
lambda2 .7945548 .101067 7.86 0.000 .596467 .9926425

We could test our constraints by fitting the unconstrained model and performing a likelihood-ratio
test. The results indicate that the restricted model is preferable.

Example 4: Model with a GARCH term

In this example, we have data on fictional stock returns for the Acme and Anvil corporations, and
we believe that the movement of the two stocks is governed by different processes. We specify one
ARCH and one GARCH term for the conditional variance equation for Acme and two ARCH terms for
the conditional variance equation for Anvil. In addition, we include the lagged value of the stock
return for Apex, the main subsidiary of Anvil corporation, in the variance equation of Anvil. For
Acme, we have data on the changes in an index of futures prices of products related to those produced
by Acme in afrelated. For Anvil, we have data on the changes in an index of futures prices of
inputs used by Anvil in afinputs.

. use http://www.stata-press.com/data/r14/acmeh

. mgarch vcc (acme = afrelated, noconstant arch(1) garch(1))
> (anvil = afinputs, arch(1/2) het(L.apex))

Calculating starting values....

418 mgarch vcc — Varying conditional correlation multivariate GARCH models

Optimizing log likelihood

(setting technique to bhhh)
Iteration 0: log likelihood = -13252.793
Iteration 1: log likelihood = -12859.124
Iteration 2: log likelihood = -12522.14
Iteration 3: log likelihood = -12406.487
Iteration 4: log likelihood = -12304.275
Iteration 5: log likelihood = -12273.103
Iteration 6: log likelihood = -12256.104
Iteration 7: log likelihood = -12254.55
Iteration 8: log likelihood = -12254.482
Iteration 9: log likelihood = -12254.478
(switching technique to nr)
Iteration 10: log likelihood = -12254.478
Iteration 11: log likelihood = -12254.478

Refining estimates

Iteration 0: log likelihood = -12254.478
Iteration 1: log likelihood = -12254.478

Varying conditional correlation MGARCH model

Sample: 1 - 2500 Number of obs = 2,499
Distribution: Gaussian Wald chi2(2) = 5226.19
Log likelihood = -12254.48 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

acme
afrelated .9672465 .0510066 18.96 0.000 .8672753 1.067218

ARCH_acme
arch
L1. .0949142 .0147302 6.44 0.000 .0660435 .1237849

garch
L1. .7689442 .038885 19.77 0.000 .6927309 .8451574

_cons 2.129468 .464916 4.58 0.000 1.218249 3.040687

anvil
afinputs -1.018629 .0145027 -70.24 0.000 -1.047053 -.9902037

_cons .1015986 .0177952 5.71 0.000 .0667205 .1364766

ARCH_anvil
arch
L1. .4990272 .0243531 20.49 0.000 .4512959 .5467584
L2. .2839812 .0181966 15.61 0.000 .2483165 .3196459

apex
L1. 1.897144 .0558791 33.95 0.000 1.787623 2.006665

_cons .0682724 .0662257 1.03 0.303 -.0615276 .1980724

corr(acme,
anvil) -.6574256 .0294259 -22.34 0.000 -.7150994 -.5997518

Adjustment
lambda1 .2375029 .0179114 13.26 0.000 .2023971 .2726086
lambda2 .6492072 .0254493 25.51 0.000 .5993274 .6990869

mgarch vcc — Varying conditional correlation multivariate GARCH models 419

The results indicate that increases in the futures prices for related products lead to higher returns on
the Acme stock, and increased input prices lead to lower returns on the Anvil stock. In the conditional
variance equation for Anvil, the coefficient on L1.apex is positive and significant, which indicates
that an increase in the return on the Apex stock leads to more variability in the return on the Anvil
stock.

Stored results
mgarch vcc stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k extra) number of extra estimates added to b
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(estdf) 1 if distribution parameter was estimated, 0 otherwise
e(usr) user-provided distribution parameter
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(N gaps) number of gaps
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mgarch
e(model) vcc
e(cmdline) command as typed
e(depvar) names of dependent variables
e(covariates) list of covariates
e(dv eqs) dependent variables with mean equations
e(indeps) independent variables in each equation
e(tvar) time variable
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian or t
e(arch) specified ARCH terms
e(garch) specified GARCH terms
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

420 mgarch vcc — Varying conditional correlation multivariate GARCH models

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators
e(pinfo) parameter information, used by predict

Functions
e(sample) marks estimation sample

Methods and formulas
mgarch vcc estimates the parameters of the varying conditional correlation MGARCH model by

maximum likelihood. The log-likelihood function based on the multivariate normal distribution for
observation t is

lt = −0.5m log(2π)− 0.5log {det (Rt)} − log
{

det
(
D

1/2
t

)}
− 0.5ε̃tR

−1
t ε̃′t

where ε̃t = D
−1/2
t εt is an m×1 vector of standardized residuals, εt = yt−Cxt. The log-likelihood

function is
∑T
t=1 lt.

If we assume that νt follow a multivariate t distribution with degrees of freedom (df) greater than
2, then the log-likelihood function for observation t is

lt = log Γ

(
df +m

2

)
− log Γ

(
df
2

)
− m

2
log {(df− 2)π}

− 0.5log {det (Rt)} − log
{

det
(
D

1/2
t

)}
− df +m

2
log

(
1 +

ε̃tR
−1
t ε̃′t

df− 2

)

The starting values for the parameters in the mean equations and the initial residuals ε̂t are
obtained by least-squares regression. The starting values for the parameters in the variance equations
are obtained by a procedure proposed by Gourieroux and Monfort (1997, sec. 6.2.2). The starting
values for the parameters in R are calculated from the standardized residuals ε̃t. Given the starting
values for the mean and variance equations, the starting values for the parameters λ1 and λ2 are
obtained from a grid search performed on the log likelihood.

The initial optimization step is performed in the unconstrained space. Once the maximum is found,
we impose the constraints λ1 ≥ 0, λ2 ≥ 0, and 0 ≤ λ1 + λ2 < 1, and maximize the log likelihood
in the constrained space. This step is reported in the iteration log as the refining step.

GARCH estimators require initial values that can be plugged in for εt−iε′t−i and Ht−j when
t− i < 1 and t− j < 1. mgarch vcc substitutes an estimator of the unconditional covariance of the
disturbances

Σ̂ = T−1
T∑
t=1

̂̂εt̂̂ε′t (2)

mgarch vcc — Varying conditional correlation multivariate GARCH models 421

for εt−iε′t−i when t − i < 1 and for Ht−j when t − j < 1, where ̂̂εt is the vector of residuals
calculated using the estimated parameters.

mgarch vcc uses numerical derivatives in maximizing the log-likelihood function.

References
Engle, R. F. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional

heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–350.

Gourieroux, C. S., and A. Monfort. 1997. Time Series and Dynamic Models. Trans. ed. G. M. Gallo. Cambridge:
Cambridge University Press.

Tse, Y. K., and A. K. C. Tsui. 2002. A multivariate generalized autoregressive conditional heteroscedasticity model
with time-varying correlations. Journal of Business & Economic Statistics 20: 351–362.

Also see
[TS] mgarch vcc postestimation — Postestimation tools for mgarch vcc

[TS] mgarch — Multivariate GARCH models

[TS] tsset — Declare data to be time-series data

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

mgarch vcc postestimation — Postestimation tools for mgarch vcc

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after mgarch vcc:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

422

mgarch vcc postestimation — Postestimation tools for mgarch vcc 423

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and condi-
tional variances, covariances, and correlations. All predictions are available as static one-step-ahead
predictions or as dynamic multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
variance conditional variances and covariances
correlation conditional correlations

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) names of equations for which predictions are made
dynamic(time constant) begin dynamic forecast at specified time

Options for predict

� � �
Main �

xb, the default, calculates the linear predictions of the dependent variables.

residuals calculates the residuals.

variance predicts the conditional variances and conditional covariances.

correlation predicts the conditional correlations.

� � �
Options �

equation(eqnames) specifies the equation for which the predictions are calculated. Use this option
to predict a statistic for a particular equation. Equation names, such as equation(income), are
used to identify equations.

424 mgarch vcc postestimation — Postestimation tools for mgarch vcc

One equation name may be specified when predicting the dependent variable, the residuals, or
the conditional variance. For example, specifying equation(income) causes predict to predict
income, and specifying variance equation(income) causes predict to predict the conditional
variance of income.

Two equations may be specified when predicting a conditional variance or covariance. For ex-
ample, specifying equation(income, consumption) variance causes predict to predict the
conditional covariance of income and consumption.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with residuals.

margins

Description for margins

margins estimates margins of response for linear predictions and conditional variances, covariances,
and correlations. All predictions are available as static one-step-ahead predictions or as dynamic
multistep predictions, and you can control when dynamic predictions begin.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
variance conditional variances and covariances
correlation conditional correlations
residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

mgarch vcc postestimation — Postestimation tools for mgarch vcc 425

Remarks and examples
We assume that you have already read [TS] mgarch vcc. In this entry, we use predict after

mgarch vcc to make in-sample and out-of-sample forecasts.

Example 1: Dynamic forecasts

In this example, we obtain dynamic forecasts for the Toyota, Nissan, and Honda stock returns
modeled in example 2 of [TS] mgarch vcc. In the output below, we reestimate the parameters of the
model, use tsappend (see [TS] tsappend) to extend the data, and use predict to obtain in-sample
one-step-ahead forecasts and dynamic forecasts of the conditional variances of the returns. We graph
the forecasts below.

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. quietly mgarch vcc (toyota nissan = , noconstant)
> (honda = L.nissan, noconstant), arch(1) garch(1)

. tsappend, add(50)

. predict H*, variance dynamic(2016)

0
.0

0
1

.0
0

2
.0

0
3

01jan2009 01jul2009 01jan2010 01jul2010 01jan2011
Date

Variance prediction (toyota,toyota), dynamic(2016)

Variance prediction (nissan,nissan), dynamic(2016)

Variance prediction (honda,honda), dynamic(2016)

Recent in-sample one-step-ahead forecasts are plotted to the left of the vertical line in the above
graph, and the dynamic out-of-sample forecasts appear to the right of the vertical line. The graph
shows the tail end of the huge increase in return volatility that took place in 2008 and 2009. It also
shows that the dynamic forecasts quickly converge.

Methods and formulas
All one-step predictions are obtained by substituting the parameter estimates into the model. The

estimated unconditional variance matrix of the disturbances, Σ̂, is the initial value for the ARCH and
GARCH terms. The postestimation routines recompute Σ̂ using the prediction sample, the parameter
estimates stored in e(b), and (2) in Methods and formulas of [TS] mgarch vcc.

For observations in which the residuals are missing, the estimated unconditional variance matrix
of the disturbances is used in place of the outer product of the residuals.

426 mgarch vcc postestimation — Postestimation tools for mgarch vcc

Dynamic predictions of the dependent variables use previously predicted values beginning in the
period specified by dynamic().

Dynamic variance predictions are implemented by substituting Σ̂ for the outer product of the
residuals beginning in the period specified in dynamic().

Also see
[TS] mgarch vcc — Varying conditional correlation multivariate GARCH models

[U] 20 Estimation and postestimation commands

Title

mswitch — Markov-switching regression models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mswitch fits dynamic regression models that exhibit different dynamics across unobserved states
using state-dependent parameters to accommodate structural breaks or other multiple-state phenomena.
These models are known as Markov-switching models because the transitions between the unobserved
states follow a Markov chain.

Two models are available: Markov-switching dynamic regression (MSDR) models that allow a quick
adjustment after the process changes state and Markov-switching autoregression (MSAR) models that
allow a more gradual adjustment.

Quick start
MSDR model for the dependent variable y with two state-dependent intercepts using tsset data

mswitch dr y

Same as above
mswitch dr y, states(2)

As above, but with three states and switching coefficients on x

mswitch dr y, switch(x) states(3)

MSDR model with two state-dependent intercepts and variance parameters
mswitch dr y, varswitch

MSAR model with two state-dependent intercepts and an autoregression (AR) term
mswitch ar y, ar(1)

As above, but with switching AR coefficients
mswitch ar y, ar(1) arswitch

Menu
Statistics > Time series > Markov-switching model

427

428 mswitch — Markov-switching regression models

Syntax

Markov-switching dynamic regression

mswitch dr depvar
[

nonswitch varlist
] [

if
] [

in
] [

, options
]

Markov-switching AR

mswitch ar depvar
[

nonswitch varlist
]
, ar(numlist)

[
msar options options

]
nonswitch varlist is a list of variables with state-invariant coefficients.

options Description

Main

states(#) specify number of states; default is states(2)

switch(
[

varlist
][
, noconstant

]
) specify variables with switching coefficients; by default, the

constant term is state dependent unless
switch(, noconstant) is specified

constant allow a state-invariant constant term; may be specified only
with switch(, noconstant)

varswitch specify state-dependent variance parameters; by default, the
variance parameter is constant across all states

p0(type) specify initial unconditional probabilities where type is one
of transition, fixed, or smoothed; the default is
p0(transition)

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) specify the number of expectation-maximization (EM)
iterations; default is emiterate(10)

emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

mswitch — Markov-switching regression models 429

msar options Description

Model
∗ar(numlist) specify the number of AR terms
arswitch specify state-dependent AR coefficients

∗ar(numlist) is required.

You must tsset your data before using mswitch; see [TS] tsset.
varlist and nonswitch varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, nonswitch varlist, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ar(numlist) specifies the number of AR terms. This option may be specified only with command
mswitch ar. ar() is required to fit AR models.

arswitch specifies that the AR coefficients vary over the states. arswitch may be specified only
with option ar().

� � �
Main �

states(#) specifies the number of states. The default is states(2).

switch(
[

varlist
][
, noconstant

]
) specifies variables whose coefficients vary over the states. By

default, the constant term is state dependent and is included in the regression model. You may
suppress the constant term by specifying switch(, noconstant).

constant specifies that a state-invariant constant term be included in the model. This option may
be specified only with switch(, noconstant).

varswitch specifies that the variance parameters are state dependent. The default is constant variance
across all states.

p0(type) is rarely used. This option specifies the method for obtaining values for the uncondi-
tional transition probabilities. type is one of transition, fixed, or smoothed. The default is
p0(transition), which specifies that the values be computed using the matrix of conditional
transition probabilities. Type fixed specifies that each unconditional probability is 1/k, where k
is the number of states. Type smoothed specifies that the unconditional probabilities be estimated
as extra parameters of the model.

constraints(numlist) specifies the linear constraints to be applied to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim) and that are robust to some kinds of misspecification (robust); see
[R] vce option.

430 mswitch — Markov-switching regression models

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
EM options �

emiterate(#), emlog, and emdots control the EM iterations that take place before estimation
switches to a quasi-Newton method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations; the default is emiterate(10).

emlog specifies that the EM iteration log be shown. The default is to not display the EM iteration
log.

emdots specifies that the EM iterations be shown as dots. The default is to not display the dots.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from().

from(matname) specifies initial values for the maximization process. If from() is specified, the
initial values are used in the EM step to improve the likelihood unless emiterate(0) is also
specified. The coefficients obtained at the end of the EM iterations serve as initial values for
the quasi-Newton method.

matname must be a row vector. The number of columns must equal the number of parameters
in the model, and the values must be in the same order as the parameters in e(b).

The following option is available with mswitch but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
mswitch fits Markov-switching models in which the parameters vary over states. The states are

unobserved and follow a Markov process.

mswitch dr fits MSDR models that allow a quick adjustment after a state change and are often
used to model monthly and higher-frequency data. mswitch ar fits MSAR models that allow a more
gradual adjustment after a state change and are often used to model quarterly and lower-frequency
data. Estimation is by maximum likelihood. You must tsset your data before using mswitch; see
[TS] tsset.

Remarks are presented under the following headings:

Introduction
Markov-switching dynamic regression
Markov-switching AR

If you are new to Markov-switching models, we recommend that you begin with Introduction. A
more technical discussion and examples are presented in the model-specific sections.

mswitch — Markov-switching regression models 431

Introduction
Markov-switching models are widely applied in the social sciences. For example, in economics, the

growth rate of Gross Domestic Product is modeled as a switching process to capture the asymmetrical
behavior observed over expansions and recessions (Hamilton 1989). Other economic examples include
modeling interest rates (Garcia and Perron 1996) and exchange rates (Engel and Hamilton 1990). In
finance, Kim, Nelson, and Startz (1998) model monthly stock returns, while Guidolin (2011b, 2011a)
provide many applications of these models to returns, portfolio choice, and asset pricing. In political
science, Jones, Kim, and Startz (2010) model Democratic and Republican partisan states in the United
States Congress.

These models are also used in health sciences. For example, in psychology, Markov-switching
models have been applied to daily data on manic and depressive states for individuals with rapid-
cycling bipolar disorder (Hamaker, Grasman, and Kamphuis 2010). In epidemiology, Lu, Zeng, and
Chen (2010) and Martinez-Beneito et al. (2008) model the incidence rate of infectious disease in
epidemic and nonepidemic states.

The Markov-switching regression model was initially developed in Quandt (1972) and Goldfeld
and Quandt (1973). In a seminal paper, Hamilton (1989) extended Markov-switching regressions for
AR processes and provided a nonlinear filter for estimation. Hamilton (1993) and Hamilton (1994,
chap. 22) provide excellent introductions to Markov-switching regression models.

Markov-switching models are used for series that are believed to transition over a finite set of
unobserved states, allowing the process to evolve differently in each state. The transitions occur
according to a Markov process. The time of transition from one state to another and the duration
between changes in state is random. For example, these models can be used to understand the process
that governs the time at which economic growth transitions between expansion and recession and the
duration of each period.

Consider the evolution of a series yt, where t = 1, 2, . . . , T , is characterized by two states, as in
the models below

State 1 : yt = µ1 + εt

State 2 : yt = µ2 + εt

where µ1 and µ2 are the intercept terms in state 1 and state 2, respectively. εt is a white noise
error with variance σ2. The two states model shifts in the intercept term. If the timing of switches
is known, the above model can be expressed as

yt = stµ1 + (1− st)µ2 + εt

where st is 1 if the process is in state 1 and 0 otherwise. The above model is a regression with
dummy variables and could be estimated with ordinary least squares using, for example, regress.

However, in the case of interest, we never know in which state the process is; that is to say, st is
not observed. Markov-switching regression models allow the parameters to vary over the unobserved
states. In the simplest case, we can express this model as a MSDR model with a state-dependent
intercept term

yt = µst + εt

where µst is the parameter of interest; µst = µ1 when st = 1, and µst = µ2 when st = 2.

Although one never knows with certainty in which state the process lies, the probabilities of being
in each state can be estimated. For a Markov process, the transition probabilities are of greater interest.
One-step transition probabilities are given by pst,st+1

, so for a two-state process, p11 denotes the
probability of staying in state 1 in the next period given that the process is in state 1 in the current
period. Likewise, p22 denotes the probability of staying in state 2. Values closer to 1 indicate a more
persistent process, or in other words, that it is expected to stay in a given state for a long time.

432 mswitch — Markov-switching regression models

Estimation of Markov-switching models proceeds by predicting the probabilities of the unobserved
state and updating the likelihood at each period, akin to the Kalman filter. However, while the Kalman
filter is concerned with making linear updates on continuous latent variables, the filter developed in
Hamilton (1989) is a nonlinear algorithm that estimates the probabilities that a discrete, latent variable
is in one of several states. Also see Hamilton (1990) for estimation of the model parameters by an
EM algorithm, which is also a robust method to find reasonable starting values.

Markov-switching dynamic regression

In this section, we use a series of examples to describe MSDR models and the mswitch dr
command.

MSDR models allow a quick adjustment after the process changes state. These models are often
used to model monthly and higher-frequency data. When the process is in state s at time t, a general
specification of the MSDR model is written as

yt = µst + xtα+ ztβst + εs

where yt is the dependent variable, µs is the state-dependent intercept, xt is a vector of exogenous
variables with state-invariant coefficients α, zt is a vector of exogenous variables with state-dependent
coefficients βs, and εs is an independent and identically distributed (i.i.d.) normal error with mean
0 and state-dependent variance σ2

s . xt and zt may contain lags of yt. MSDR models allow states to
switch according to a Markov process as described in Markov-switching regression models under
Methods and formulas.

In the default model fit by mswitch dr, s = 2 and a constant σ2 is assumed (σ2
1 = σ2

2 = σ2), so
three parameters, µ1, µ2, and σ2, are estimated. There is no xt or zt. The number of states may be
increased with option state(). To include xt, you specify a varlist after the command name, and
to include zt, you specify option switch(). The assumption of constant variances over states may
be relaxed with option varswitch.

A more complete discussion of the MSDR model is provided in Specification of Markov-switching
models under Methods and formulas.

Example 1: MSDR model with switching intercepts

Suppose we wish to model the federal funds rate. One potential model is a constant-only model

rt = µst + εt

where rt is the federal funds rate, st is the state, and µst is the mean in each state. In usmacro.dta,
we have data for the series from the third quarter of 1954 to the fourth quarter of 2010 from the
Federal Reserve Economic Database, a macroeconomic database provided by the Federal Reserve
Bank of Saint Louis. The data are plotted below.

mswitch — Markov-switching regression models 433

0
5

1
0

1
5

2
0

fe
d

e
ra

l
fu

n
d

s
 r

a
te

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

US Federal Funds Rate

We note that the decades of 1970s and 1980s were characterized by periods of high interest rates
while the rest of the sample displays moderate levels.

Thus, a two-state model seems reasonable. st ∈ (1, 2) is the state; µ1 is the mean in the moderate-
rate state; and µ2 is the mean in high-rate state. We can use mswitch dr with dependent variable
fedfunds to estimate the parameters of the model.

. use http://www.stata-press.com/data/r14/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. mswitch dr fedfunds

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -508.66031
Iteration 1: log likelihood = -508.6382
Iteration 2: log likelihood = -508.63592
Iteration 3: log likelihood = -508.63592

Markov-switching dynamic regression

Sample: 1954q3 - 2010q4 No. of obs = 226
Number of states = 2 AIC = 4.5455
Unconditional probabilities: transition HQIC = 4.5760

SBIC = 4.6211
Log likelihood = -508.63592

fedfunds Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
_cons 3.70877 .1767083 20.99 0.000 3.362428 4.055112

State2
_cons 9.556793 .2999889 31.86 0.000 8.968826 10.14476

sigma 2.107562 .1008692 1.918851 2.314831

p11 .9820939 .0104002 .9450805 .9943119

p21 .0503587 .0268434 .0173432 .1374344

The header reports the sample size, fit statistics, the number of states, and the method used for
computing the unconditional state probabilities. The EM algorithm was used to find the starting values

434 mswitch — Markov-switching regression models

for the quasi-Newton optimizer, and we see that it took three iterations for the model to converge.
Finally, the header reports that the transition method was used to compute the unconditional state
probabilities as a function of the transition probabilities; see Methods and formulas.

The estimation table reports results for each state-dependent mean and the constant error variance.
Below that, the table displays the elements of the first k − 1 rows of the transition matrix, where k
is the number of states.

State 1 is the moderate-rate state and has a mean interest rate of 3.71%. State 2 is the high-rate
state and has a mean interest rate of 9.56%. p11 is the estimated probability of staying in state 1
in the next period given that the process is in state 1 in the current period. The estimate of 0.98
implies that state 1 is highly persistent. Similarly, p21 is the probability of transitioning to state 1
from state 2. The probability of staying in state 2 is therefore 1 − 0.05 = 0.95, which implies that
state 2 is also highly persistent.

Note that it is arbitrary which state is called 1 or 2. Changing the initial values for the iterations, for
example, can change the state labels for a given model-data combination. The transition probabilities
will get swapped in accordance with the change in labels.

Technical note
As mentioned in Introduction, a model with one state is equivalent to linear regression. To estimate

a one-state constant-only model for the data in example 1, you type

. mswitch dr fedfunds, states(1)

This is equivalent to typing

. arima fedfunds, technique(nr)

or

. regress fedfunds

The commands produce nearly identical parameter estimates for the coefficients.

Example 2: MSDR model with switching intercepts and coefficients

Continuing example 1, we specify a more complex model that includes the lagged value of the
interest rate and allows its coefficient to switch as well. The respecified model is

rt = µst + φstrt−1 + εt

mswitch — Markov-switching regression models 435

We estimate the switching coefficient by including the switch() option.

. mswitch dr fedfunds, switch(L.fedfunds)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -265.37725
Iteration 1: log likelihood = -264.74265
Iteration 2: log likelihood = -264.71073
Iteration 3: log likelihood = -264.71069
Iteration 4: log likelihood = -264.71069

Markov-switching dynamic regression

Sample: 1954q4 - 2010q4 No. of obs = 225
Number of states = 2 AIC = 2.4152
Unconditional probabilities: transition HQIC = 2.4581

SBIC = 2.5215
Log likelihood = -264.71069

fedfunds Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
fedfunds

L1. .7631424 .0337234 22.63 0.000 .6970457 .8292392

_cons .724457 .2886657 2.51 0.012 .1586826 1.290231

State2
fedfunds

L1. 1.061174 .0185031 57.35 0.000 1.024908 1.097439

_cons -.0988764 .1183838 -0.84 0.404 -.3309043 .1331515

sigma .6915759 .0358644 .6247373 .7655653

p11 .6378175 .1202616 .3883032 .830089

p21 .1306295 .0495924 .0600137 .2612432

The output indicates that the coefficients on the lagged dependent variable in the two states are
significant. Also, we favor this model over the constant-only model because the SBIC for this model,
2.52, is lower than the SBIC for the constant-only model, 4.62.

Example 3: Changing the number of states for an MSDR model

Continuing example 2, we now specify a Taylor-rule model with two and three states and select
the preferred number of states.

Taylor-rule models specify that the interest rate depends on its own lag, the current value of
inflation, and the output gap. In our dataset, ogap is the output gap and inflation is inflation. This
model does not have a constant term, so we specify suboption noconstant in switch() after the
variables with switching coefficients.

436 mswitch — Markov-switching regression models

First, we fit a two-state MSDR Taylor-rule model with fedfunds as the interest rate.

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation, noconstant)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -237.14148
Iteration 1: log likelihood = -237.11346
Iteration 2: log likelihood = -237.11345

Markov-switching dynamic regression

Sample: 1955q3 - 2010q4 No. of obs = 222
Number of states = 2 AIC = 2.2172
Unconditional probabilities: transition HQIC = 2.2729

SBIC = 2.3552
Log likelihood = -237.11345

fedfunds Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
fedfunds

L1. .8649288 .0420639 20.56 0.000 .7824851 .9473726

ogap .152642 .0417278 3.66 0.000 .0708571 .2344269
inflation .0119843 .0495214 0.24 0.809 -.0850758 .1090444

State2
fedfunds

L1. .9187939 .0204739 44.88 0.000 .8786659 .9589219

ogap .0421467 .0196035 2.15 0.032 .0037245 .080569
inflation .2011764 .0271228 7.42 0.000 .1480165 .2543362

sigma .5777446 .0312415 .5196455 .6423395

p11 .6172176 .099633 .4136784 .786556

p21 .129722 .0400303 .0692423 .2299753

The results indicate that inflation does not significantly affect fedfunds in state 1 but that it does
in state 2.

mswitch — Markov-switching regression models 437

Would a model with three states be better than the above two-state model?

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation, noconstant) states(3)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -196.56927 (not concave)
Iteration 1: log likelihood = -195.93129
Iteration 2: log likelihood = -194.39917 (not concave)
Iteration 3: log likelihood = -193.81305
Iteration 4: log likelihood = -193.17561
Iteration 5: log likelihood = -192.70636
Iteration 6: log likelihood = -192.55488
Iteration 7: log likelihood = -192.51034
Iteration 8: log likelihood = -192.50204
Iteration 9: log likelihood = -192.49988
Iteration 10: log likelihood = -192.49942
Iteration 11: log likelihood = -192.49931
Iteration 12: log likelihood = -192.49928
Iteration 13: log likelihood = -192.49928

Markov-switching dynamic regression

Sample: 1955q3 - 2010q4 No. of obs = 222
Number of states = 3 AIC = 1.8784
Unconditional probabilities: transition HQIC = 1.9774

SBIC = 2.1236
Log likelihood = -192.49928

fedfunds Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
fedfunds

L1. .8268613 .0351457 23.53 0.000 .7579769 .8957456

ogap .1966035 .0337338 5.83 0.000 .1304864 .2627206
inflation .0517806 .0394383 1.31 0.189 -.025517 .1290782

State2
fedfunds

L1. .9526463 .0153751 61.96 0.000 .9225117 .9827809

ogap .0403391 .0148812 2.71 0.007 .0111725 .0695057
inflation .1319626 .0206491 6.39 0.000 .0914911 .1724341

State3
fedfunds

L1. .4703446 .0812193 5.79 0.000 .3111577 .6295315

ogap -.0212463 .0421034 -0.50 0.614 -.1037674 .0612748
inflation .9021315 .083461 10.81 0.000 .7385508 1.065712

sigma .4250504 .0234556 .3814772 .4736006

p11 .5772811 .0920555 .3946655 .7409643
p12 .3029914 .0876632 .16156 .4951202

p21 .1036127 .0306354 .0570974 .1807579
p22 .8963872 .0306354 .8192421 .9429025

p31 .1364478 .1227456 .0200977 .5489975
p32 .2521249 .1924899 .0435989 .7137206

438 mswitch — Markov-switching regression models

We favor the three-state model over the two-state model because it has the lower SBIC. The three
states, in this case, can be thought of as representing low, moderate, and high-interest rate states.

The results for the three-state model indicate that inflation does not affect the interest rate in
state 1, but it does affect the interest rate in states 2 and 3. The results also indicate that when the
coefficient on inflation is large and significant in state 3, the output gap coefficient is not significant.

Technical note
In some situations, the quasi-Newton optimization will not converge, which implies that the

parameters of the specified model are not identified by the data. These convergence problems most
frequently arise when attempting to fit a model with too many states.

Example 4: Switching variances

All examples thus far have assumed a constant variance across states. In some cases, we may wish
to relax this assumption. For example, in the snp500 dataset we have weekly data on the absolute
returns of the S&P 500 index from the period 2004w17 to 2014w18, which we present below. The
graph indicates that there were high-volatility periods in 2008 to 2009 and in late 2011. It would be
unreasonable to assume that the variance in this high-volatility state is equal to the variance in the
low-volatility state.

0
2

4
6

8
1

0
a

b
s
o

lu
te

 r
e

tu
rn

s

2004w1 2006w1 2008w1 2010w1 2012w1 2014w1
weekly time variable

Absolute Returns of S&P 500 index

mswitch — Markov-switching regression models 439

Below we fit areturns, the absolute returns, with an MSDR model in which the coefficients on
the lagged dependent variable and the variances differ by state.

. use http://www.stata-press.com/data/r14/snp500
(Federal Reserve Economic Data - St. Louis Fed)

. mswitch dr areturns, switch(L.areturns) varswitch

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -753.27687
Iteration 1: log likelihood = -746.54052
Iteration 2: log likelihood = -745.80829
Iteration 3: log likelihood = -745.7977
Iteration 4: log likelihood = -745.7977

Markov-switching dynamic regression

Sample: 2004w19 - 2014w18 No. of obs = 520
Number of states = 2 AIC = 2.8992
Unconditional probabilities: transition HQIC = 2.9249

SBIC = 2.9647
Log likelihood = -745.7977

areturns Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
areturns

L1. .0790744 .0301862 2.62 0.009 .0199105 .1382384

_cons .7641424 .0782852 9.76 0.000 .6107062 .9175785

State2
areturns

L1. .527953 .0857841 6.15 0.000 .3598193 .6960867

_cons 1.972771 .2784204 7.09 0.000 1.427077 2.518465

sigma1 .5895792 .0517753 .4963544 .7003135

sigma2 1.605333 .1262679 1.375985 1.872908

p11 .7530865 .0634387 .6097999 .856167

p21 .6825357 .0662574 .5414358 .7965346

The estimated standard deviations, reported in sigma1 and sigma2, indicate that state 1 corresponds
to the low-volatility periods and that state 2 corresponds to the high-volatility periods.

Example 5: An MSDR model of population health

We can apply these same methods to noneconomic data that exhibit similar periods of high and low
volatility. For example, in public health and epidemiology, the process that determines the incidence
of disease over time may evolve with changes in health practices.

In mumpspc.dta, we have monthly data on the number of new mumps cases and the interpolated
population in New York City between January 1928 to December 1972. The mumpspc variable
represents the number of new mumps cases per 10,000 residents. We apply seasonal differencing
to the population-adjusted mumpspc variable using time-series operators, and we plot the resulting
series; see [U] 11.4.4 Time-series varlists.

440 mswitch — Markov-switching regression models

−
2

−
1

0
1

2
S

e
a

s
o

n
a

lly
 d

if
fe

re
n

c
e

d
 m

u
m

p
s
 c

a
s
e

s

1930m1 1940m1 1950m1 1960m1 1970m1
monthly time variable

Population−adjusted number of new mumps cases in NYC

The data clearly show periods of high and low volatility. We fit a two-state MSDR model to
the seasonally differenced dependent variable with state-dependent variances and state-dependent
coefficients on the lagged dependent variable.

. use http://www.stata-press.com/data/r14/mumpspc
(Mumps data from Hipel and Mcleod (1994) with interpolated population)

. mswitch dr S12.mumpspc, varswitch switch(LS12.mumpspc, noconstant)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = 110.9372 (not concave)
Iteration 1: log likelihood = 120.68028
Iteration 2: log likelihood = 121.86307
Iteration 3: log likelihood = 131.3275
Iteration 4: log likelihood = 131.72159
Iteration 5: log likelihood = 131.7225
Iteration 6: log likelihood = 131.7225

Markov-switching dynamic regression

Sample: 1929m2 - 1972m6 No. of obs = 521
Number of states = 2 AIC = -0.4826
Unconditional probabilities: transition HQIC = -0.4634

SBIC = -0.4336
Log likelihood = 131.7225

S12.mumpspc Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
mumpspc

LS12. .420275 .0167461 25.10 0.000 .3874533 .4530968

State2
mumpspc

LS12. .9847369 .0258383 38.11 0.000 .9340947 1.035379

sigma1 .0562405 .0050954 .0470901 .067169

sigma2 .2611362 .0111191 .2402278 .2838644

p11 .762733 .0362619 .6846007 .8264175

p21 .1473767 .0257599 .1036675 .2052939

mswitch — Markov-switching regression models 441

The output indicates that there are two distinct states; state 1 is the low-volatility state and state 2 is
the high-volatility state. While lagged seasonally differenced number of mumps cases are a significant
predictor of current seasonally differenced cases, the estimates differ between states. Both states are
persistent.

Markov-switching AR

In this section, we use a series of examples to describe MSAR models and the mswitch ar
command.

MSAR models allow a gradual adjustment after the process changes state. These models are often
used to model quarterly and lower-frequency data. An MSAR model with two state-dependent AR
terms for the dependent variable that is in state s at time t is

yt = µst + xtα+ ztβst

+ φ1,st(yt−1 − µst−1
− xt−1α− zt−1βst−1

)

+ φ2,st(yt−2 − µst−2
− xt−2α− zt−2βst−2

)

+ εst

where yt is the dependent variable at time t; µst is the state-dependent intercept; xt are covariates
whose coefficients α are state invariant; zt are covariates whose coefficients βst are state-dependent;
φ1,st is the first AR term in state st; φ2,st is the second AR term in state st; and εst is the i.i.d. normal
error with mean 0 and state-dependent variance. As in MSDR models, xt and zt may contain lags of
yt.

Note that µst−1 is the intercept corresponding to the state that the process was in the previous
period and that µst−2 is the intercept corresponding to the state that the process was in at t − 2.
Similarly, βst−1

is the coefficient vector on zt−1 corresponding to the state that the process was in
the previous period, and βst−2

is the coefficient vector on zt−2 corresponding to the state that the
process was in at t− 2.

In the default model fit by mswitch ar, s = 2 and a constant σ2 is assumed (σ2
1 = σ2

2 = σ2).
In the simplest form, a single AR term is specified and the coefficient is common to both states, so
four parameters, µ1, µ2, φ, and σ2, are estimated. There is no xt or zt.

The number of AR terms may be increased by specifying a numlist in ar(). To allow the estimated
parameters for the AR terms to vary across states, you specify option arswitch. The number of
states may be increased with option state(). To include xt, you specify a varlist after the command
name, and to include zt, you specify option switch(). The assumption of constant variances over
states may be relaxed with option varswitch.

MSAR models allow states to switch according to a Markov process, as described in Methods and
formulas under Markov-switching regression models. A more complete discussion of the MSAR model
is provided in Specification of Markov-switching models under Methods and formulas.

442 mswitch — Markov-switching regression models

Example 6: MSAR model with switching intercepts

Hamilton (1989) and Hamilton (1994, chap. 22) fit an MSAR to the growth of quarterly U.S. real
gross national product using data from 1952q1 to 1984q4. We replicate those results here using
rgnp.dta.

. use http://www.stata-press.com/data/r14/rgnp
(Data from Hamilton (1989))

. mswitch ar rgnp, ar(1/4)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -182.54411 (not concave)
Iteration 1: log likelihood = -182.12714 (not concave)
Iteration 2: log likelihood = -181.68653
Iteration 3: log likelihood = -181.42342
Iteration 4: log likelihood = -181.26492
Iteration 5: log likelihood = -181.26339
Iteration 6: log likelihood = -181.26339

Markov-switching autoregression

Sample: 1952q2 - 1984q4 No. of obs = 131
Number of states = 2 AIC = 2.9048
Unconditional probabilities: transition HQIC = 2.9851

SBIC = 3.1023
Log likelihood = -181.26339

rgnp Coef. Std. Err. z P>|z| [95% Conf. Interval]

rgnp
ar

L1. .0134871 .1199942 0.11 0.911 -.2216971 .2486713
L2. -.0575211 .137663 -0.42 0.676 -.3273357 .2122934
L3. -.2469833 .1069103 -2.31 0.021 -.4565235 -.037443
L4. -.2129214 .1105311 -1.93 0.054 -.4295583 .0037155

State1
_cons -.3588127 .2645396 -1.36 0.175 -.8773007 .1596754

State2
_cons 1.163517 .0745187 15.61 0.000 1.017463 1.309571

sigma .7690048 .0667396 .6487179 .9115957

p11 .754671 .0965189 .5254555 .8952432

p21 .0959153 .0377362 .0432569 .1993222

The output indicates that the average growth rate of U.S. real gross national product during expansions
is 1.16% and during recessions is −0.36%, with each state being persistent.

Example 7: Switching AR coefficients

Continuing example 6, we now fit an MSAR with state-dependent AR coefficients to the same
dataset. We include only two AR terms in each state to better estimate the parameters.

mswitch — Markov-switching regression models 443

. mswitch ar rgnp, ar(1/2) arswitch

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -179.68471
Iteration 1: log likelihood = -179.56238
Iteration 2: log likelihood = -179.32917
Iteration 3: log likelihood = -179.32356
Iteration 4: log likelihood = -179.32354
Iteration 5: log likelihood = -179.32354

Markov-switching autoregression

Sample: 1951q4 - 1984q4 No. of obs = 133
Number of states = 2 AIC = 2.8319
Unconditional probabilities: transition HQIC = 2.9114

SBIC = 3.0275
Log likelihood = -179.32354

rgnp Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
ar

L1. .3710719 .1754383 2.12 0.034 .0272191 .7149246
L2. .7002937 .187409 3.74 0.000 .3329787 1.067609

_cons -.0055216 .2057086 -0.03 0.979 -.408703 .3976599

State2
ar

L1. .4621503 .1652473 2.80 0.005 .1382714 .7860291
L2. -.3206652 .1295937 -2.47 0.013 -.5746642 -.0666661

_cons 1.195482 .1225987 9.75 0.000 .9551925 1.435771

sigma .6677098 .0719638 .5405648 .8247604

p11 .3812383 .1424841 .1586724 .6680876

p21 .3564492 .0994742 .1914324 .5644178

The results indicate that state 1 has negative average growth that is different than the positive average
growth in state 2. The AR coefficients for state 1 indicate that shocks will die out very slowly, while
the AR coefficients for state 2 indicate that shocks will die out moderately quickly. In other words,
shocks in a recession last a long time, while shocks in an expansion die out moderately quickly.

Example 8: Markov-switching regression model with constraints

mswitch can fit models subject to constraints. To facilitate the optimization, mswitch estimates
a logit transform of the transition probabilities (see Methods and formulas) and a log transformation
of the variance parameter. Therefore, all constraints must be specified to the transformed parameter.

In example 6, the estimated transition probability of staying in state 1 was about 0.75. In this
example, we constrain that probability to be 0.75 and estimate the remaining parameters. For this case,
the transformed value is q = −ln(0.75/0.25) = −1.0986123. We use the constraint command to
define this constraint; see [R] constraint.

444 mswitch — Markov-switching regression models

. constraint 1 [p11]_cons = -1.0986123

. mswitch ar rgnp, ar(1/4) constraints(1)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -182.86708
Iteration 1: log likelihood = -182.05084 (not concave)
Iteration 2: log likelihood = -181.79995
Iteration 3: log likelihood = -181.29355
Iteration 4: log likelihood = -181.26463
Iteration 5: log likelihood = -181.26456
Iteration 6: log likelihood = -181.26456

Markov-switching autoregression

Sample: 1952q2 - 1984q4 No. of obs = 131
Number of states = 2 AIC = 2.8895
Unconditional probabilities: transition HQIC = 2.9609

SBIC = 3.0651
Log likelihood = -181.26456

(1) [p11]_cons = -1.098612

rgnp Coef. Std. Err. z P>|z| [95% Conf. Interval]

rgnp
ar

L1. .0133924 .1196067 0.11 0.911 -.2210324 .2478172
L2. -.0591073 .133834 -0.44 0.659 -.3214172 .2032026
L3. -.2473259 .1067244 -2.32 0.020 -.456502 -.0381499
L4. -.2130605 .1106088 -1.93 0.054 -.4298498 .0037288

State1
_cons -.3648129 .23039 -1.58 0.113 -.816369 .0867432

State2
_cons 1.163125 .0738402 15.75 0.000 1.018401 1.307849

sigma .7682327 .0644585 .6517376 .9055508

p11 .75 (constrained)

p21 .0962226 .037246 .0439668 .1977399

The point estimates are similar to those reported in example 6 while the standard errors reported here
are slightly smaller.

Note that an MSAR model with no AR terms is equivalent to estimating an MSDR model, so typing

. mswitch ar rgnp, ar(0)

is the same as typing

. mswitch dr rgnp

Technical note

Achieving convergence in Markov-switching models can be difficult due to the existence of multiple
local minima. Furthermore, a model with switching variance is able to generate a likelihood function
that is unbounded when µ = yi and σ2 → 0 (Frühwirth-Schnatter 2006, chap. 6). Four methods for

mswitch — Markov-switching regression models 445

overcoming convergence problems are 1) selecting an alternate optimization algorithm by using the
technique() option; 2) using alternative starting values by specifying the from() option; 3) using
starting values obtained by estimating the parameters of a restricted version of the model of interest;
and 4) transforming the variables to be on the same scale.

Stored results
mswitch stores the following in e():
Scalars

e(N) number of observations
e(N gaps) number of gaps
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters
e(states) number of states
e(ll) log likelihood
e(rank) rank of e(V)
e(aic) Akaike information criterion
e(hqic) Hannan–Quinn information criterion
e(sbic) Schwarz–Bayesian information criterion
e(tmin) minimum time
e(tmax) maximum time
e(emiter) number of EM iterations

Macros
e(cmd) mswitch
e(cmdline) command as typed
e(eqnames) names of equations
e(depvar) name of dependent variable
e(switchvars) list of switching variables
e(nonswitchvars) list of nonswitching variables
e(model) dr or ar
e(title) title in estimation output
e(tsfmt) format for the current time variable
e(timevar) time variable specified in tsset
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(vce) vcetype specified in vce()
e(vcetype) title use to label Std. Err.
e(technique) maximization technique
e(p0) unconditional probabilities
e(varswitch) varswitch, if specified
e(arswitch) arswitch, if specified
e(ar) list of AR lags, if ar() is specified
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(bf) constrained coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(initvals) matrix of initial values
e(uncprob) matrix of unconditional probabilities

Functions
e(sample) marks estimation sample

446 mswitch — Markov-switching regression models

Methods and formulas
Methods and formulas are presented under the following headings:

Markov-switching regression models
Markov chains
Specification of Markov-switching models

Markov-switching dynamic regression
Markov-switching AR

Likelihood function with latent states
Smoothed probabilities
Unconditional probabilities

Markov-switching regression models

Consider the evolution of yt, where t = 1, 2, . . . , T , that is characterized by two states or regimes
as in the models below

State 1 : yt = µ1 + φyt−1 + εt

State 2 : yt = µ2 + φyt−1 + εt

where µ1 and µ2 are the intercept terms in state 1 and state 2, respectively; φ is the AR parameter;
and εt is a white noise error with variance σ2. The two states model abrupt shifts in the intercept
term. If the timing of switches is known, the above model can be expressed as

yt = stµ1 + (1− st)µ2 + φyt−1 + εt

where st is 1 if the process is in state 1 and 0 otherwise. Estimation in this case can be performed
using standard procedures.

In the case of interest, we never know in which state the process is; that is to say, st is not observed.
Markov-switching regression models specify that the unobserved st follows a Markov chain. In the
simplest case, we can express this model as a state-dependent intercept term for k states

yt = µst + φyt−1 + εt

where µst = µ1 when st = 1, µst = µ2 when st = 2, . . . , and µst = µk when st = k. The
conditional density of yt is assumed to be dependent only on the realization of the current state st
and is given by f(yt|st = i, yt−1; θ), where θ is a vector of parameters. There are k conditional
densities for k states, and estimation of θ is performed by updating the conditional likelihood using
a nonlinear filter.

Markov chains

st is an irreducible, aperiodic Markov chain starting from its ergodic distribution π = (π1, . . . , πk);
see Hamilton (1994, chap. 22). The probability that st is equal to j ∈ (1, . . . , k) depends only on
the most recent realization, st−1, and is given by

Pr(st = j|st−1 = i) = pij

All possible transitions from one state to the other can be collected in a k × k transition matrix

P =

p11 . . . pk1

p12 . . . pk2
...

. . .
...

p1k . . . pkk

mswitch — Markov-switching regression models 447

which governs the evolution of the Markov chain. All elements of P are nonnegative and each
column sums to 1. For an excellent introduction on the properties of Markov chains, refer to
Hamilton (1994, chap. 22) and Frühwirth-Schnatter (2006, chap. 10). For a deeper treatment, see
Karlin and Taylor (1975, chap. 2 and 3).

We estimate the probabilities using the following parameterization

pij =
exp(−qij)

1 + exp(−qi1) + · · ·+ exp(−qij)

pik =
1

1 + exp(−qi1) + · · ·+ exp(−qij)

where j ∈ (1, . . . , k − 1) and q is the transformed parameter and may be computed as

qij = − log

(
pij
pik

)

Specification of Markov-switching models

Consider an AR(1) model given by

yt = µ+ φyt−1 + εt

This model can be rewritten in terms of an AR(1) error specification as

yt = ν + et

et = ρet−1 + εt

which can be written as the single equation

yt = ν + ρ(yt−1 − ν) + εt

such that φ = ρ and µ = ν(1− ρ).

This result, however, does not hold in the case of Markov-switching regression models, as seen
below in a simple two-state case where the constant term is state dependent. Consider the following
models:

Model I : yt = µst + φyt−1 + εt

Model II : yt = µst + φ(yt−1 − µst−1) + εt

Model I is also referred to as a MSDR model or a Markov-switching intercept model (Krolzig 1997). It
may consist of other switching parameters, but for simplicity, we only consider the switching-intercept
case. The evolution of yt depends on the realization of the switching intercept at time t. The discrete
latent state st that governs the value of the intercept at time t has a transition matrix

P =

[
p11 p21

p12 p22

]
This specification allows for two possible intercepts at any given time t.

448 mswitch — Markov-switching regression models

By contrast, the evolution of yt in model II depends on the value of the switching mean at its
current state and its lagged value. Model II is also referred to as MSAR or Markov-switching mean
(Krolzig 1997). At any given time t, there are four possible values of the intercept given by

µ1 − ρµ1

µ2 − ρµ1

µ1 − ρµ2

µ2 − ρµ2

which implies that models I and II do not yield equivalent representations as compared with the AR(1)
model with no switching.

The MA(∞) representation shown below better illustrates the different dynamics of yt obtained
as a result of these specifications.

Model I : yt =

∞∑
i=0

φiµst−i +

∞∑
i=0

φiεt

Model II : yt = µst +

∞∑
i=0

φiεt

In model I, the effect of a one-time change in state accumulates over time similar to a permanent
shift in the error term εt. In model II, the effect of a one-time change in state is the same for all
time periods. Also see Hamilton (1993).

Model II allows yt to depend on lagged values of the state st−1, which in turn leads to four
conditional densities. We define a new state variable s∗t such that s∗t is a four-state Markov chain
and yt depends only on the current state as

s∗t = 1 if st = 1 and st−1 = 1

s∗t = 2 if st = 2 and st−1 = 1

s∗t = 3 if st = 1 and st−1 = 2

s∗t = 4 if st = 2 and st−1 = 2

The corresponding 4× 4 transition matrix is

P =

p11 0 p11 0
p12 0 p12 0
0 p21 0 p21

0 p22 0 p22

The conditional density of yt is given by f(yt|s∗t = i, yt−1; θ) for i = 1, . . . , 4. Also see Hamil-
ton (1994, chap. 22). More generally, for MSAR models, s∗t is a k(p+1)-state Markov chain, where
p is the number of lagged states. Because MSAR models require larger state vectors, they are often
used with low-frequency data and smaller AR lags. However, the state vector in MSDR models do not
depend on the AR lags and can thus be used to accommodate high-frequency data and higher AR lags.

mswitch — Markov-switching regression models 449

Markov-switching dynamic regression

A general specification of the MSDR model is written as

yt = µs + xtα+ ztβs + εs

where yt is the dependent variable, µs is the state-dependent intercept, xt is a vector of exogenous
variables with state-invariant coefficients α, zt is a vector of exogenous variables with state-dependent
coefficients βs, and εs is an i.i.d. normal error with mean 0 and state-dependent variance σ2

s . xt and
zt may contain lags of yt.

Markov-switching AR

A general specification of the MSAR model is written as

yt = µst + xtα+ ztβst +

p∑
i=1

φi,st(yt−i − µst−i − xt−iα− zt−iβst−i) + εst

where yt is the dependent variable at time t, µst is the state-dependent intercept, xt are covariates whose
coefficients α are state-invariant, and zt are covariates whose coefficients βst are state-dependent.
As in MSDR models, xt and zt may contain lags of yt.

φi,st is the ith AR term in state st. Note that µst−i is the intercept corresponding to the state that
the process was in at period t − i. Similarly, βst−i is the coefficient vector on zt−i corresponding
to the state that the process was in at period t− i.
εst is the i.i.d. normal error with mean 0 and state-dependent variance.

This representation clarifies that the demeaned, lagged errors depend on the state previously
occupied by the process. This dependence is not present in the MSDR model.

Likelihood function with latent states
The conditional density of yt is given by f(yt|st = i, yt−1; θ) for i = 1, . . . , k. The marginal

density of yt is obtained by weighting the conditional densities by their respective probabilities. This
is written as follows:

f(yt|θ) =

k∑
i=1

f(yt|st = i, yt−1; θ) Pr(st = i; θ)

Let ηt denote a k × 1 vector of conditional densities given by

ηt =

f(yt|st = 1; yt−1; θ)
f(yt|st = 2; yt−1; θ)

...
f(yt|st = k; yt−1; θ)

Constructing the likelihood function requires estimating the probability that st takes on a specific

value using the data through time t and model parameters θ. Let Pr(st = i|yt; θ) denote the conditional
probability of observing st = i based on data until time t. Then

Pr(st = i|yt; θ) =
f(yt|st = i, yt−1; θ) Pr(st = i|yt−1; θ)

f(yt|yt−1; θ)

450 mswitch — Markov-switching regression models

where f(yt|yt−1; θ) is the likelihood of yt and Pr(st = i|yt−1; θ) is the forecasted probability of
st = i given observation until time t− 1. Then

Pr(st = 1|yt−1; θ) =

k∑
j=1

Pr(st = i|st−1 = j, yt−1; θ) Pr(st−1 = j|yt−1; θ)

Let ξt|t and ξt|t−1 denote k× 1 vectors of conditional probabilities Pr(st = i|yt; θ) and Pr(st =

i|yt−1; θ). The likelihood is then obtained by iterating on the following equations [Hamilton (1994,
chap. 22)]:

ξt|t =
(ξt|t−1 � ηt)

1′(ξt|t−1 � ηt)
ξt+1|t = P ξt|t

where 1 is a k × 1 vector of 1s. The log-likelihood function is obtained as

L(θ) =

T∑
t=1

log f(yt|yt−1; θ)

where
f(yt|yt−1; θ) = 1′(ξt|t−1 � ηt)

Smoothed probabilities

Let ξt|T , where t < T , denote the k × 1 vector of conditional probabilities Pr(st = i|yT ; θ),
which represents the probability of st = i using observations available through time T . The smoothed
probabilities are calculated using an algorithm developed in Kim (1994).

ξt|T = ξt|t � {P′ (ξt+1|T(÷)ξt+1|t)}

where (÷) denotes element-by-element division. The smoothed probabilities are obtained by iterating
backwards from t = T − 1, T − 2, . . . , 1.

Unconditional probabilities

The log-likelihood function has a recursive structure that starts from the unconditional state
probabilities ξ1|0. These unconditional state probabilities are unknown. There are three standard ways
to obtain them.

By default, or by option p0(transition), the unconditional state probabilities are estimated from
the conditional transition probabilities and the Markov structure of the model. Specifically, the vector
of unconditional state probabilities is obtained as

π = (A′A)−1A′ek+1

where A is a (k + 1)× k matrix given by

A =

[
Ik −P

1′

]
Ik denotes a k × k identity matrix, and ek denotes the kth column of Ik.

mswitch — Markov-switching regression models 451

Sometimes researchers prefer to estimate unconditional state probabilities by adding k−1 additional
parameters to the model. This method is seldom used because it requires enough observations to
estimate the additional parameters. mswitch uses this method when option p0(smoothed) is specified.

Sometimes researchers prefer to set the unconditional state probabilities to 1/k. mswitch uses
this method when option p0(fixed) is specified.

References
Engel, C., and J. D. Hamilton. 1990. Long swings in the dollar: Are they in the data and do markets know it?

American Economic Review 80: 689–713.

Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. New York: Springer.

Garcia, R., and P. Perron. 1996. An analysis of the real interest rate under regime shifts. Review of Economics and
Statistics 78: 111–125.

Goldfeld, S. M., and R. E. Quandt. 1973. A Markov model for switching regressions. Journal of Econometrics 1:
3–15.

Guidolin, M. 2011a. Markov switching in portfolio choice and asset pricing models: A survey. In Advances in
Econometrics: Vol. 27B—Missing Data Methods: Time-series Methods and Applications, ed. D. M. Drukker,
87–178. Bingley, UK: Emerald.

. 2011b. Markov switching models in empirical finance. In Advances in Econometrics: Vol. 27B—Missing Data
Methods: Time-series Methods and Applications, ed. D. M. Drukker, 1–86. Bingley, UK: Emerald.

Hamaker, E. L., R. P. P. P. Grasman, and J. H. Kamphuis. 2010. Regime-switching models to study psychological
processes. In Individual Pathways of Change: Statistical Models for Analyzing Learning and Development, ed.
P. C. Molenaar and K. M. Newell, 155–168. Washington, DC: American Psychological Association.

Hamilton, J. D. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle.
Econometrica 57: 357–384.

. 1990. Analysis of time series subject to changes in regime. Journal of Econometrics 45: 39–70.

. 1993. Estimation, inference and forecasting of time series subject to changes in regime. In Handbook of
Statistics 11: Econometrics, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, 231–260. San Diego, CA: Elseiver.

. 1994. Time Series Analysis. Princeton: Princeton University Press.

Jones, B. D., C.-J. Kim, and R. Startz. 2010. Does congress realign or smoothly adjust? A discrete switching model
of congressional partisan regimes. Statistical Methodology 7: 254–276.

Karlin, S., and H. M. Taylor. 1975. A First Course in Stochastic Processes. 2nd ed. San Diego, CA: Elseiver.

Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60: 1–22.

Kim, C.-J., C. R. Nelson, and R. Startz. 1998. Testing for mean reversion in heteroskedastic data based on
Gibbs-sampling-augmented randomization. Journal of Empirical Finance 5: 131–154.

Krolzig, H.-M. 1997. Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to
Business Cycle Analysis. New York: Springer.

Lu, H.-M., D. Zeng, and H. Chen. 2010. Prospective infectious disease outbreak detection using Markov switching
models. IEEE Transactions on Knowledge and Data Engineering 22: 565–577.

Martinez-Beneito, M. A., D. Conesa, A. López-Quilez, and A. López-Maside. 2008. Bayesian Markov switching
models for the early detection of influenza epidemics. Statistics in Medicine 27: 4455–4468.

Quandt, R. E. 1972. A new approach to estimating switching regressions. Journal of the American Statistical Association
67: 306–310.

452 mswitch — Markov-switching regression models

Also see
[TS] mswitch postestimation — Postestimation tools for mswitch

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[TS] tsset — Declare data to be time-series data

[TS] ucm — Unobserved-components model

[U] 20 Estimation and postestimation commands

Title

mswitch postestimation — Postestimation tools for mswitch

Postestimation commands predict estat
Remarks and examples Stored results Methods and formulas
References Also see

Postestimation commands
The following postestimation commands are of special interest after mswitch:

Command Description

estat transition display transition probabilities in a table
estat duration display expected duration of states in a table

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

453

454 mswitch postestimation — Postestimation tools for mswitch

predict

Description for predict

predict creates new variables containing predictions such as predicted values, probabilities,
residuals, and standardized residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

yhat predicted values; the default
xb equation-specific predicted values; default is predicted values for the first

equation
pr compute probabilities of being in a given state; default is one-step-ahead

probabilities
residuals residuals
rstandard standardized residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

smethod(method) method for predicting unobserved states; specify one of onestep,
filter, or smooth; default is smethod(onestep)

rmse(stub* | newvarlist) put estimated root mean squared errors of predicted statistics in new
variables

dynamic(time constant) begin dynamic forecast at specified time
equation(eqnames) names of equations for which predictions are to be made

method Description

onestep predict using past information
filter predict using past and contemporaneous information
smooth predict using all sample information

mswitch postestimation — Postestimation tools for mswitch 455

Options for predict

� � �
Main �

yhat, xb, pr, residuals, and rstandard specify the statistic to be predicted.

yhat, the default, calculates the weighted and state-specific linear predictions of the observed
variables.

xb calculates the equation-specific linear predictions of the observed variables.

pr calculates the probabilities of being in a given state.

residuals calculates the residuals in the equations for observable variables.

rstandard calculates the standardized residuals, which are the residuals normalized to have unit
variances.

� � �
Options �

smethod(method) specifies the method for predicting the unobserved states; smethod(onestep),
smethod(filter), and smethod(smooth) allow different amounts of information on the de-
pendent variables to be used in predicting the states at each time period. smethod() may not be
specified with xb.

smethod(onestep), the default, causes predict to estimate the states at each time period using
previous information on the dependent variables. The nonlinear filter is performed on previous
periods, but only the one-step predictions are made for the current period.

smethod(filter) causes predict to estimate the states at each time period using previous
and contemporaneous data by using the nonlinear filter. The filtering is performed on previous
periods and the current period.

smethod(smooth) causes predict to estimate the states at each time period using all sample
data by using the smoothing algorithm.

rmse(stub* | newvarlist) puts the root mean squared errors of the predicted statistics into the specified
new variables. The root mean squared errors measure the variances due to the disturbances but do
not account for estimation error.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2014q4)) causes dynamic predictions to begin in the fourth quarter of
2014, assuming that the time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with xb, pr, residuals, or rstandard.

equation(eqnames) specifies the equations for which the predictions are to be calculated. If you
do not specify equation() or stub*, the results are the same as if you had specified the name
of the first equation for the predicted statistic. equation() may be specified with xb only.

You specify a list of equation names, such as equation(income consumption) or equa-
tion(factor1 factor2), to identify the equations.

equation() may not be specified with stub*.

456 mswitch postestimation — Postestimation tools for mswitch

estat

Description for estat

estat transition displays all of the transition probabilities in tabular form.

estat duration computes the expected duration that the process spends in each state and displays
the results in a table.

Menu for estat

Statistics > Postestimation

Syntax for estat

Display transition probabilities in a table

estat transition
[
, level(#)

]
Display expected duration of states in a table

estat duration
[
, level(#)

]
Option for estat

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

One-step predictions
Dynamic predictions
Model fit and state predictions

We assume that you have already read [TS] mswitch. In this entry, we illustrate some of the
features of predict after using mswitch to estimate the parameters of a Markov-switching model.

All the predictions after mswitch depend on the unobserved states, which are estimated recursively
using a nonlinear filter. Changing the sample can alter the state estimates, which can change all other
predictions.

One-step predictions

One-step predictions in a Markov-switching model are the forecasted values of the dependent
variable using one-step-ahead predicted probabilities.

mswitch postestimation — Postestimation tools for mswitch 457

Example 1: One-step predictions for a series

In example 3 of [TS] mswitch, we estimated the parameters of a Markov-switching dynamic
regression for the federal funds rate fedfunds as a function of its lag, the output gap ogap, and
inflation.

. use http://www.stata-press.com/data/r14/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation, noconstant)
(output omitted)

We obtain the one-step predictions for the dependent variable using the default settings for predict.
The predictions are stored in the new variable fedf.

. predict fedf
(option yhat assumed; predicted values)
(4 missing values generated)

Next, we graph the actual values, fedfunds, and predicted values, fedf, using tsline. We change
the label for fedf to “Predicted values”; see [TS] tsline.

. tsline fedfunds fedf, legend(label(2 "Predicted values"))

0
5

1
0

1
5

2
0

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
date (quarters)

Federal funds rate Predicted values

The graph shows that one-step-ahead predictions account for large swings in the federal funds rate.

Example 2: State-specific one-step predictions

Continuing example 1, we may also wish to obtain state-specific predictions. This allows us to
compare the predictions obtained for different states.

Note that this time, we specify fedf* rather than fedf so that predict generates two state-specific
predictions with the prefix fedf instead of a single weighted prediction. Also note that the predicted
values obtained in example 1 are the weighted average of the state-specific predictions, the weights
being the one-step-ahead probabilities.

458 mswitch postestimation — Postestimation tools for mswitch

. predict fedf*
(option yhat assumed; predicted values)
(4 missing values generated)

. tsline fedf1 fedf2, legend(label(1 "State 1 predictions")
> label(2 "State 2 predictions"))

0
5

1
0

1
5

2
0

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
date (quarters)

State 1 predictions State 2 predictions

The graph shows that, as expected, the predicted values of fedfunds are higher in state 2, the
high-interest rate state, than in state 1, the moderate-interest rate state.

Dynamic predictions

Dynamic predictions are out-of-sample forecasted values of the dependent variable using one-step-
ahead probabilities.

Example 3: Dynamic predictions for Markov-switching autoregression

In example 6 of [TS] mswitch, we estimated the parameters of a Markov-switching autoregression
for the U.S. real gross national product as a function of its own lags.

. use http://www.stata-press.com/data/r14/rgnp, clear
(Data from Hamilton (1989))

. mswitch ar rgnp, ar(1/4)
(output omitted)

To obtain dynamic predictions, we use predict with the dynamic() option. The dynamic()
option requires that all exogenous variables be present for the whole predicted sample. In this example,
we have not specified any exogenous variables, so we do not check for that. However, we do need
to have time values available for the predictions. So before submitting our predict command, we
use tsappend to extend the dataset by eight periods.

Within dynamic(), we specify that dynamic predictions will begin in the first quarter of 1985, and
we use the convenience function tq() to convert 1985q1 into a numeric date that Stata understands;
see [FN] Date and time functions.

mswitch postestimation — Postestimation tools for mswitch 459

. tsappend, add(8)

. predict rgnp_f, dynamic(tq(1985q1))
(option yhat assumed; predicted values)
(13 missing values generated)

We again use tsline to plot the in- and out-of-sample predictions. We restrict the range to quarters
1982q1 to 1986q4 using function tin().

. tsline rgnp_f if tin(1982q1,1986q4), ytitle("Out-of-sample predictions")
> tline(1985q1)

−
2

−
1

0
1

2
3

O
u

t−
o

f−
s
a

m
p

le
 p

re
d

ic
ti
o

n
s

1982q1 1983q1 1984q1 1985q1 1986q1 1987q1
date (quarters)

The vertical line shows where our out-of-sample prediction begins.

Model fit and state predictions

Example 4: Assessing model fit

In this example, we examine the model fit by comparing the fitted values of U.S. real gross
national product and the residuals with the actual data. The fitted values are obtained using smoothed
probabilities that consider all sample information.

. predict yhat, smethod(smooth)
(option yhat assumed; predicted values)
(13 missing values generated)

. predict res, residuals smethod(smooth)
(13 missing values generated)

. tsline yhat res rgnp, legend(label(1 "Fitted values") label(2 "Residuals"))

460 mswitch postestimation — Postestimation tools for mswitch

−
2

−
1

0
1

2
3

1950q1 1955q1 1960q1 1965q1 1970q1 1975q1 1980q1 1985q1
date (quarters)

Fitted values Residuals

US real gross national product

We see in the graph above that we do not obtain a good fit; the residuals account for much of the
variation in the dependent variable.

Example 5: Filtered probabilities

Continuing example 4, recall that the states in the model correspond to recession periods and
expansion periods for the U.S. economy. State 1 was the recession state. Here we compare the
predicted probability of being in state 1 with the National Bureau of Economic Research recession
periods stored in the indicator variable recession.

To obtain the filtered probabilities, typically used to predict state probabilities, we specify options
pr and smethod(filter) with predict.

. predict fprob, pr smethod(filter)
(13 missing values generated)

. tsline fprob recession

0
.2

.4
.6

.8
1

1950q1 1955q1 1960q1 1965q1 1970q1 1975q1 1980q1 1985q1
date (quarters)

filter probabilities NBER recession indicator

mswitch postestimation — Postestimation tools for mswitch 461

The predictions of recession and expansion states fit well with the NBER dates. Thus, it appears that
while our model does not have good fit, it does a good job of predicting the probability of being in
a given state.

We could also have specified smethod(smooth) to obtain better estimates of the state probability
using all sample information.

Example 6: Expected duration

Rather than predicting which state the series is in at a point in time, we may wish to know the
average time it spends in a given state. We can compute the expected duration of the process being
in a given state and show the result in a table using estat duration.

Continuing example 5, we can calculate the average length of recession periods and expansion
periods for the U.S. economy.

. estat duration

Number of obs = 131

Expected Duration Estimate Std. Err. [95% Conf. Interval]

State1 4.076159 1.603668 2.107284 9.545915

State2 10.42587 4.101872 5.017004 23.11771

The table indicates that state 1, the recession state, will typically persist for about 4 quarters and
state 2, the expansion state, will persist for about 10 quarters.

Stored results
estat transition stores the following in r():

Scalars
r(level) confidence level of confidence intervals

Macros
r(label#) label for transition probability

Matrices
r(prob) vector of transition probabilities
r(se) vector of standard errors of transition probabilities
r(ci#) vector of confidence interval (lower and upper) for transition probability

estat duration stores the following in r():

Scalars
r(d#) expected duration for state #
r(se#) standard error of expected duration for state #
r(level) confidence level of confidence intervals

Macros
r(label#) label for state #

Matrices
r(ci#) vector of confidence interval (lower and upper) for expected duration for state #

462 mswitch postestimation — Postestimation tools for mswitch

Methods and formulas
Forecasting a Markov-switching model requires estimating the probability of the process being at

any given state at each time period. The forecasts are then computed by weighting the state-specific
forecasts by the estimated probabilities. Refer to Hamilton (1993) and Davidson (2004) for more
details on forecasting Markov-switching regression models.

By default and with the smethod(filter) option, predict estimates the probability of being at
a state in each period by applying a nonlinear filter on all previous periods and the current period.
(See Methods and formulas of [TS] mswitch for the filter equations.)

With the smethod(smooth) option, predict estimates the probabilities by applying a smoothing
algorithm (Kim 1994) using all the sample information. With the smethod(onestep) option, predict
estimates the probabilities using information from all previous periods to make one-step-ahead
predictions.

The dependent variable is predicted by averaging the state-specific forecasts by the estimated
probabilities. The residuals are computed as the difference between the predicted and the realized
dependent variable. The standardized residuals are the residuals normalized to have unit variances.

Using an if or in qualifier to alter the prediction sample can change the estimate of the unobserved
states in the period prior to beginning the dynamic predictions and hence alter the dynamic predictions.
The initial values for the probabilities are obtained by calculating the ergodic probabilities from the
transition matrix.

References
Davidson, J. 2004. Forecasting Markov-switching dynamic, conditionally heteroscedastic processes. Statistics and

Probability Letters 68: 137–147.

Hamilton, J. D. 1993. Estimation, inference and forecasting of time series subject to changes in regime. In Handbook
of Statistics 11: Econometrics, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, 231–260. San Diego, CA: Elseiver.

Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60: 1–22.

Also see
[TS] mswitch — Markov-switching regression models

[U] 20 Estimation and postestimation commands

Title

newey — Regression with Newey–West standard errors

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

newey produces Newey–West standard errors for coefficients estimated by OLS regression. The
error structure is assumed to be heteroskedastic and possibly autocorrelated up to some lag.

Quick start
OLS regression of y on x1 and x2 with Newey–West standard errors robust to heteroskedasticity and

first-order autocorrelation using tsset data
newey y x1 x2, lag(1)

With heteroskedasticity-robust standard errors
newey y x1 x2, lag(0)

Menu
Statistics > Time series > Regression with Newey-West std. errors

Syntax
newey depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, lag(#)

[
options

]
options Description

Model
∗lag(#) set maximum lag order of autocorrelation
noconstant suppress constant term

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics
∗lag(#) is required.
You must tsset your data before using newey; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

463

464 newey — Regression with Newey–West standard errors

Options

� � �
Model �

lag(#) specifies the maximum lag to be considered in the autocorrelation structure. If you specify
lag(0), the output is the same as regress, vce(robust). lag() is required.

noconstant; see [R] estimation options.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with newey but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
The Huber/White/sandwich robust variance estimator (see White [1980]) produces consistent

standard errors for OLS regression coefficient estimates in the presence of heteroskedasticity. The
Newey–West (1987) variance estimator is an extension that produces consistent estimates when there
is autocorrelation in addition to possible heteroskedasticity.

The Newey–West variance estimator handles autocorrelation up to and including a lag of m,
where m is specified by stipulating the lag() option. Thus, it assumes that any autocorrelation at
lags greater than m can be ignored.

If lag(0) is specified, the variance estimates produced by newey are simply the Hu-
ber/White/sandwich robust variances estimates calculated by regress, vce(robust); see [R] regress.

Example 1

newey, lag(0) is equivalent to regress, vce(robust):

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. regress price weight displ, vce(robust)

Linear regression Number of obs = 74
F(2, 71) = 14.44
Prob > F = 0.0000
R-squared = 0.2909
Root MSE = 2518.4

Robust
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.823366 .7808755 2.34 0.022 .2663445 3.380387
displacement 2.087054 7.436967 0.28 0.780 -12.74184 16.91595

_cons 247.907 1129.602 0.22 0.827 -2004.455 2500.269

. generate t = _n

newey — Regression with Newey–West standard errors 465

. tsset t
time variable: t, 1 to 74

delta: 1 unit

. newey price weight displ, lag(0)

Regression with Newey-West standard errors Number of obs = 74
maximum lag: 0 F(2, 71) = 14.44

Prob > F = 0.0000

Newey-West
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.823366 .7808755 2.34 0.022 .2663445 3.380387
displacement 2.087054 7.436967 0.28 0.780 -12.74184 16.91595

_cons 247.907 1129.602 0.22 0.827 -2004.455 2500.269

Because newey requires the dataset to be tsset, we generated a dummy time variable t, which in
this example played no role in the estimation.

Example 2

Say that we have time-series measurements on variables usr and idle and now wish to fit an
OLS model but obtain Newey–West standard errors allowing for a lag of up to 3:

. use http://www.stata-press.com/data/r14/idle2, clear

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. newey usr idle, lag(3)

Regression with Newey-West standard errors Number of obs = 30
maximum lag: 3 F(1, 28) = 10.90

Prob > F = 0.0026

Newey-West
usr Coef. Std. Err. t P>|t| [95% Conf. Interval]

idle -.2281501 .0690927 -3.30 0.003 -.3696801 -.08662
_cons 23.13483 6.327031 3.66 0.001 10.17449 36.09516

466 newey — Regression with Newey–West standard errors

Stored results
newey stores the following in e():
Scalars

e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(F) F statistic
e(lag) maximum lag
e(rank) rank of e(V)

Macros
e(cmd) newey
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
newey calculates the estimates

β̂OLS = (X′X)−1X′y

V̂ar(β̂OLS) = (X′X)−1X′Ω̂X(X′X)−1

That is, the coefficient estimates are simply those of OLS linear regression.

For lag(0) (no autocorrelation), the variance estimates are calculated using the White formulation:

X′Ω̂X = X′Ω̂0X =
n

n− k
∑
i

ê2
ix
′
ixi

Here êi = yi − xiβ̂OLS, where xi is the ith row of the X matrix, n is the number of observations,
and k is the number of predictors in the model, including the constant if there is one. The above
formula is the same as that used by regress, vce(robust) with the regression-like formula (the
default) for the multiplier qc; see Methods and formulas of [R] regress.

For lag(m), m > 0, the variance estimates are calculated using the Newey–West (1987)
formulation

X′Ω̂X = X′Ω̂0X +
n

n− k

m∑
l=1

(
1− l

m+ 1

) n∑
t=l+1

êtêt−l(x
′
txt−l + x′t−lxt)

where xt is the row of the X matrix observed at time t.

newey — Regression with Newey–West standard errors 467� �
Whitney K. Newey (1954–) earned degrees in economics at Brigham Young University and
MIT. After a period at Princeton, he returned to MIT as a professor in 1990. His interests in
theoretical and applied econometrics include bootstrapping, nonparametric estimation of models,
semiparametric models, and choosing the number of instrumental variables.

Kenneth D. West (1953–) earned a bachelor’s degree in economics and mathematics at Wesleyan
University and then a PhD in economics at MIT. After a period at Princeton, he joined the
University of Wisconsin in 1988. His interests include empirical macroeconomics and time-
series econometrics.� �

References
Hardin, J. W. 1997. sg72: Newey–West standard errors for probit, logit, and poisson models. Stata Technical Bulletin

39: 32–35. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 182–186. College Station, TX: Stata Press.

Newey, W. K., and K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent
covariance matrix. Econometrica 55: 703–708.

Wang, Q., and N. Wu. 2012. Long-run covariance and its applications in cointegration regression. Stata Journal 12:
515–542.

White, H. L., Jr. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Econometrica 48: 817–838.

Also see
[TS] newey postestimation — Postestimation tools for newey

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] forecast — Econometric model forecasting

[TS] tsset — Declare data to be time-series data

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/products/stb/journals/stb39.pdf
http://www.stata-journal.com/article.html?article=st0272

Title

newey postestimation — Postestimation tools for newey

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are available after newey:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

468

newey postestimation — Postestimation tools for newey 469

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

residuals calculates the residuals.

470 newey postestimation — Postestimation tools for newey

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
options

]
statistic Description

xb linear prediction; the default
stdp not allowed with margins

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1

We use the test command after newey to illustrate the importance of accounting for the presence of
serial correlation in the error term. The dataset contains daily stock returns of three car manufacturers
from January 2, 2003, to December 31, 2010, in the variables toyota, nissan, and honda.

We fit a model for the Nissan stock returns on the Honda and Toyota stock returns, and we use
estat bgodfrey to test for serial correlation of order one:

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. regress nissan honda toyota
(output omitted)

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 6.415 1 0.0113

H0: no serial correlation

newey postestimation — Postestimation tools for newey 471

The result implies that the error term is serially correlated; therefore, we should rather fit the model
with newey. But let’s use the outcome from regress to conduct a test for the statistical significance
of a particular linear combination of the two coefficients in the regression:

. test 1.15*honda+toyota = 1

(1) 1.15*honda + toyota = 1

F(1, 2012) = 5.52
Prob > F = 0.0189

We reject the null hypothesis that the linear combination is valid. Let’s see if the conclusion
remains the same when we fit the model with newey, obtaining the Newey–West standard errors for
the OLS coefficient estimates.

. newey nissan honda toyota,lag(1)
(output omitted)

. test 1.15*honda+toyota = 1

(1) 1.15*honda + toyota = 1

F(1, 2012) = 2.57
Prob > F = 0.1088

The conclusion would be the opposite, which illustrates the importance of using the proper estimator
for the standard errors.

Example 2

We want to produce forecasts based on dynamic regressions for each of the three stocks. We will
treat the stock returns for toyota as a leading indicator for the two other stocks. We also check for
autocorrelation with the Breusch–Godfrey test.

. use http://www.stata-press.com/data/r14/stocks
(Data from Yahoo! Finance)

. regress toyota l(1/2).toyota
(output omitted)

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 4.373 1 0.0365

H0: no serial correlation

. regress nissan l(1/2).nissan l.toyota
(output omitted)

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 0.099 1 0.7536

H0: no serial correlation

472 newey postestimation — Postestimation tools for newey

. regress honda l(1/2).honda l.toyota
(output omitted)

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 0.923 1 0.3367

H0: no serial correlation

The first result indicates that we should consider using newey to fit the model for toyota. The
point forecasts would not be actually affected because newey produces the same OLS coefficient
estimates reported by regress. However, if we were interested in obtaining measures of uncertainty
surrounding the point forecasts, we should then use the results from newey for that first equation.

Let’s illustrate the use of forecast with newey for the first equation and regress for the two
other equations. We first declare the forecast model:

. forecast create stocksmodel
Forecast model stocksmodel started.

Then we refit the equations and add them to the forecast model:
. quietly newey toyota l(1/2).toyota, lag(1)

. estimates store eq_toyota

. forecast estimates eq_toyota
Added estimation results from newey.
Forecast model stocksmodel now contains 1 endogenous variable.

. quietly regress nissan l(1/2).nissan l.toyota

. estimates store eq_nissan

. forecast estimates eq_nissan
Added estimation results from regress.
Forecast model stocksmodel now contains 2 endogenous variables.

. quietly regress honda l(1/2).honda l.toyota

. estimates store eq_honda

. forecast estimates eq_honda
Added estimation results from regress.
Forecast model stocksmodel now contains 3 endogenous variables.

We use tsappend to add the number of periods for the forecast, and then we obtain the predicted
values with forecast solve:

. tsappend, add(7)

. forecast solve, prefix(stk_)

Computing dynamic forecasts for model stocksmodel.

Starting period: 2016
Ending period: 2022
Forecast prefix: stk_

2016:
2017:
2018:
2019:
2020:
2021:
2022:

Forecast 3 variables spanning 7 periods.

newey postestimation — Postestimation tools for newey 473

The graph below shows several interesting results. First, the stock returns of the competitor (toyota)
does not seem to be a leading indicator for the stock returns of the two other companies (otherwise, the
patterns for the movements in nissan and honda would be following the recent past movements in
toyota). You can actually fit the models above for nissan and honda to confirm that the coefficient
estimate for the first lag of toyota is not significant in any of the two equations. Second, immediately
after the second forecasted period, there is basically no variation in the predictions, which indicates
the very short-run predicting influence of past history on the forecasts of the three stock returns.

−
.0

2
0

.0
2

.0
4

S
to

c
k
 r

e
tu

rn
s

01dec2010

08dec2010

15dec2010

24dec2010

31dec2010

08jan2011

Date

Honda Toyota Nissan

Dynamic forecast start at 01Jan2011

Current and forecasted stock returns

Also see
[TS] newey — Regression with Newey–West standard errors

[U] 20 Estimation and postestimation commands

Title

pergram — Periodogram

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

pergram plots the log-standardized periodogram for a dense time series.

Quick start
Plot periodogram of y using tsset data

pergram y

As above, but generate variable newvar to hold raw periodogram values
pergram y, generate(newvar)

As above, but suppress display of periodogram graph
pergram y, generate(newvar) nograph

Menu
Statistics > Time series > Graphs > Periodogram

474

pergram — Periodogram 475

Syntax
pergram varname

[
if
] [

in
] [

, options
]

options Description

Main

generate(newvar) generate newvar to contain the raw periodogram values

Plot

cline options affect rendition of the plotted points connected by lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

nograph suppress the graph

You must tsset your data before using pergram; see [TS] tsset. Also, the time series must be dense
(nonmissing with no gaps in the time variable) in the specified sample.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.
nograph does not appear in the dialog box.

Options

� � �
Main �

generate(newvar) specifies a new variable to contain the raw periodogram values. The generated
graph log-transforms and scales the values by the sample variance and then truncates them to the
[−6, 6] interval before graphing them.

� � �
Plot �

cline options affect the rendition of the plotted points connected by lines; see [G-3] cline options.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

476 pergram — Periodogram

The following option is available with pergram but is not shown in the dialog box:

nograph prevents pergram from constructing a graph.

Remarks and examples
A good discussion of the periodogram is provided in Chatfield (2004), Hamilton (1994), and

Newton (1988). Chatfield is also a good introductory reference for time-series analysis. Another
classic reference is Box, Jenkins, and Reinsel (2008). pergram produces a scatterplot in which
the points of the scatterplot are connected. The points themselves represent the log-standardized
periodogram, and the connections between points represent the (continuous) log-standardized sample
spectral density.

In the following examples, we present the periodograms with an interpretation of the main features
of the plots.

Example 1

We have time-series data consisting of 144 observations on the monthly number of international
airline passengers (in thousands) between 1949 and 1960 (Box, Jenkins, and Reinsel 2008, Series G).
We can graph the raw series and the log periodogram for these data by typing

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. scatter air time, m(o) c(l)

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

A
ir
lin

e
 P

a
s
s
e

n
g

e
rs

 (
1

9
4

9
−

1
9

6
0

)

1950 1955 1960
Time (in months)

pergram — Periodogram 477

. pergram air

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

A
ir
lin

e
 P

a
s
s
e

n
g

e
rs

 (
1

9
4

9
−

1
9

6
0

)
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram highlights the annual cycle together with the harmonics. Notice the peak at a
frequency of about 0.08 cycles per month (cpm). The period is the reciprocal of frequency, and the
reciprocal of 0.08 cpm is approximately 12 months per cycle. The similarity in shape of each group
of 12 observations reveals the annual cycle. The magnitude of the cycle is increasing, resulting in
the peaks in the periodogram at the harmonics of the principal annual cycle.

Example 2

This example uses 215 observations on the annual number of sunspots from 1749 to 1963 (Box
and Jenkins 1976, Series E). The graph of the raw series and the log periodogram for these data are
given as

. use http://www.stata-press.com/data/r14/sunspot
(TIMESLAB: Wolfer sunspot data)

. scatter spot time, m(o) c(l)

0
5

0
1

0
0

1
5

0
2

0
0

N
u

m
b

e
r

o
f

s
u

n
s
p

o
ts

1750 1800 1850 1900 1950
Year

478 pergram — Periodogram

. pergram spot

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

N
u

m
b

e
r

o
f

s
u

n
s
p

o
ts

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram peaks at a frequency of slightly less than 0.10 cycles per year, indicating a 10-
to 12-year cycle in sunspot activity.

Example 3

Here we examine the number of trapped Canadian lynx from 1821 through 1934 (Newton 1988,
587). The raw series and the log periodogram are given as

. use http://www.stata-press.com/data/r14/lynx2
(TIMESLAB: Canadian lynx)

. scatter lynx time, m(o) c(l)

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
N

u
m

b
e

r
o

f
ly

n
x
 t

ra
p

p
e

d

0 50 100 150
Time

pergram — Periodogram 479

. pergram lynx

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

N
u

m
b

e
r

o
f

ly
n

x
 t

ra
p

p
e

d
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram indicates that there is a cycle with a duration of about 10 years for these data but
that it is otherwise random.

Example 4

To more clearly highlight what the periodogram depicts, we present the result of analyzing a
time series of the sum of four sinusoids (of different periods). The periodogram should be able to
decompose the time series into four different sinusoids whose periods may be determined from the
plot.

. use http://www.stata-press.com/data/r14/cos4
(TIMESLAB: Sum of 4 Cosines)

. scatter sumfc time, m(o) c(l)

−
2

0
−

1
0

0
1

0
2

0

S
u

m
 o

f
4

 c
o

s
in

e
s

0 50 100 150

Time

480 pergram — Periodogram

. pergram sumfc, gen(ordinate)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

S
u

m
 o

f
4

 c
o

s
in

e
s

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram clearly shows the four contributions to the original time series. From the plot, we
can see that the periods of the summands were 3, 6, 12, and 36, although you can confirm this by
using

. generate double omega = (_n-1)/144

. generate double period = 1/omega
(1 missing value generated)

. list period omega if ordinate> 1e-5 & omega <=.5

period omega

5. 36 .02777778
13. 12 .08333333
25. 6 .16666667
49. 3 .33333333

Methods and formulas
We use the notation of Newton (1988) in the following discussion.

A time series of interest is decomposed into a unique set of sinusoids of various frequencies and
amplitudes.

A plot of the sinusoidal amplitudes (ordinates) versus the frequencies for the sinusoidal decompo-
sition of a time series gives us the spectral density of the time series. If we calculate the sinusoidal
amplitudes for a discrete set of “natural” frequencies (1/n, 2/n, . . . , q/n), we obtain the periodogram.

Let x(1), . . . , x(n) be a time series, and let ωk = (k − 1)/n denote the natural frequencies for
k = 1, . . . , (n/2) + 1. Define

C2
k =

1

n2

∣∣∣∣∣
n∑
t=1

x(t)e2πi(t−1)ωk

∣∣∣∣∣
2

A plot of nC2
k versus ωk is then called the periodogram.

pergram — Periodogram 481

The sample spectral density is defined for a continuous frequency ω as

f̂(ω) =

1

n

∣∣∣∣∣
n∑
t=1

x(t)e2πi(t−1)ω

∣∣∣∣∣
2

if ω ∈ [0, .5]

f̂(1− ω) if ω ∈ [.5, 1]

The periodogram (and sample spectral density) is symmetric about ω = 0.5. Further standardize
the periodogram such that

1

n

n∑
k=2

nC2
k

σ̂2
= 1

where σ̂2 is the sample variance of the time series so that the average value of the ordinate is one.

Once the amplitudes are standardized, we may then take the natural log of the values and produce
the log periodogram. In doing so, we truncate the graph at ±6. We drop the word “log” and simply
refer to the “log periodogram” as the “periodogram” in text.

References
Box, G. E. P., and G. M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. Oakland, CA: Holden–Day.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.
Hoboken, NJ: Wiley.

Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Also see
[TS] tsset — Declare data to be time-series data

[TS] corrgram — Tabulate and graph autocorrelations

[TS] cumsp — Cumulative spectral distribution

[TS] wntestb — Bartlett’s periodogram-based test for white noise

Title

pperron — Phillips–Perron unit-root test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

pperron performs the Phillips–Perron (1988) test that a variable has a unit root. The null hypothesis
is that the variable contains a unit root, and the alternative is that the variable was generated by a
stationary process. pperron uses Newey–West (1987) standard errors to account for serial correlation,
whereas the augmented Dickey–Fuller test implemented in dfuller (see [TS] dfuller) uses additional
lags of the first-differenced variable.

Quick start
Phillips–Perron unit-root test for y using tsset data

pperron y

As above, and include a trend in the specification
pperron y, trend

As above, but use 10 lags when calculating Newey–West standard errors
pperron y, trend lags(10)

As above, but without a trend or constant in the specification
pperron y, lags(10) noconstant

Menu
Statistics > Time series > Tests > Phillips-Perron unit-root test

482

pperron — Phillips–Perron unit-root test 483

Syntax
pperron varname

[
if
] [

in
] [

, options
]

options Description

Main

noconstant suppress constant term
trend include trend term in regression
regress display regression table
lags(#) use # Newey–West lags

You must tsset your data before using pperron; see [TS] tsset.
varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

noconstant suppresses the constant term (intercept) in the model.

trend specifies that a trend term be included in the associated regression. This option may not be
specified if noconstant is specified.

regress specifies that the associated regression table appear in the output. By default, the regression
table is not produced.

lags(#) specifies the number of Newey–West lags to use in calculating the standard error. The

default is to use int
{

4(T/100)2/9
}

lags.

Remarks and examples
As noted in [TS] dfuller, the Dickey–Fuller test involves fitting the regression model

yt = α+ ρyt−1 + δt+ ut (1)

by ordinary least squares (OLS), but serial correlation will present a problem. To account for this, the
augmented Dickey–Fuller test’s regression includes lags of the first differences of yt.

The Phillips–Perron test involves fitting (1), and the results are used to calculate the test statistics.
Phillips and Perron (1988) proposed two alternative statistics, which pperron presents. Phillips and
Perron’s test statistics can be viewed as Dickey–Fuller statistics that have been made robust to
serial correlation by using the Newey–West (1987) heteroskedasticity- and autocorrelation-consistent
covariance matrix estimator.

484 pperron — Phillips–Perron unit-root test

Hamilton (1994, chap. 17) and [TS] dfuller discuss four different cases into which unit-root tests
can be classified. The Phillips–Perron test applies to cases one, two, and four but not to case three.
Cases one and two assume that the variable has a unit root without drift under the null hypothesis, the
only difference being whether the constant term α is included in regression (1). Case four assumes
that the variable has a random walk, with or without drift, under the null hypothesis. Case three,
which assumes that the variable has a random walk with drift under the null hypothesis, is just a
special case of case four, so the fact that the Phillips–Perron test does not apply is not restrictive.
The table below summarizes the relevant cases:

Process under Regression dfuller
Case null hypothesis restrictions option

1 Random walk without drift α = 0, δ = 0 noconstant
2 Random walk without drift δ = 0 (default)
4 Random walk with or (none) trend

without drift

The critical values for the Phillips–Perron test are the same as those for the augmented Dickey–Fuller
test. See Hamilton (1994, chap. 17) for more information.

Example 1

Here we use the international airline passengers dataset (Box, Jenkins, and Reinsel 2008, Series G).
This dataset has 144 observations on the monthly number of international airline passengers from
1949 through 1960. Because the data exhibit a clear upward trend over time, we will use the trend
option.

. use http://www.stata-press.com/data/r14/air2
(TIMESLAB: Airline passengers)

. pperron air, lags(4) trend regress

Phillips-Perron test for unit root Number of obs = 143
Newey-West lags = 4

Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -46.405 -27.687 -20.872 -17.643
Z(t) -5.049 -4.026 -3.444 -3.144

MacKinnon approximate p-value for Z(t) = 0.0002

air Coef. Std. Err. t P>|t| [95% Conf. Interval]

air
L1. .7318116 .0578092 12.66 0.000 .6175196 .8461035

_trend .7107559 .1670563 4.25 0.000 .3804767 1.041035
_cons 25.95168 7.325951 3.54 0.001 11.46788 40.43547

Just as in the example in [TS] dfuller, we reject the null hypothesis of a unit root at all common
significance levels. The interpolated critical values for Zt differ slightly from those shown in the
example in [TS] dfuller because the sample sizes are different: with the augmented Dickey–Fuller
regression we lose observations because of the inclusion of lagged difference terms as regressors.

pperron — Phillips–Perron unit-root test 485

Stored results
pperron stores the following in r():

Scalars
r(N) number of observations
r(lags) number of lagged differences used
r(pval) MacKinnon approximate p-value (not included if noconstant specified)
r(Zt) Phillips–Perron τ test statistic
r(Zrho) Phillips–Perron ρ test statistic

Methods and formulas
In the OLS estimation of an AR(1) process with Gaussian errors,

yi = ρyi−1 + εi

where εi are independent and identically distributed as N(0, σ2) and y0 = 0, the OLS estimate (based
on an n-observation time series) of the autocorrelation parameter ρ is given by

ρ̂n =

n∑
i=1

yi−1yi

n∑
i=1

y2
i

If |ρ| < 1, then
√
n(ρ̂n − ρ) → N(0, 1 − ρ2). If this result were valid for when ρ = 1, then the

resulting distribution would have a variance of zero. When ρ = 1, the OLS estimate ρ̂ still converges
to one, though we need to find a nondegenerate distribution so that we can test H0 : ρ = 1. See
Hamilton (1994, chap. 17).

The Phillips–Perron test involves fitting the regression

yi = α+ ρyi−1 + εi

where we may exclude the constant or include a trend term. There are two statistics, Zρ and Zτ ,
calculated as

Zρ = n(ρ̂n − 1)− 1

2

n2σ̂2

s2
n

(
λ̂ 2
n − γ̂0,n

)
Zτ =

√
γ̂0,n

λ̂ 2
n

ρ̂n − 1

σ̂
− 1

2

(
λ̂ 2
n − γ̂0,n

) 1

λ̂n

nσ̂

sn

γ̂j,n =
1

n

n∑
i=j+1

ûiûi−j

λ̂ 2
n = γ̂0,n + 2

q∑
j=1

(
1− j

q + 1

)
γ̂j,n

s2
n =

1

n− k

n∑
i=1

û 2
i

486 pperron — Phillips–Perron unit-root test

where ui is the OLS residual, k is the number of covariates in the regression, q is the number of
Newey–West lags to use in calculating λ̂ 2

n , and σ̂ is the OLS standard error of ρ̂.

The critical values, which have the same distribution as the Dickey–Fuller statistic (see Dickey
and Fuller 1979) included in the output, are linearly interpolated from the table of values that appear
in Fuller (1996), and the MacKinnon approximate p-values use the regression surface published in
MacKinnon (1994).

� �
Peter Charles Bonest Phillips (1948–) was born in Weymouth, England, and earned degrees in
economics at the University of Auckland in New Zealand, and the London School of Economics.
After periods at the Universities of Essex and Birmingham, Phillips moved to Yale in 1979. He
also holds appointments at the University of Auckland and the University of York. His main
research interests are in econometric theory, financial econometrics, time-series and panel-data
econometrics, and applied macroeconomics.

Pierre Perron (1959–) was born in Québec, Canada, and earned degrees at McGill, Queen’s, and
Yale in economics. After posts at Princeton and the Université de Montréal, he joined Boston
University in 1997. His research interests include time-series analysis, econometrics, and applied
macroeconomics.� �

References
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.

Hoboken, NJ: Wiley.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root.
Journal of the American Statistical Association 74: 427–431.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

MacKinnon, J. G. 1994. Approximate asymptotic distribution functions for unit-root and cointegration tests. Journal
of Business and Economic Statistics 12: 167–176.

Newey, W. K., and K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent
covariance matrix. Econometrica 55: 703–708.

Phillips, P. C. B., and P. Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–346.

Also see
[TS] tsset — Declare data to be time-series data

[TS] dfgls — DF-GLS unit-root test

[TS] dfuller — Augmented Dickey–Fuller unit-root test

[XT] xtunitroot — Panel-data unit-root tests

Title

prais — Prais–Winsten and Cochrane–Orcutt regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
prais uses the generalized least-squares method to estimate the parameters in a linear regression

model in which the errors are serially correlated. Specifically, the errors are assumed to follow a
first-order autoregressive process.

Quick start
Prais–Winsten regression of y on x estimating the autocorrelation parameter by a single-lag OLS

regression of residuals using tsset data
prais y x

As above, but estimate the autocorrelation parameter using a single-lead OLS of residuals
prais y x, rhotype(freg)

As above, but estimate the autocorrelation parameter using autocorrelation of residuals
prais y x, rhotype(tscorr)

Cochrane–Orcutt regression of y on x with first-order serial correlation
prais y x, corc

Menu
Statistics > Time series > Prais-Winsten regression

487

488 prais — Prais–Winsten and Cochrane–Orcutt regression

Syntax
prais depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

rhotype(regress) base ρ on single-lag OLS of residuals; the default
rhotype(freg) base ρ on single-lead OLS of residuals
rhotype(tscorr) base ρ on autocorrelation of residuals
rhotype(dw) base ρ on autocorrelation based on Durbin–Watson
rhotype(theil) base ρ on adjusted autocorrelation
rhotype(nagar) base ρ on adjusted Durbin–Watson
corc use Cochrane–Orcutt transformation
ssesearch search for ρ that minimizes SSE
twostep stop after the first iteration
noconstant suppress constant term
hascons has user-defined constant
savespace conserve memory during estimation

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)

nodw do not report the Durbin–Watson statistic
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

You must tsset your data before using prais; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

prais — Prais–Winsten and Cochrane–Orcutt regression 489

Options

� � �
Model �

rhotype(rhomethod) selects a specific computation for the autocorrelation parameter ρ, where
rhomethod can be

regress ρreg = β from the residual regression εt = βεt−1

freg ρfreg = β from the residual regression εt = βεt+1

tscorr ρtscorr = ε′εt−1/ε
′ε, where ε is the vector of residuals

dw ρdw = 1− dw/2, where dw is the Durbin–Watson d statistic
theil ρtheil = ρtscorr(N − k)/N

nagar ρnagar = (ρdw ∗N2 + k2)/(N2 − k2)

The prais estimator can use any consistent estimate of ρ to transform the equation, and each
of these estimates meets that requirement. The default is regress, which produces the minimum
sum-of-squares solution (ssesearch option) for the Cochrane–Orcutt transformation—none of
these computations will produce the minimum sum-of-squares solution for the full Prais–Winsten
transformation. See Judge et al. (1985) for a discussion of each estimate of ρ.

corc specifies that the Cochrane–Orcutt transformation be used to estimate the equation. With this
option, the Prais–Winsten transformation of the first observation is not performed, and the first
observation is dropped when estimating the transformed equation; see Methods and formulas below.

ssesearch specifies that a search be performed for the value of ρ that minimizes the sum-of-squared
errors of the transformed equation (Cochrane–Orcutt or Prais–Winsten transformation). The search
method is a combination of quadratic and modified bisection searches using golden sections.

twostep specifies that prais stop on the first iteration after the equation is transformed by ρ—the
two-step efficient estimator. Although iterating these estimators to convergence is customary, they
are efficient at each step.

noconstant; see [R] estimation options.

hascons indicates that a user-defined constant, or a set of variables that in linear combination forms a
constant, has been included in the regression. For some computational concerns, see the discussion
in [R] regress.

savespace specifies that prais attempt to save as much space as possible by retaining only those
variables required for estimation. The original data are restored after estimation. This option is
rarely used and should be used only if there is insufficient space to fit a model without the option.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator; see
[R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

vce(robust) specifies to use the Huber/White/sandwich estimator.

vce(cluster clustvar) specifies to use the intragroup correlation estimator.

vce(hc2) and vce(hc3) specify an alternative bias correction for the vce(robust) variance
calculation; for more information, see [R] regress. You may specify only one of vce(hc2),
vce(hc3), or vce(robust).

490 prais — Prais–Winsten and Cochrane–Orcutt regression

All estimates from prais are conditional on the estimated value of ρ. Robust variance estimates
here are robust only to heteroskedasticity and are not generally robust to misspecification of the
functional form or omitted variables. The estimation of the functional form is intertwined with
the estimation of ρ, and all estimates are conditional on ρ. Thus estimates cannot be robust to
misspecification of functional form. For these reasons, it is probably best to interpret vce(robust)
in the spirit of White’s (1980) original paper on estimation of heteroskedastic-consistent covariance
matrices.

� � �
Reporting �

level(#); see [R] estimation options.

nodw suppresses reporting of the Durbin–Watson statistic.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options: iterate(#),
[
no
]
log, tolerance(#). iterate() specifies the maximum num-

ber of iterations. log/nolog specifies whether to show the iteration log. tolerance() specifies
the tolerance for the coefficient vector; tolerance(1e-6) is the default. These options are seldom
used.

The following option is available with prais but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
prais fits a linear regression of depvar on indepvars that is corrected for first-order serially correlated

residuals by using the Prais–Winsten (1954) transformed regression estimator, the Cochrane–Orcutt
(1949) transformed regression estimator, or a version of the search method suggested by Hildreth
and Lu (1960). Davidson and MacKinnon (1993) provide theoretical details on the three methods
(see pages 333–335 for the latter two and pages 343–351 for Prais–Winsten). See Becketti (2013)
for more examples showing how to use prais.

The most common autocorrelated error process is the first-order autoregressive process. Under this
assumption, the linear regression model can be written as

yt = xtβ+ ut

where the errors satisfy
ut = ρ ut−1 + et

and the et are independent and identically distributed as N(0, σ2). The covariance matrix Ψ of the
error term u can then be written as

Ψ =
1

1− ρ2

1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

ρ2 ρ 1 · · · ρT−3

...
...

...
. . .

...
ρT−1 ρT−2 ρT−3 · · · 1

prais — Prais–Winsten and Cochrane–Orcutt regression 491

The Prais–Winsten estimator is a generalized least-squares (GLS) estimator. The Prais–Winsten
method (as described in Judge et al. 1985) is derived from the AR(1) model for the error term described
above. Whereas the Cochrane–Orcutt method uses a lag definition and loses the first observation in
the iterative method, the Prais–Winsten method preserves that first observation. In small samples,
this can be a significant advantage.

Technical note

To fit a model with autocorrelated errors, you must specify your data as time series and have (or
create) a variable denoting the time at which an observation was collected. The data for the regression
should be equally spaced in time.

Example 1

Say that we wish to fit a time-series model of usr on idle but are concerned that the residuals
may be serially correlated. We will declare the variable t to represent time by typing

. use http://www.stata-press.com/data/r14/idle

. tsset t
time variable: t, 1 to 30

delta: 1 unit

We can obtain Cochrane–Orcutt estimates by specifying the corc option:

. prais usr idle, corc

Iteration 0: rho = 0.0000
Iteration 1: rho = 0.3518

(output omitted)
Iteration 13: rho = 0.5708

Cochrane-Orcutt AR(1) regression -- iterated estimates

Source SS df MS Number of obs = 29
F(1, 27) = 6.49

Model 40.1309584 1 40.1309584 Prob > F = 0.0168
Residual 166.898474 27 6.18142498 R-squared = 0.1938

Adj R-squared = 0.1640
Total 207.029433 28 7.39390831 Root MSE = 2.4862

usr Coef. Std. Err. t P>|t| [95% Conf. Interval]

idle -.1254511 .0492356 -2.55 0.017 -.2264742 -.024428
_cons 14.54641 4.272299 3.40 0.002 5.78038 23.31245

rho .5707918

Durbin-Watson statistic (original) 1.295766
Durbin-Watson statistic (transformed) 1.466222

The fitted model is

usrt = −0.1255 idlet + 14.55 + ut and ut = 0.5708ut−1 + et

492 prais — Prais–Winsten and Cochrane–Orcutt regression

We can also fit the model with the Prais–Winsten method,

. prais usr idle

Iteration 0: rho = 0.0000
Iteration 1: rho = 0.3518

(output omitted)
Iteration 14: rho = 0.5535

Prais-Winsten AR(1) regression -- iterated estimates

Source SS df MS Number of obs = 30
F(1, 28) = 7.12

Model 43.0076941 1 43.0076941 Prob > F = 0.0125
Residual 169.165739 28 6.04163354 R-squared = 0.2027

Adj R-squared = 0.1742
Total 212.173433 29 7.31632528 Root MSE = 2.458

usr Coef. Std. Err. t P>|t| [95% Conf. Interval]

idle -.1356522 .0472195 -2.87 0.008 -.2323769 -.0389275
_cons 15.20415 4.160391 3.65 0.001 6.681978 23.72633

rho .5535476

Durbin-Watson statistic (original) 1.295766
Durbin-Watson statistic (transformed) 1.476004

where the Prais–Winsten fitted model is

usrt = −.1357 idlet + 15.20 + ut and ut = .5535ut−1 + et

As the results indicate, for these data there is little difference between the Cochrane–Orcutt and
Prais–Winsten estimators, whereas the OLS estimate of the slope parameter is substantially different.

Example 2

We have data on quarterly sales, in millions of dollars, for 5 years, and we would like to use
this information to model sales for company X. First, we fit a linear model by OLS and obtain the
Durbin–Watson statistic by using estat dwatson; see [R] regress postestimation time series.

. use http://www.stata-press.com/data/r14/qsales

. regress csales isales

Source SS df MS Number of obs = 20
F(1, 18) = 14888.15

Model 110.256901 1 110.256901 Prob > F = 0.0000
Residual .133302302 18 .007405683 R-squared = 0.9988

Adj R-squared = 0.9987
Total 110.390204 19 5.81001072 Root MSE = .08606

csales Coef. Std. Err. t P>|t| [95% Conf. Interval]

isales .1762828 .0014447 122.02 0.000 .1732475 .1793181
_cons -1.454753 .2141461 -6.79 0.000 -1.904657 -1.004849

. estat dwatson

Durbin-Watson d-statistic(2, 20) = .7347276

prais — Prais–Winsten and Cochrane–Orcutt regression 493

Because the Durbin–Watson statistic is far from 2 (the expected value under the null hypothesis of
no serial correlation) and well below the 5% lower limit of 1.2, we conclude that the disturbances are
serially correlated. (Upper and lower bounds for the d statistic can be found in most econometrics
texts; for example, Harvey [1990]. The bounds have been derived for only a limited combination of
regressors and observations.) To reinforce this conclusion, we use two other tests to test for serial
correlation in the error distribution.

. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 7.998 1 0.0047

H0: no serial correlation

. estat durbinalt

Durbin’s alternative test for autocorrelation

lags(p) chi2 df Prob > chi2

1 11.329 1 0.0008

H0: no serial correlation

estat bgodfrey reports the Breusch–Godfrey Lagrange multiplier test statistic, and estat
durbinalt reports the Durbin’s alternative test statistic. Both tests give a small p-value and thus
reject the null hypothesis of no serial correlation. These two tests are asymptotically equivalent when
testing for AR(1) process. See [R] regress postestimation time series if you are not familiar with
these two tests.

We correct for autocorrelation with the ssesearch option of prais to search for the value of ρ
that minimizes the sum-of-squared residuals of the Cochrane–Orcutt transformed equation. Normally,
the default Prais–Winsten transformations is used with such a small dataset, but the less-efficient
Cochrane–Orcutt transformation allows us to demonstrate an aspect of the estimator’s convergence.

. prais csales isales, corc ssesearch

Iteration 1: rho = 0.8944 , criterion = -.07298558
Iteration 2: rho = 0.8944 , criterion = -.07298558

(output omitted)
Iteration 15: rho = 0.9588 , criterion = -.07167037

Cochrane-Orcutt AR(1) regression -- SSE search estimates

Source SS df MS Number of obs = 19
F(1, 17) = 553.14

Model 2.33199178 1 2.33199178 Prob > F = 0.0000
Residual .071670369 17 .004215904 R-squared = 0.9702

Adj R-squared = 0.9684
Total 2.40366215 18 .133536786 Root MSE = .06493

csales Coef. Std. Err. t P>|t| [95% Conf. Interval]

isales .1605233 .0068253 23.52 0.000 .1461233 .1749234
_cons 1.738946 1.432674 1.21 0.241 -1.283732 4.761624

rho .9588209

Durbin-Watson statistic (original) 0.734728
Durbin-Watson statistic (transformed) 1.724419

494 prais — Prais–Winsten and Cochrane–Orcutt regression

We noted in Options that, with the default computation of ρ, the Cochrane–Orcutt method produces
an estimate of ρ that minimizes the sum-of-squared residuals—the same criterion as the ssesearch
option. Given that the two methods produce the same results, why would the search method ever be
preferred? It turns out that the back-and-forth iterations used by Cochrane–Orcutt may have difficulty
converging if the value of ρ is large. Using the same data, the Cochrane–Orcutt iterative procedure
requires more than 350 iterations to converge, and a higher tolerance must be specified to prevent
premature convergence:

. prais csales isales, corc tol(1e-9) iterate(500)

Iteration 0: rho = 0.0000
Iteration 1: rho = 0.6312
Iteration 2: rho = 0.6866

(output omitted)
Iteration 377: rho = 0.9588
Iteration 378: rho = 0.9588
Iteration 379: rho = 0.9588

Cochrane-Orcutt AR(1) regression -- iterated estimates

Source SS df MS Number of obs = 19
F(1, 17) = 553.14

Model 2.33199171 1 2.33199171 Prob > F = 0.0000
Residual .071670369 17 .004215904 R-squared = 0.9702

Adj R-squared = 0.9684
Total 2.40366208 18 .133536782 Root MSE = .06493

csales Coef. Std. Err. t P>|t| [95% Conf. Interval]

isales .1605233 .0068253 23.52 0.000 .1461233 .1749234
_cons 1.738946 1.432674 1.21 0.241 -1.283732 4.761625

rho .9588209

Durbin-Watson statistic (original) 0.734728
Durbin-Watson statistic (transformed) 1.724419

Once convergence is achieved, the two methods produce identical results.

prais — Prais–Winsten and Cochrane–Orcutt regression 495

Stored results
prais stores the following in e():
Scalars

e(N) number of observations
e(N gaps) number of gaps
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R2

e(r2 a) adjusted R2

e(F) F statistic
e(rmse) root mean squared error
e(ll) log likelihood
e(N clust) number of clusters
e(rho) autocorrelation parameter ρ
e(dw) Durbin–Watson d statistic for transformed regression
e(dw 0) Durbin–Watson d statistic of untransformed regression
e(rank) rank of e(V)
e(tol) target tolerance
e(max ic) maximum number of iterations
e(ic) number of iterations

Macros
e(cmd) prais
e(cmdline) command as typed
e(depvar) name of dependent variable
e(title) title in estimation output
e(clustvar) name of cluster variable
e(cons) noconstant or not reported
e(method) twostep, iterated, or SSE search
e(tranmeth) corc or prais
e(rhotype) method specified in rhotype() option
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) estimation sample

Methods and formulas
Consider the command ‘prais y x z’. The 0th iteration is obtained by estimating a, b, and c

from the standard linear regression:

yt = axt + bzt + c+ ut

An estimate of the correlation in the residuals is then obtained. By default, prais uses the auxiliary
regression:

ut = ρut−1 + et

This can be changed to any computation noted in the rhotype() option.

496 prais — Prais–Winsten and Cochrane–Orcutt regression

Next we apply a Cochrane–Orcutt transformation (1) for observations t = 2, . . . , n

yt − ρyt−1 = a(xt − ρxt−1) + b(zt − ρzt−1) + c(1− ρ) + vt (1)

and the transformation (1′) for t = 1√
1− ρ2y1 = a(

√
1− ρ2x1) + b(

√
1− ρ2z1) + c

√
1− ρ2 +

√
1− ρ2v1 (1′)

Thus the differences between the Cochrane–Orcutt and the Prais–Winsten methods are that the latter
uses (1′) in addition to (1), whereas the former uses only (1), necessarily decreasing the sample size
by one.

Equations (1) and (1′) are used to transform the data and obtain new estimates of a, b, and c.

When the twostep option is specified, the estimation process stops at this point and reports these
estimates. Under the default behavior of iterating to convergence, this process is repeated until the
change in the estimate of ρ is within a specified tolerance.

The new estimates are used to produce fitted values

ŷt = âxt + b̂zt + ĉ

and then ρ is reestimated using, by default, the regression defined by

yt − ŷt = ρ(yt−1 − ŷt−1) + ut (2)

We then reestimate (1) by using the new estimate of ρ and continue to iterate between (1) and (2)
until the estimate of ρ converges.

Convergence is declared after iterate() iterations or when the absolute difference in the estimated
correlation between two iterations is less than tol(); see [R] maximize. Sargan (1964) has shown
that this process will always converge.

Under the ssesearch option, a combined quadratic and bisection search using golden sections
searches for the value of ρ that minimizes the sum-of-squared residuals from the transformed equation.
The transformation may be either the Cochrane–Orcutt (1 only) or the Prais–Winsten (1 and 1′).

All reported statistics are based on the ρ-transformed variables, and ρ is assumed to be estimated
without error. See Judge et al. (1985) for details.

The Durbin–Watson d statistic reported by prais and estat dwatson is

d =

n−1∑
j=1

(uj+1 − uj)2

n∑
j=1

u2
j

where uj represents the residual of the jth observation.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Introduction and Methods and formulas.

prais — Prais–Winsten and Cochrane–Orcutt regression 497

All estimates from prais are conditional on the estimated value of ρ. Robust variance estimates here
are robust only to heteroskedasticity and are not generally robust to misspecification of the functional
form or omitted variables. The estimation of the functional form is intertwined with the estimation
of ρ, and all estimates are conditional on ρ. Thus estimates cannot be robust to misspecification
of functional form. For these reasons, it is probably best to interpret vce(robust) in the spirit of
White’s original paper on estimation of heteroskedastic-consistent covariance matrices.

Acknowledgment

We thank Richard Dickens of the Centre for Economic Performance at the London School of
Economics and Political Science for testing and assistance with an early version of this command.

� �
Sigbert Jon Prais (1928–2014) was born in Frankfurt and moved to Britain in 1934 as a refugee.
After earning degrees at the universities of Birmingham and Cambridge and serving in various
posts in research and industry, he settled at the National Institute of Economic and Social
Research. Prais’s interests extended widely across economics, including studies of the influence
of education on economic progress.

Christopher Blake Winsten (1923–2005) was born in Welwyn Garden City, England; the son
of the writer Stephen Winsten and the painter and sculptress Clare Blake. He was educated
at the University of Cambridge and worked with the Cowles Commission at the University of
Chicago and at the universities of Oxford, London (Imperial College) and Essex, making many
contributions to economics and statistics, including the Prais–Winsten transformation and joint
authorship of a celebrated monograph on transportation economics.

Donald Cochrane (1917–1983) was an Australian economist and econometrician. He was born
in Melbourne and earned degrees at Melbourne and Cambridge. After wartime service in the
Royal Australian Air Force, he held chairs at Melbourne and Monash, being active also in work
for various international organizations and national committees.

Guy Henderson Orcutt (1917–2006) was born in Michigan and earned degrees in physics and
economics at the University of Michigan. He worked at Harvard, the University of Wisconsin,
and Yale. He contributed to econometrics and economics in several fields, most distinctively in
developing microanalytical models of economic behavior.� �

References
Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Cochrane, D., and G. H. Orcutt. 1949. Application of least squares regression to relationships containing auto-correlated
error terms. Journal of the American Statistical Association 44: 32–61.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

Durbin, J., and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I. Biometrika 37:
409–428.

. 1951. Testing for serial correlation in least squares regression. II. Biometrika 38: 159–177.

Hardin, J. W. 1995. sts10: Prais–Winsten regression. Stata Technical Bulletin 25: 26–29. Reprinted in Stata Technical
Bulletin Reprints, vol. 5, pp. 234–237. College Station, TX: Stata Press.

Harvey, A. C. 1990. The Econometric Analysis of Time Series. 2nd ed. Cambridge, MA: MIT Press.

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/eie.html
http://www.stata.com/products/stb/journals/stb25.pdf

498 prais — Prais–Winsten and Cochrane–Orcutt regression

Hildreth, C., and J. Y. Lu. 1960. Demand relations with autocorrelated disturbances. Reprinted in Agricultural
Experiment Station Technical Bulletin, No. 276. East Lansing, MI: Michigan State University Press.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. 1985. The Theory and Practice of Econometrics.
2nd ed. New York: Wiley.

King, M. L., and D. E. A. Giles, ed. 1987. Specification Analysis in the Linear Model: Essays in Honor of Donald
Cochrane. London: Routledge & Kegan Paul.

Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press.

Prais, S. J., and C. B. Winsten. 1954. Trend estimators and serial correlation. Working paper 383, Cowles Commission.
http://cowles.econ.yale.edu/P/ccdp/st/s-0383.pdf.

Sargan, J. D. 1964. Wages and prices in the United Kingdom: A study in econometric methodology. In Econometric
Analysis for National Economic Planning, ed. P. E. Hart, G. Mills, and J. K. Whitaker, 25–64. London: Butterworths.

Theil, H. 1971. Principles of Econometrics. New York: Wiley.

White, H. L., Jr. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Econometrica 48: 817–838.

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.

Zellner, A. 1990. Guy H. Orcutt: Contributions to economic statistics. Journal of Economic Behavior and Organization
14: 43–51.

Also see
[TS] prais postestimation — Postestimation tools for prais

[TS] tsset — Declare data to be time-series data

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] mswitch — Markov-switching regression models

[R] regress — Linear regression

[R] regress postestimation time series — Postestimation tools for regress with time series

[U] 20 Estimation and postestimation commands

http://cowles.econ.yale.edu/P/ccdp/st/s-0383.pdf
http://www.stata.com/bookstore/ie.html

Title

prais postestimation — Postestimation tools for prais

Postestimation commands predict margins Also see

Postestimation commands
The following standard postestimation commands are available after prais:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

499

500 prais postestimation — Postestimation tools for prais

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the fitted values—the prediction of xjb for the specified equation. This is
the linear predictor from the fitted regression model; it does not apply the estimate of ρ to prior
residuals.

stdp calculates the standard error of the prediction for the specified equation, that is, the standard
error of the predicted expected value or mean for the observation’s covariate pattern. The standard
error of the prediction is also referred to as the standard error of the fitted value.

As computed for prais, this is strictly the standard error from the variance in the estimates of
the parameters of the linear model and assumes that ρ is estimated without error.

residuals calculates the residuals from the linear prediction.

prais postestimation — Postestimation tools for prais 501

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
options

]
statistic Description

xb linear prediction; the default
stdp not allowed with margins

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[TS] prais — Prais–Winsten and Cochrane–Orcutt regression

[U] 20 Estimation and postestimation commands

Title

psdensity — Parametric spectral density estimation after arima, arfima, and ucm

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

psdensity estimates the spectral density of a stationary process using the parameters of a previously
estimated parametric model.

psdensity works after arfima, arima, and ucm; see [TS] arfima, [TS] arima, and [TS] ucm.

Quick start
Obtain spectral density values spden and corresponding frequencies sfreq

psdensity spden sfreq

Obtain power spectrum values pspec and corresponding frequencies pfreq

psdensity pspec pfreq, pspectrum

As above, but limit the frequency range to between 0 and 1
psdensity pspec pfreq, pspectrum range(0 1)

After ucm, obtain spectral density values for the second stochastic cycle cpden and corresponding
frequencies cfreq

psdensity cpden cfreq, cycle(2)

Menu
Statistics > Time series > Postestimation > Parametric spectral density

502

psdensity — Parametric spectral density estimation after arima, arfima, and ucm 503

Syntax
psdensity

[
type

]
newvarsd newvarf

[
if
] [

in
] [

, options
]

where newvarsd is the name of the new variable that will contain the estimated spectral density and
newvarf is the name of the new variable that will contain the frequencies at which the spectral density
estimate is computed.

options Description

pspectrum estimate the power spectrum rather than the spectral density
range(a b) limit the frequency range to [a, b)
cycle(#) estimate the spectral density from the specified stochastic cycle; only allowed

after ucm
smemory estimate the spectral density of the short-memory component of the ARFIMA

process; only allowed after arfima

Options

pspectrum causes psdensity to estimate the power spectrum rather than the spectral density. The
power spectrum is equal to the spectral density times the variance of the process.

range(a b) limits the frequency range. By default, the spectral density is computed over [0, π).
Specifying range(a b) causes the spectral density to be computed over [a, b). We require that
0 ≤ a < b < π.

cycle(#) causes psdensity to estimate the spectral density from the specified stochastic cycle after
ucm. By default, the spectral density from the first stochastic cycle is estimated. cycle(#) must
specify an integer that corresponds to a cycle in the model fit by ucm.

smemory causes psdensity to ignore the ARFIMA fractional integration parameter. The spectral
density computed is for the short-memory ARMA component of the model.

Remarks and examples
Remarks are presented under the following headings:

The frequency-domain approach to time series
Some ARMA examples

The frequency-domain approach to time series

A stationary process can be decomposed into random components that occur at the frequencies
ω ∈ [0, π]. The spectral density of a stationary process describes the relative importance of these
random components. psdensity uses the estimated parameters of a parametric model to estimate
the spectral density of a stationary process.

We need some concepts from the frequency-domain approach to time-series analysis to interpret
estimated spectral densities. Here we provide a simple, intuitive explanation. More technical presen-
tations can be found in Priestley (1981), Harvey (1989, 1993), Hamilton (1994), Fuller (1996), and
Wei (2006).

504 psdensity — Parametric spectral density estimation after arima, arfima, and ucm

In the time domain, the dependent variable evolves over time because of random shocks. The
autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its variance and
dependence structure, and the autocorrelations ρj , j ∈ {1, 2, . . . ,∞}, provide a scale-free measure
of its dependence structure. The autocorrelation at lag j specifies whether realizations at time t and
realizations at time t− j are positively related, unrelated, or negatively related.

In the frequency domain, the dependent variable is generated by an infinite number of random
components that occur at the frequencies ω ∈ [0, π]. The spectral density specifies the relative
importance of these random components. The area under the spectral density in the interval (ω, ω+dω)
is the fraction of the variance of the process than can be attributed to the random components that
occur at the frequencies in the interval (ω, ω + dω).

The spectral density and the autocorrelations provide the same information about the dependence
structure, albeit in different domains. The spectral density can be written as a weighted average of
the autocorrelations of yt, and it can be inverted to retrieve the autocorrelations as a function of the
spectral density.

Like autocorrelations, the spectral density is normalized by γ0, the variance of yt. Multiplying the
spectral density by γ0 yields the power spectrum of yt, which changes with the units of yt.

A peak in the spectral density around frequency ω implies that the random components around ω
make an important contribution to the variance of yt.

A random variable primarily generated by low-frequency components will tend to have more runs
above or below its mean than an independent and identically distributed (i.i.d.) random variable, and
its plot may look smoother than the plot of the i.i.d. variable. A random variable primarily generated
by high-frequency components will tend to have fewer runs above or below its mean than an i.i.d.
random variable, and its plot may look more jagged than the plot of the i.i.d. variable.

Technical note

A more formal specification of the spectral density allows us to be more specific about how the
spectral density specifies the relative importance of the random components.

If yt is a covariance-stationary process with absolutely summable autocovariances, its spectrum is
given by

gy(ω) =
1

2π
γ0 +

1

π

∞∑
k=1

γk cos(ωk) (1)

where gy(ω) is the spectrum of yt at frequency ω and γk is the kth autocovariance of yt. Taking
the inverse Fourier transform of each side of (1) yields

γk =

∫ π

−π
gy(ω)eiωkdω (2)

where i is the imaginary number i =
√
−1.

Evaluating (2) at k = 0 yields

γ0 =

∫ π

−π
gy(ω)dω

psdensity — Parametric spectral density estimation after arima, arfima, and ucm 505

which means that the variance of yt can be decomposed in terms of the spectrum gy(ω). In particular,
gy(ω)dω is the contribution to the variance of yt attributable to the random components in the interval
(ω, ω + dω).

The spectrum depends on the units in which yt is measured, because it depends on the γ0. Dividing
both sides of (1) by γ0 gives us the scale-free spectral density of yt:

fy(ω) =
1

2π
+

1

π

∞∑
k=1

ρk cos(ωk)

By construction, ∫ π

−π
fy(ω)dω = 1

so fy(ω)dω is the fraction of the variance of yt attributable to the random components in the interval
(ω, ω + dω).

Some ARMA examples

In this section, we estimate and interpret the spectral densities implied by the estimated ARMA
parameters. The examples illustrate some of the essential relationships between covariance-stationary
processes, the parameters of ARMA models, and the spectral densities implied by the ARMA-model
parameters.

See [TS] ucm for a discussion of unobserved-components models and the stochastic-cycle model
derived by Harvey (1989) for stationary processes. The stochastic-cycle model has a different pa-
rameterization of the spectral density, and it tends to produce spectral densities that look more like
probability densities than ARMA models. See Remarks and examples in [TS] ucm for an introduction
to these models, some examples, and some comparisons between the stochastic-cycle model and
ARMA models.

506 psdensity — Parametric spectral density estimation after arima, arfima, and ucm

Example 1

Let’s consider the changes in the number of manufacturing employees in the United States, which
we plot below.

. use http://www.stata-press.com/data/r14/manemp2
(FRED data: Number of manufacturing employees in U.S.)

. tsline D.manemp, yline(-0.206)

−
5

0
5

C
h

a
n

g
e

 i
n

 n
u

m
b

e
r

o
f

m
fg

.
e

m
p

lo
y
e

e
s
,

D

1950m1 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1
Month

We added a horizontal line at the sample mean of −0.0206 to highlight that there appear to be
more runs above or below the mean than we would expect in data generated by an i.i.d. process.

As a first pass at modeling this dependence, we use arima to estimate the parameters of a first-order
autoregressive (AR(1)) model. Formally, the AR(1) model is given by

yt = αyt−1 + εt

where yt is the dependent variable, α is the autoregressive coefficient, and εt is an i.i.d. error term.
See [TS] arima for an introduction to ARMA modeling and the arima command.

psdensity — Parametric spectral density estimation after arima, arfima, and ucm 507

. arima D.manemp, ar(1) noconstant

(setting optimization to BHHH)
Iteration 0: log likelihood = -870.64844
Iteration 1: log likelihood = -870.64794
Iteration 2: log likelihood = -870.64789
Iteration 3: log likelihood = -870.64787
Iteration 4: log likelihood = -870.64786
(switching optimization to BFGS)
Iteration 5: log likelihood = -870.64786
Iteration 6: log likelihood = -870.64786

ARIMA regression

Sample: 1950m2 - 2011m2 Number of obs = 733
Wald chi2(1) = 730.51

Log likelihood = -870.6479 Prob > chi2 = 0.0000

OPG
D.manemp Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. .5179561 .0191638 27.03 0.000 .4803959 .5555164

/sigma .7934554 .0080636 98.40 0.000 .777651 .8092598

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The statistically significant estimate of 0.518 for the autoregressive coefficient indicates that there
is an important amount of positive autocorrelation in this series.

The spectral density of a covariance-stationary process is symmetric around 0. Following convention,
psdensity estimates the spectral density over the interval [0, π) at the points given in Methods and
formulas.

Now we use psdensity to estimate the spectral density of the process implied by the estimated
ARMA parameters. We specify the names of two new variables in the call to psdensity. The first
new variable will contain the estimated spectral density. The second new variable will contain the
frequencies at which the spectral density is estimated.

508 psdensity — Parametric spectral density estimation after arima, arfima, and ucm

. psdensity psden1 omega

. line psden1 omega

0
.1

.2
.3

.4
.5

A
R

M
A

s
p

e
c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

The above graph is typical of a spectral density of an AR(1) process with a positive coefficient. The
curve is highest at frequency 0, and it tapers off toward zero or a positive asymptote. The estimated
spectral density is telling us that the low-frequency random components are the most important random
components of an AR(1) process with a positive autoregressive coefficient.

The closer the α is to 1, the more important are the low-frequency components relative to the
high-frequency components. To illustrate this point, we plot the spectral densities implied by AR(1)
models with α = 0.1 and α = 0.9.

.8
.9

1
1

.1
1

.2
S

p
e

c
tr

a
l
D

e
n

s
it
y
 (

α
=

.1
)

0 1 2 3
Frequency

0
2

0
4

0
6

0
8

0
1

0
0

S
p

e
c
tr

a
l
D

e
n

s
it
y
 (

α
=

.9
)

0 1 2 3
Frequency

psdensity — Parametric spectral density estimation after arima, arfima, and ucm 509

As α gets closer to 1, the plot of the spectral density gets closer to being a spike at frequency 0,
implying that only the lowest-frequency components are important.

Example 2

Now let’s consider a dataset for which the estimated coefficient from an AR(1) model is negative.
Below we plot the changes in initial claims for unemployment insurance in the United States.

. use http://www.stata-press.com/data/r14/icsa1, clear

. tsline D.icsa, yline(0.08)

−
2

0
0

−
1

0
0

0
1

0
0

2
0

0
C

h
a

n
g

e
 i
n

 i
n

it
ia

l
c
la

im
s
,

D

01jan1970 01jan1980 01jan1990 01jan2000 01jan2010
Date

The plot looks a little more jagged than we would expect from an i.i.d. process, but it is hard to
tell. Below we estimate the AR(1) coefficient.

. arima D.icsa, ar(1) noconstant

(setting optimization to BHHH)
Iteration 0: log likelihood = -9934.0659
Iteration 1: log likelihood = -9934.0657
Iteration 2: log likelihood = -9934.0657

ARIMA regression

Sample: 14jan1967 - 19feb2011 Number of obs = 2302
Wald chi2(1) = 666.06

Log likelihood = -9934.066 Prob > chi2 = 0.0000

OPG
D.icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. -.2756024 .0106789 -25.81 0.000 -.2965326 -.2546722

/sigma 18.10988 .1176556 153.92 0.000 17.87928 18.34048

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimated coefficient is negative and statistically significant.

510 psdensity — Parametric spectral density estimation after arima, arfima, and ucm

The spectral density implied by the estimated parameters is

. psdensity psden2 omega2

. line psden2 omega2

.1
.1

5
.2

.2
5

.3
A

R
M

A

s
p

e
c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

The above graph is typical of a spectral density of an AR(1) process with a negative coefficient.
The curve is lowest at frequency 0, and it monotonically increases to its highest point, which occurs
when the frequency is π.

When the coefficient of an AR(1) model is negative, the high-frequency random components are
the most important random components of the process. The closer the α is to −1, the more important
are the high-frequency components relative to the low-frequency components. To illustrate this point,
we plot the spectral densities implied by AR(1) models with α = −0.1, and α = −0.9.

.8
.9

1
1

.1
1

.2
S

p
e

c
tr

a
l
D

e
n

s
it
y
 (

α
=

−
.1

)

0 1 2 3
Frequency

0
2

0
4

0
6

0
8

0
1

0
0

S
p

e
c
tr

a
l
D

e
n

s
it
y
 (

α
=

−
.9

)

0 1 2 3
Frequency

psdensity — Parametric spectral density estimation after arima, arfima, and ucm 511

As α gets closer to −1, the plot of the spectral density shifts toward becoming a spike at frequency
π, implying that only the highest-frequency components are important.

For examples of psdensity after arfima and ucm, see [TS] arfima and [TS] ucm.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Spectral density after arima or arfima
Spectral density after ucm

Introduction

The spectral density f(ω) is estimated at the values ω ∈ {ω1, ω2, . . . , ωN} using one of the
formulas given below. Given a sample of size N , after accounting for any if or in restrictions, the
N values of ω are given by ωi = π(i− 1)/(N − 1) for i ∈ {1, 2, . . . , N}.

In the rare case in which the dataset in memory has insufficient observations for the desired
resolution of the estimated spectral density, you may use tsappend or set obs (see [TS] tsappend
or [D] obs) to increase the number of observations in the current dataset.

You may use an if restriction or an in restriction to restrict the observations to handle panel data
or to compute the estimates for a subset of the observations.

Spectral density after arima or arfima

Let φk and θk denote the p autoregressive and q moving-average parameters of an ARMA model,
respectively. Box, Jenkins, and Reinsel (2008) show that the spectral density implied by the ARMA
parameters is

fARMA(ω;φ, θ, σ2
ε , γ0) =

σ2
ε

2πγ0

|1 + θ1e
−iω + θ2e

−i2ω + · · ·+ θqe
−iqω|2

|1− φ1e−iω − φ2e−i2ω − · · · − φpe−ipω|2

where ω ∈ [0, π] and σ2
ε is the variance of the idiosyncratic error and γ0 is the variance of the

dependent variable. We estimate γ0 using the arima parameter estimates.

The spectral density for the ARFIMA model is

fARFIMA(ω;φ, θ, d, σ2
ε , γ0) = |1− eiω|−2dfARMA(ω;φ, θ, σ2

ε)

where d, −1/2 < d < 1/2, is the fractional integration parameter. The spectral density goes to infinity
as the frequency approaches 0 for 0 < d < 1/2, and it is zero at frequency 0 for −1/2 < d < 0.

The smemory option causes psdensity to perform the estimation with d = 0, which is equivalent
to estimating the spectral density of the fractionally differenced series.

The power spectrum omits scaling by γ0.

512 psdensity — Parametric spectral density estimation after arima, arfima, and ucm

Spectral density after ucm

The spectral density of an order-k stochastic cycle with frequency λ and damping ρ is (Trimbur 2006)

f(ω; ρ, λ, σ2
κ) =

{
(1− ρ2)2k−1

σ2
κ

∑k−1
i=0

(
k−1
i

)2
ρ2i

}
×

∑k
j=0

∑k
i=0(−1)j+i

(
k
j

)(
k
i

)
ρj+i cosλ(j − i) cosω(j − i)

2π {1 + 4ρ2 cos2 λ+ ρ4 − 4ρ(1 + ρ2) cosλ cosω + 2ρ2 cos 2ω}k

where σ2
κ is the variance of the cycle error term.

The variance of the cycle is

σ2
ω = σ2

κ

∑k−1
i=0

(
k−1
i

)2
ρ2i

(1− ρ2)2k−1

and the power spectrum omits scaling by σ2
ω .

References
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.

Hoboken, NJ: Wiley.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1993. Time Series Models. 2nd ed. Cambridge, MA: MIT Press.

Priestley, M. B. 1981. Spectral Analysis and Time Series. London: Academic Press.

Trimbur, T. M. 2006. Properties of higher order stochastic cycles. Journal of Time Series Analysis 27: 1–17.

Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

Also see
[TS] arfima — Autoregressive fractionally integrated moving-average models

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] ucm — Unobserved-components model

Title

rolling — Rolling-window and recursive estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
References Also see

Description

rolling executes a command on each of a series of windows of observations and stores the
results. rolling can perform what are commonly called rolling regressions, recursive regressions,
and reverse recursive regressions. However, rolling is not limited to just linear regression analysis:
any command that stores results in e() or r() can be used with rolling.

Quick start
Fit an AR(1) model for y with a 20-period rolling window using tsset data

rolling, window(20): arima y, ar(1)

Recursive rolling window estimation with a fixed starting period
rolling, window(20) recursive: arima y, ar(1)

As above, but specify that estimation start in 1990 and end in 2011
rolling, window(20) recursive start(1990) end(2011): arima y, ar(1)

Reverse recursive rolling window estimation with the last period fixed
rolling, window(20) rrecursive start(1990) end(2011): arima y, ar(1)

Save results from a 20-period rolling window estimation to new dataset mydata.dta
rolling, window(20) saving(mydata): arima y, ar(1)

Note: Any command that accepts the rolling prefix may be substituted for arima above.

Menu
Statistics > Time series > Rolling-window and recursive estimation

513

514 rolling — Rolling-window and recursive estimation

Syntax
rolling

[
exp list

] [
if
] [

in
] [

, options
]
: command

options Description

Main
∗window(#) number of consecutive data points in each sample
recursive use recursive samples
rrecursive use reverse recursive samples

Options

clear replace data in memory with results
saving(filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications
stepsize(#) number of periods to advance window
start(time constant) period at which rolling is to start
end(time constant) period at which rolling is to end
keep(varname

[
, start

]
) save varname along with results; optionally, use value at

left edge of window

Reporting

nodots suppress replication dots
noisily display any output from command
trace trace command’s execution

Advanced

reject(exp) identify invalid results

∗ window(#) is required.
You must tsset your data before using rolling; see [TS] tsset.
command is any command that follows standard Stata syntax and allows the if qualifier. The by prefix

cannot be part of command.
aweights are allowed in command if command accepts aweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and
[]

, which indicate optional arguments.

rolling — Rolling-window and recursive estimation 515

Options

� � �
Main �

window(#) defines the window size used each time command is executed. The window size refers to
calendar periods, not the number of observations. If there are missing data (for example, because
of weekends), the actual number of observations used by command may be less than window(#).
window(#) is required.

recursive specifies that a recursive analysis be done. The starting period is held fixed, the ending
period advances, and the window size grows.

rrecursive specifies that a reverse recursive analysis be done. Here the ending period is held fixed,
the starting period advances, and the window size shrinks.

� � �
Options �

clear specifies that Stata replace the data in memory with the collected statistics even though the
current data in memory have not been saved to disk.

saving(filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the window replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals.
By default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
in conjunction with saving() only when command takes a long time for each replication. This
will allow recovery of partial results should your computer crash. See [P] postfile.

stepsize(#) specifies the number of periods the window is to be advanced each time command is
executed.

start(time constant) specifies the date on which rolling is to start. start() may be specified
as an integer or as a date literal.

end(time constant) specifies the date on which rolling is to end. end() may be specified as an
integer or as a date literal.

keep(varname
[
, start

]
) specifies a variable to be posted along with the results. The value posted

is the value that corresponds to the right edge of the window. Specifying the start() option
requests that the value corresponding to the left edge of the window be posted instead. This option
is often used to record calendar dates.

� � �
Reporting �

nodots suppresses display of the replication dot for each window on which command is executed.
By default, one dot character is printed for each window. A red ‘x’ is printed if command returns
with an error or if any value in exp list is missing.

noisily causes the output of command to be displayed for each window on which command is
executed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
and nodots options.

� � �
Advanced �

reject(exp) identifies an expression that indicates when results should be rejected. When exp is
true, the saved statistics are set to missing values.

516 rolling — Rolling-window and recursive estimation

Remarks and examples
rolling is a moving sampler that collects statistics from command after executing command on

subsets of the data in memory. Typing

. rolling exp˙list, window(50) clear: command

executes command on sample windows of span 50. That is, rolling will first execute command by
using periods 1–50 of the dataset, and then using periods 2–51, 3–52, and so on.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with rolling, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions
are given, exp list assumes a default of b if command stores results in e() and of all the scalars if
command stores results in r() and not in e(). Otherwise, not specifying an expression in exp list
is an error.

Suppose that you have data collected at 100 consecutive points in time, numbered 1–100, and you
wish to perform a rolling regression with a window size of 20 periods. Typing

. rolling _b, window(20) clear: regress depvar indepvar

causes Stata to regress depvar on indepvar using periods 1–20, store the regression coefficients
(b), run the regression using periods 2–21, and so on, finishing with a regression using periods
81–100 (the last 20 periods).

The stepsize() option specifies how far ahead the window is moved each time. For example,
if you specify step(2), then command is executed on periods 1–20, and then 3–22, 5–24, etc. By
default, rolling replaces the dataset in memory with the computed statistics unless the saving()
option is specified, in which case the computed statistics are saved in the filename specified. If the
dataset in memory has been changed since it was last saved and you do not specify saving(), you
must use clear.

rolling can also perform recursive and reverse recursive analyses. In a recursive analysis, the
starting date is held fixed, and the window size grows as the ending date is advanced. In a reverse
recursive analysis, the ending date is held fixed, and the window size shrinks as the starting date is
advanced.

Example 1

We have data on the daily returns to IBM stock (ibm), the S&P 500 (spx), and short-term interest
rates (irx), and we want to create a series containing the beta of IBM by using the previous 200 trading
days at each date. We will also record the standard errors, so that we can obtain 95% confidence
intervals for the betas. See, for example, Stock and Watson (2011, 118) for more information on
estimating betas. We type

. use http://www.stata-press.com/data/r14/ibm
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494

delta: 1 unit

. generate ibmadj = ibm - irx
(1 missing value generated)

. generate spxadj = spx - irx
(1 missing value generated)

rolling — Rolling-window and recursive estimation 517

. rolling _b _se, window(200) saving(betas, replace) keep(date):
> regress ibmadj spxadj
(running regress on estimation sample)

Rolling replications (295)
1 2 3 4 5

.. 50

.. 100

.. 150

.. 200

.. 250

...
file betas.dta saved

Our dataset has both a time variable t that runs consecutively and a date variable date that
measures the calendar date and therefore has gaps at weekends and holidays. Had we used the date
variable as our time variable, rolling would have used windows consisting of 200 calendar days
instead of 200 trading days, and each window would not have exactly 200 observations. We used
the keep(date) option so that we could refer to the date variable when working with the results
dataset.

We can list a portion of the dataset created by rolling to see what it contains:

. use betas, clear
(rolling: regress)

. sort date

. list in 1/3, abbreviate(10) table

start end date _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 16oct2003 1.043422 -.0181504 .0658531 .0748295
2. 2 201 17oct2003 1.039024 -.0126876 .0656893 .074609
3. 3 202 20oct2003 1.038371 -.0235616 .0654591 .0743851

The variables start and end indicate the first and last observations used each time that rolling
called regress, and the date variable contains the calendar date corresponding the period represented
by end. The remaining variables are the estimated coefficients and standard errors from the regression.
In our example , b spxadj contains the estimated betas, and b cons contains the estimated alphas.
The variables se spxadj and se cons have the corresponding standard errors.

518 rolling — Rolling-window and recursive estimation

Finally, we compute the confidence intervals for the betas and examine how they have changed
over time:

. generate lower = _b_spxadj - 1.96*_se_spxadj

. generate upper = _b_spxadj + 1.96*_se_spxadj

. twoway (line _b_spxadj date) (rline lower upper date) if date>=td(1oct2003),
> ytitle("Beta")

.6
.8

1
1

.2
B

e
ta

01oct2003 01jan2004 01apr2004 01jul2004 01oct2004 01jan2005
date

_b[spxadj] lower/upper

As 2004 progressed, IBM’s stock returns were less influenced by returns in the broader market.
Beginning in June of 2004, IBM’s beta became significantly different from unity at the 95% confidence
level, as indicated by the fact that the confidence interval does not contain one from then onward.

In addition to rolling-window analyses, rolling can also perform recursive ones. Suppose again
that you have data collected at 100 consecutive points in time, and now you type

. rolling _b, window(20) recursive clear: regress depvar indepvar

Stata will first regress depvar on indepvar by using observations 1–20, store the coefficients, run
the regression using observations 1–21, observations 1–22, and so on, finishing with a regression
using all 100 observations. Unlike a rolling regression, in which case the number of observations is
held constant and the starting and ending points are shifted, a recursive regression holds the starting
point fixed and increases the number of observations. Recursive analyses are often used in forecasting
situations. As time goes by, more information becomes available that can be used in making forecasts.
See Kmenta (1997, 423–424).

Example 2

Using the same dataset, we type
. use http://www.stata-press.com/data/r14/ibm, clear
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494

delta: 1 unit

. generate ibmadj = ibm - irx
(1 missing value generated)

rolling — Rolling-window and recursive estimation 519

. generate spxadj = spx - irx
(1 missing value generated)

. rolling _b _se, recursive window(200) clear: regress ibmadj spxadj
(output omitted)

. list in 1/3, abbrev(10)

start end _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 1.043422 -.0181504 .0658531 .0748295
2. 1 201 1.039024 -.0126876 .0656893 .074609
3. 1 202 1.037687 -.016475 .0655896 .0743481

Here the starting period remains fixed and the window grows larger.

In a reverse recursive analysis, the ending date is held fixed, and the window size becomes smaller
as the starting date is advanced. For example, with a dataset that has observations numbered 1–100,
typing

. rolling _b, window(20) reverse recursive clear: regress depvar indepvar

creates a dataset in which the first observation has the results based on periods 1–100, the second
observation has the results based on 2–100, the third having 3–100, and so on, up to the last
observation having results based on periods 81–100 (the last 20 observations).

Example 3

Using the data on stock returns, we want to build a model in which we predict today’s IBM stock
return on the basis of yesterday’s returns on IBM and the S&P 500. That is, letting it and st denote
the returns to IBM and the S&P 500 on date t, we want to fit the regression model

it = β0 + β1it−1 + β2st−1 + εt

where εt is a regression error term, and then compute

ît+1 = β̂0 + β̂1it + β̂2st

We will use recursive regression because we suspect that the more data we have to fit the regression
model, the better the model will predict returns. We will use at least 20 periods in fitting the regression.

. use http://www.stata-press.com/data/r14/ibm, clear
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494
delta: 1 unit

One alternative would be to use rolling with the recursive option to fit the regressions, collect
the coefficients, and then compute the predicted values afterward. However, we will instead write a
short program that computes the forecasts automatically and then use rolling, recursive on that
program. The program must accept an if expression so that rolling can indicate to the program
which observations are to be used. Our program is

520 rolling — Rolling-window and recursive estimation

program myforecast, rclass

syntax [if]

regress ibm L.ibm L.spx ‘if’

// Find last time period of estimation sample and
// make forecast for period just after that
summ t if e(sample)
local last = r(max)
local fcast = _b[_cons] + _b[L.ibm]*ibm[‘last’] + ///

_b[L.spx]*spx[‘last’]
return scalar forecast = ‘fcast’
// Next period’s actual return
// Will return missing value for final period
return scalar actual = ibm[‘last’+1]

end

Now we call rolling:

. rolling actual=r(actual) forecast=r(forecast), recursive window(20): myforecast
(output omitted)

. corr actual forecast
(obs=474)

actual forecast

actual 1.0000
forecast -0.0957 1.0000

Our model does not work too well—the correlation between actual returns and our forecasts is
negative.

Stored results
rolling sets no r- or e-class macros. The results from the command used with rolling, depending

on the last window of data used, are available after rolling has finished.

Acknowledgment
We thank Christopher F. Baum of the Department of Economics at Boston College and author of

the Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to
Stata Programming for an earlier rolling regression command.

References
Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press.

Stock, J. H., and M. W. Watson. 2011. Introduction to Econometrics. 3rd ed. Boston: Addison–Wesley.

Also see
[D] statsby — Collect statistics for a command across a by list

[R] stored results — Stored results

http://www.stata-press.com/books/imeus.html
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/isp.html
http://www.stata.com/bookstore/ite.html

Title

sspace — State-space models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

sspace estimates the parameters of linear state-space models by maximum likelihood. Linear
state-space models are very flexible and many linear time-series models can be written as linear
state-space models.

sspace uses two forms of the Kalman filter to recursively obtain conditional means and variances
of both the unobserved states and the measured dependent variables that are used to compute the
likelihood.

The covariance-form syntax and the error-form syntax of sspace reflect the two different forms
in which researchers specify state-space models. Choose the syntax that is easier for you; the two
forms are isomorphic.

Quick start
AR(1) model for y with unobserved state u modeled as lag of itself in the state equation, and requiring

the coefficient of u constrained to 1 in the observation equation
constraint 1 [y]u = 1
sspace (u L.u, state noconstant) (y u, noerror), constraints(1)

Dynamic-factor model of the first difference of y1, y2, and y3 as linear functions of an unobserved
factor that follows a first-order autoregressive process

constraint 1 [y1]u = 1
sspace (u L.u, state noconstant) (d.y1 u) (d.y2 u) (d.y3 u), nolog

Menu
Statistics > Multivariate time series > State-space models

521

522 sspace — State-space models

Syntax
Covariance-form syntax

sspace state ceq
[

state ceq . . . state ceq
]

obs ceq
[

obs ceq . . . obs ceq
][

if
] [

in
] [

, options
]

where each state ceq is of the form

(statevar
[

lagged statevars
] [

indepvars
]
, state

[
noerror noconstant

]
)

and each obs ceq is of the form

(depvar
[

statevars
] [

indepvars
] [

, noerror noconstant
]
)

Error-form syntax

sspace state efeq
[

state efeq . . . state efeq
]

obs efeq
[

obs efeq . . . obs efeq
][

if
] [

in
] [

, options
]

where each state efeq is of the form

(statevar
[

lagged statevars
] [

indepvars
] [

state errors
]
, state

[
noconstant

]
)

and each obs efeq is of the form

(depvar
[

statevars
] [

indepvars
] [

obs errors
] [

, noconstant
]
)

statevar is the name of an unobserved state, not a variable. If there happens to be a variable of the
same name, the variable is ignored and plays no role in the estimation.

lagged statevars is a list of lagged statevars. Only first lags are allowed.

state errors is a list of state-equation errors that enter a state equation. Each state error has the form
e.statevar, where statevar is the name of a state in the model.

obs errors is a list of observation-equation errors that enter an equation for an observed variable.
Each error has the form e.depvar, where depvar is an observed dependent variable in the model.

equation-level options Description

Model

state specifies that the equation is a state equation
noerror specifies that there is no error term in the equation
noconstant suppresses the constant term from the equation

sspace — State-space models 523

options Description

Model

covstate(covform) specifies the covariance structure for the errors in the state variables
covobserved(covform) specifies the covariance structure for the errors in the observed

dependent variables
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

method(method) specify the method for calculating the log likelihood; seldom used

coeflegend display legend instead of statistics

covform Description

identity identity matrix; the default for error-form syntax
dscalar diagonal scalar matrix
diagonal diagonal matrix; the default for covariance-form syntax
unstructured symmetric, positive-definite matrix; not allowed with error-form

syntax

method Description

hybrid use the stationary Kalman filter and the De Jong diffuse Kalman
filter; the default

dejong use the stationary De Jong Kalman filter and the De Jong diffuse
Kalman filter

kdiffuse use the stationary Kalman filter and the nonstationary large-κ
diffuse Kalman filter; seldom used

You must tsset your data before using sspace; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

524 sspace — State-space models

Options
Equation-level options

� � �
Model �

state specifies that the equation is a state equation.

noerror specifies that there is no error term in the equation. noerror may not be specified in the
error-form syntax.

noconstant suppresses the constant term from the equation.

Options

� � �
Model �

covstate(covform) specifies the covariance structure for the state errors.

covstate(identity) specifies a covariance matrix equal to an identity matrix, and it is the
default for the error-form syntax.

covstate(dscalar) specifies a covariance matrix equal to σ2
state times an identity matrix.

covstate(diagonal) specifies a diagonal covariance matrix, and it is the default for the covariance-
form syntax.

covstate(unstructured) specifies a symmetric, positive-definite covariance matrix with pa-
rameters for all variances and covariances. covstate(unstructured) may not be specified
with the error-form syntax.

covobserved(covform) specifies the covariance structure for the observation errors.

covobserved(identity) specifies a covariance matrix equal to an identity matrix, and it is the
default for the error-form syntax.

covobserved(dscalar) specifies a covariance matrix equal to σ2
observed times an identity matrix.

covobserved(diagonal) specifies a diagonal covariance matrix, and it is the default for the
covariance-form syntax.

covobserved(unstructured) specifies a symmetric, positive-definite covariance matrix with
parameters for all variances and covariances. covobserved(unstructured) may not be
specified with the error-form syntax.

constraints(constraints); see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes sspace to use the observed information matrix estimator.

vce(robust) causes sspace to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] estimation options.

sspace — State-space models 525

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] maximize for all options except from(), and
see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the maximization process. from(b0) causes sspace
to begin the maximization algorithm with the values in b0. b0 must be a row vector; the number
of columns must equal the number of parameters in the model; and the values in b0 must be
in the same order as the parameters in e(b).

� � �
Advanced �

method(method) specifies how to compute the log likelihood. This option is seldom used.

method(hybrid), the default, uses the Kalman filter with model-based initial values for the states
when the model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter when
the model is nonstationary.

method(dejong) uses the Kalman filter with the De Jong (1988) method for estimating the initial
values for the states when the model is stationary and uses the De Jong (1988, 1991) diffuse
Kalman filter when the model is nonstationary.

method(kdiffuse) is a seldom used method that uses the Kalman filter with model-based initial
values for the states when the model is stationary and uses the large-κ diffuse Kalman filter
when the model is nonstationary.

The following option is available with sspace but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

Remarks are presented under the following headings:

An introduction to state-space models
Some stationary state-space models
Some nonstationary state-space models

An introduction to state-space models

Many linear time-series models can be written as linear state-space models, including vector
autoregressive moving-average (VARMA) models, dynamic-factor (DF) models, and structural time-
series (STS) models. The solutions to some stochastic dynamic-programming problems can also be
written in the form of linear state-space models. We can estimate the parameters of a linear state-
space model by maximum likelihood (ML). The Kalman filter or a diffuse Kalman filter is used
to write the likelihood function in prediction-error form, assuming normally distributed errors. The
quasi–maximum likelihood (QML) estimator, which drops the normality assumption, is consistent
and asymptotically normal when the model is stationary. Chang, Miller, and Park (2009) establish
consistency and asymptotic normality of the QML estimator for a class of nonstationary state-space
models. The QML estimator differs from the ML estimator only in the VCE; specify the vce(robust)
option to obtain the QML estimator.

526 sspace — State-space models

Hamilton (1994a, 1994b), Harvey (1989), and Brockwell and Davis (1991) provide good introduc-
tions to state-space models. Anderson and Moore’s (1979) text is a classic reference; they produced
many results used subsequently. Caines (1988) and Hannan and Deistler (1988) provide excellent,
more advanced, treatments.

sspace estimates linear state-space models with time-invariant coefficient matrices, which cover
the models listed above and many others. sspace can estimate parameters from state-space models
of the form

zt = Azt−1 + Bxt + Cεt

yt = Dzt + Fwt + Gνt

where

zt is an m× 1 vector of unobserved state variables;

xt is a kx × 1 vector of exogenous variables;

εt is a q × 1 vector of state-error terms, (q ≤ m);

yt is an n× 1 vector of observed endogenous variables;

wt is a kw × 1 vector of exogenous variables;

νt is an r × 1 vector of observation-error terms, (r ≤ n); and

A, B, C, D, F, and G are parameter matrices.

The equations for zt are known as the state equations, and the equations for yt are known as the
observation equations.

The error terms are assumed to be zero mean, normally distributed, serially uncorrelated, and
uncorrelated with each other;

εt ∼ N(0,Q)

νt ∼ N(0,R)

E[εtε
′
s] = 0 for all s 6= t

E[εtν
′
s] = 0 for all s and t

The state-space form is used to derive the log likelihood of the observed endogenous variables
conditional on their own past and any exogenous variables. When the model is stationary, a method
for recursively predicting the current values of the states and the endogenous variables, known as
the Kalman filter, is used to obtain the prediction error form of the log-likelihood function. When
the model is nonstationary, a diffuse Kalman filter is used. How the Kalman filter and the diffuse
Kalman filter initialize their recursive computations depends on the method() option; see Methods
and formulas.

The linear state-space models with time-invariant coefficient matrices defined above can be specified
in the covariance-form syntax and the error-form syntax. The covariance-form syntax requires that
C and G be selection matrices, but places no restrictions on Q or R. In contrast, the error-form
syntax places no restrictions C or G, but requires that Q and R be either diagonal, diagonal-scalar,
or identity matrices. Some models are more easily specified in the covariance-form syntax, while
others are more easily specified in the error-form syntax. Choose the syntax that is easiest for your
application.

sspace — State-space models 527

Some stationary state-space models

Example 1: An AR(1) model

Following Hamilton (1994b, 373–374), we can write the first-order autoregressive (AR(1)) model

yt − µ = α(yt−1 − µ) + εt

as a state-space model with the observation equation

yt = µ+ ut

and the state equation

ut = αut−1 + εt

where the unobserved state is ut = yt − µ.

Here we fit this model to data on the capacity utilization rate. The variable lncaputil contains
data on the natural log of the capacity utilization rate for the manufacturing sector of the U.S. economy.
We treat the series as first-difference stationary and fit its first-difference to an AR(1) process. Here
we estimate the parameters of the above state-space form of the AR(1) model:

. use http://www.stata-press.com/data/r14/manufac
(St. Louis Fed (FRED) manufacturing data)

. constraint 1 [D.lncaputil]u = 1

. sspace (u L.u, state noconstant) (D.lncaputil u, noerror), constraints(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 1515.8693
Iteration 1: log likelihood = 1516.4187

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 1516.44
Iteration 1: log likelihood = 1516.44

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(1) = 61.73

Log likelihood = 1516.44 Prob > chi2 = 0.0000
(1) [D.lncaputil]u = 1

OIM
lncaputil Coef. Std. Err. z P>|z| [95% Conf. Interval]

u
u

L1. .3523983 .0448539 7.86 0.000 .2644862 .4403104

D.lncaputil
u 1 (constrained)

_cons -.0003558 .0005781 -0.62 0.538 -.001489 .0007773

var(u) .0000622 4.18e-06 14.88 0.000 .000054 .0000704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

528 sspace — State-space models

The iteration log has three parts: the dots from the search for initial values, the log from finding
the maximum, and the log from a refining step. Here is a description of the logic behind each part:

1. The quality of the initial values affect the speed and robustness of the optimization algorithm.
sspace takes a few iterations in a nonlinear least-squares (NLS) algorithm to find good
initial values and reports a dot for each (NLS) iteration.

2. This iteration log is the standard method by which Stata reports the search for the maximum
likelihood estimates of the parameters in a nonlinear model.

3. Some of the parameters are transformed in the maximization process that sspace reports in
part 2. After a maximum candidate is found in part 2, sspace looks for a maximum in the
unconstrained space, checks that the Hessian of the log-likelihood function is of full rank,
and reports these iterations as the refining step.

The header in the output describes the estimation sample, reports the log-likelihood function at
the maximum, and gives the results of a Wald test against the null hypothesis that the coefficients
on all the independent variables, state variables, and lagged state variables are zero. In this example,
the null hypothesis that the coefficient on L1.u is zero is rejected at all conventional levels.

The estimation table reports results for the state equations, the observation equations, and the
variance–covariance parameters. The estimated autoregressive coefficient of 0.3524 indicates that there
is persistence in the first-differences of the log of the manufacturing rate. The estimated mean of the
differenced series is −0.0004, which is smaller in magnitude than its standard error, indicating that
there is no deterministic linear trend in the series.

Typing

. arima D.lncaputil, ar(1) technique(nr)
(output omitted)

produces nearly identical parameter estimates and standard errors for the mean and the autoregressive
parameter. Because sspace estimates the variance of the state error while arima estimates the
standard deviation, calculations are required to obtain the same results. The different parameterization
of the variance parameter can cause small numerical differences.

Technical note
In some situations, the second part of the iteration log terminates but the refining step never

converges. Only when the refining step converges does the maximization algorithm find interpretable
estimates. If the refining step iterates without convergence, the parameters of the specified model are
not identified by the data. (See Rothenberg [1971], Drukker and Wiggins [2004], and Davidson and
MacKinnon [1993, sec. 5.2] for discussions of identification.)

Example 2: An ARMA(1,1) model

Following Harvey (1993, 95–96), we can write a zero-mean, first-order, autoregressive moving-
average (ARMA(1,1)) model

yt = αyt−1 + θεt−1 + εt (1)

sspace — State-space models 529

as a state-space model with state equations

(
yt
θεt

)
=

(
α 1
0 0

)(
yt−1

θεt−1

)
+

(
1
θ

)
εt (2)

and observation equation

yt = (1 0)

(
yt
θεt

)
(3)

The unobserved states in this model are u1t = yt and u2t = θεt. We set the process mean to zero
because economic theory and the previous example suggest that we should do so. Below we estimate
the parameters in the state-space model by using the error-form syntax:

. constraint 2 [u1]L.u2 = 1

. constraint 3 [u1]e.u1 = 1

. constraint 4 [D.lncaputil]u1 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) (u2 e.u1, state noconstant)
> (D.lncaputil u1, noconstant), constraints(2/4) covstate(diagonal)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 1478.5361
Iteration 1: log likelihood = 1490.5202

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 1531.255
Iteration 1: log likelihood = 1531.255

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(2) = 333.84

Log likelihood = 1531.255 Prob > chi2 = 0.0000
(1) [u1]L.u2 = 1
(2) [u1]e.u1 = 1
(3) [D.lncaputil]u1 = 1

OIM
lncaputil Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1

L1. .8056815 .0522661 15.41 0.000 .7032418 .9081212

u2
L1. 1 (constrained)

e.u1 1 (constrained)

u2
e.u1 -.5188453 .0701985 -7.39 0.000 -.6564317 -.3812588

D.lncaputil
u1 1 (constrained)

var(u1) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

530 sspace — State-space models

The command in the above output specifies two state equations, one observation equation, and
two options. The first state equation defines u1t and the second defines u2t according to (2) above.
The observation equation defines the process for D.lncaputil according to the one specified in (3)
above. Several coefficients in (2) and (3) are set to 1, and constraints 2–4 place these restrictions on
the model.

The estimated coefficient on L.u1 in equation u1, 0.806, is the estimate of α in (2), which is the
autoregressive coefficient in the ARMA model in (1). The estimated coefficient on e.u1 in equation
u2, −0.519, is the estimate of θ, which is the moving-average term in the ARMA model in (1).

This example highlights a difference between the error-form syntax and the covariance-form syntax.
The error-form syntax used in this example includes only explicitly included errors. In contrast, the
covariance-form syntax includes an error term in each equation, unless the noerror option is specified.

The default for covstate() also differs between the error-form syntax and the covariance-
form syntax. Because the coefficients on the errors in the error-form syntax are frequently used to
estimate the standard deviation of the errors, covstate(identity) is the default for the error-
form syntax. In contrast, unit variances are less common in the covariance-form syntax, for which
covstate(diagonal) is the default. In this example, we specified covstate(diagonal) to estimate
a nonunitary variance for the state.

Typing
. arima D.lncaputil, noconstant ar(1) ma(1) technique(nr)

(output omitted)

produces nearly identical results. As in the AR(1) example above, arima estimates the standard deviation
of the error term, while sspace estimates the variance. Although they are theoretically equivalent,
the different parameterizations give rise to small numerical differences in the other parameters.

Example 3: A VAR(1) model

The variable lnhours contains data on the log of manufacturing hours, which we treat as first-
difference stationary. We have a theory in which the process driving the changes in the log utilization
rate affects the changes in the log of hours, but changes in the log hours do not affect changes in
the log utilization rate. In line with this theory, we estimate the parameters of a lower triangular,
first-order vector autoregressive (VAR(1)) process(

∆lncaputilt
∆lnhourst

)
=

(
α1 0
α2 α3

)(
∆lncaputilt−1

∆lnhourst−1

)
+

(
ε1t
ε2t

)
(4)

where ∆yt = yt − yt−1, εt = (ε1t, ε2t)
′ and Var(ε) = Σ. We can write this VAR(1) process as a

state-space model with state equations(
u1t

u2t

)
=

(
α1 0
α2 α3

)(
u1(t−1)

u2(t−1)

)
+

(
ε1t
ε2t

)
(5)

with Var(ε) = Σ and observation equations(
∆lncaputil

∆lnhours

)
=

(
u1t

u2t

)
Below we estimate the parameters of the state-space model:

sspace — State-space models 531

. constraint 5 [D.lncaputil]u1 = 1

. constraint 6 [D.lnhours]u2 = 1

. sspace (u1 L.u1, state noconstant)
> (u2 L.u1 L.u2, state noconstant)
> (D.lncaputil u1, noconstant noerror)
> (D.lnhours u2, noconstant noerror),
> constraints(5/6) covstate(unstructured)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 2789.6095
Iteration 1: log likelihood = 2957.8299

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 3211.7532
Iteration 1: log likelihood = 3211.7532

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(3) = 166.87

Log likelihood = 3211.7532 Prob > chi2 = 0.0000
(1) [D.lncaputil]u1 = 1
(2) [D.lnhours]u2 = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1

L1. .353257 .0448456 7.88 0.000 .2653612 .4411528

u2
u1

L1. .1286218 .0394742 3.26 0.001 .0512537 .2059899

u2
L1. -.3707083 .0434255 -8.54 0.000 -.4558208 -.2855959

D.lncaputil
u1 1 (constrained)

D.lnhours
u2 1 (constrained)

var(u1) .0000623 4.19e-06 14.88 0.000 .0000541 .0000705
cov(u1,u2) .000026 2.67e-06 9.75 0.000 .0000208 .0000312

var(u2) .0000386 2.61e-06 14.76 0.000 .0000335 .0000437

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

Specifying covstate(unstructured) caused sspace to estimate the off-diagonal element of Σ.
The output indicates that this parameter, cov(u2,u1): cons, is small but statistically significant.

The estimated coefficient on L.u1 in equation u1, 0.353, is the estimate of α1 in (5). The estimated
coefficient on L.u1 in equation u2, 0.129, is the estimate of α2 in (5). The estimated coefficient on
L.u1 in equation u2, −0.371, is the estimate of α3 in (5).

For the VAR(1) model in (4), the estimated autoregressive coefficient for D.lncaputil is similar to
the corresponding estimate in the univariate results in example 1. The estimated effect of LD.lncaputil
on D.lnhours is 0.129, the estimated autoregressive coefficient of D.lnhours is −0.371, and both
are statistically significant.

532 sspace — State-space models

These estimates can be compared with those produced by typing

. constraint 101 [D_lncaputil]LD.lnhours = 0

. var D.lncaputil D.lnhours, lags(1) noconstant constraints(101)
(output omitted)

. matrix list e(Sigma)
(output omitted)

The var estimates are not the same as the sspace estimates because the generalized least-squares
estimator implemented in var is only asymptotically equivalent to the ML estimator implemented
in sspace, but the point estimates are similar. The comparison is useful for pedagogical purposes
because the var estimator is relatively simple.

Some problems require constraining a covariance term to zero. If we wanted to constrain
cov(u2,u1): cons to zero, we could type

. constraint 7 [cov(u2,u1)]_cons = 0

. sspace (u1 L.u1, state noconstant)
> (u2 L.u1 L.u2, state noconstant)
> (D.lncaputil u1, noconstant noerror)
> (D.lnhours u2, noconstant noerror),
> constraints(5/7) covstate(unstructured)

(output omitted)

Example 4: A VARMA(1,1) model

We now extend the previous example by modeling D.lncaputil and D.lnhours as a first-order
vector autoregressive moving-average (VARMA(1,1)) process. Building on the previous examples, we
allow the lag of D.lncaputil to affect D.lnhours but we do not allow the lag of D.lnhours
to affect the lag of D.lncaputil. Previous univariate analysis revealed that D.lnhours is better
modeled as an autoregressive process than as an ARMA(1,1) process. As a result, we estimate the
parameters of(

∆lncaputilt
∆lnhourst

)
=

(
α1 0
α2 α3

)(
∆lncaputilt−1

∆lnhourst−1

)
+

(
θ1 0
0 0

)(
ε1(t−1)

ε2(t−1)

)
+

(
ε1t
ε2t

)
We can write this VARMA(1,1) process as a state-space model with state equations s1t

s2t

s3t

 =

α1 1 0
0 0 0
α2 0 α3

 s1(t−1)

s2(t−1)

s3(t−1)

+

 1 0
θ1 0
0 1

(ε1t
ε2t

)

where the states are s1t

s2t

s3t

 =

∆lncaputilt
θ1ε1t

∆lnhourst

and we simplify the problem by assuming that

Var

(
ε1t
ε2t

)
=

(
σ2

1 0
0 σ2

2

)
Below we estimate the parameters of this model by using sspace:

sspace — State-space models 533

. constraint 7 [u1]L.u2 = 1

. constraint 8 [u1]e.u1 = 1

. constraint 9 [u3]e.u3 = 1

. constraint 10 [D.lncaputil]u1 = 1

. constraint 11 [D.lnhours]u3 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant)
> (u2 e.u1, state noconstant)
> (u3 L.u1 L.u3 e.u3, state noconstant)
> (D.lncaputil u1, noconstant)
> (D.lnhours u3, noconstant),
> constraints(7/11) technique(nr) covstate(diagonal)
searching for initial values

(output omitted)
Refining estimates:
Iteration 0: log likelihood = 3156.0564
Iteration 1: log likelihood = 3156.0564

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(4) = 427.55

Log likelihood = 3156.0564 Prob > chi2 = 0.0000
(1) [u1]L.u2 = 1
(2) [u1]e.u1 = 1
(3) [u3]e.u3 = 1
(4) [D.lncaputil]u1 = 1
(5) [D.lnhours]u3 = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1

L1. .8058031 .0522493 15.42 0.000 .7033964 .9082098

u2
L1. 1 (constrained)

e.u1 1 (constrained)

u2
e.u1 -.518907 .0701848 -7.39 0.000 -.6564667 -.3813474

u3
u1

L1. .1734868 .0405156 4.28 0.000 .0940776 .252896

u3
L1. -.4809376 .0498574 -9.65 0.000 -.5786563 -.3832188

e.u3 1 (constrained)

D.lncaputil
u1 1 (constrained)

D.lnhours
u3 1 (constrained)

var(u1) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659
var(u3) .0000382 2.56e-06 14.88 0.000 .0000331 .0000432

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

534 sspace — State-space models

The estimates of the parameters in the model for D.lncaputil are similar to those in the univariate
model fit in example 2. The estimates of the parameters in the model for D.lnhours indicate that
the lag of D.lncaputil has a positive effect on D.lnhours.

Technical note
The technique(nr) option facilitates convergence in example 4. Fitting state-space models is

notoriously difficult. Convergence problems are common. Four methods for overcoming convergence
problems are 1) selecting an alternate optimization algorithm by using the technique() option,
2) using alternative starting values by specifying the from() option, 3) using starting values obtained
by estimating the parameters of a restricted version of the model of interest, or 4) putting the variables
on the same scale.

Example 5: A dynamic-factor model

Stock and Watson (1989, 1991) wrote a simple macroeconomic model as a dynamic-factor model,
estimated the parameters by ML, and extracted an economic indicator. In this example, we estimate
the parameters of a dynamic-factor model. In [TS] sspace postestimation, we extend this example
and extract an economic indicator for the differenced series.

We have data on an industrial-production index, ipman; an aggregate weekly hours index, hours;
and aggregate unemployment, unemp. income is real disposable income divided by 100. We rescaled
real disposable income to avoid convergence problems.

We postulate a latent factor that follows an AR(2) process. Each measured variable is then related
to the current value of that latent variable by a parameter. The state-space form of our model is(

ft
ft−1

)
=

(
θ1 θ2

1 0

)(
ft−1

ft−2

)
+

(
νt
0

)

∆ipmant
∆incomet
∆hourst
∆unempt

 =

γ1

γ2

γ3

γ4

 ft +

ε1t
ε2t
ε3t
ε4t

where

Var

ε1t
ε2t
ε3t
ε4t

 =

σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

sspace — State-space models 535

The parameter estimates are
. use http://www.stata-press.com/data/r14/dfex
(St. Louis Fed (FRED) macro data)

. constraint 12 [lf]L.f = 1

. sspace (f L.f L.lf, state noconstant)
> (lf L.f, state noconstant noerror)
> (D.ipman f, noconstant)
> (D.income f, noconstant)
> (D.hours f, noconstant)
> (D.unemp f, noconstant),
> covstate(identity) constraints(12)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -674.18497
Iteration 1: log likelihood = -667.23913

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -662.09507
Iteration 1: log likelihood = -662.09507

State-space model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 751.95

Log likelihood = -662.09507 Prob > chi2 = 0.0000
(1) [lf]L.f = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .2651932 .0568663 4.66 0.000 .1537372 .3766491

lf
L1. .4820398 .0624635 7.72 0.000 .3596136 .604466

lf
f

L1. 1 (constrained)

D.ipman
f .3502249 .0287389 12.19 0.000 .2938976 .4065522

D.income
f .0746338 .0217319 3.43 0.001 .0320401 .1172276

D.hours
f .2177469 .0186769 11.66 0.000 .1811407 .254353

D.unemp
f -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816

var(D.ipman) .1383158 .0167086 8.28 0.000 .1055675 .1710641
var(D.income) .2773808 .0188302 14.73 0.000 .2404743 .3142873
var(D.hours) .0911446 .0080847 11.27 0.000 .0752988 .1069903
var(D.unemp) .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The output indicates that the unobserved factor is quite persistent and that it is a significant predictor
for each of the observed variables.

536 sspace — State-space models

These models are frequently used to forecast the dependent variables and to estimate the unobserved
factors. We present some illustrative examples in [TS] sspace postestimation. The dfactor command
estimates the parameters of dynamic-factor models; see [TS] dfactor.

Some nonstationary state-space models

Example 6: A local-level model

Harvey (1989) advocates the use of STS models. These models parameterize the trends and seasonal
components of a set of time series. The simplest STS model is the local-level model, which is given
by

yt = µt + εt

where

µt = µt−1 + νt

The model is called a local-level model because the level of the series is modeled as a random walk
plus an idiosyncratic noise term. (The model is also known as the random-walk-plus-noise model.)
The local-level model is nonstationary because of the random-walk component. When the variance
of the idiosyncratic-disturbance εt is zero and the variance of the level-disturbance νt is not zero, the
local-level model reduces to a random walk. When the variance of the level-disturbance νt is zero
and the variance of the idiosyncratic-disturbance εt is not zero,

µt = µt−1 = µ

and the local-level model reduces to

yt = µ+ εt

which is a simple regression with a time-invariant mean. The parameter µ is not estimated in the
state-space formulation below.

In this example, we fit weekly levels of the Standard and Poor’s 500 Index to a local-level model.
Because this model is already in state-space form, we fit close by typing

sspace — State-space models 537

. use http://www.stata-press.com/data/r14/sp500w

. constraint 13 [z]L.z = 1

. constraint 14 [close]z = 1

. sspace (z L.z, state noconstant) (close z, noconstant), constraints(13 14)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -12582.89
Iteration 1: log likelihood = -12577.146

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -12576.99
Iteration 1: log likelihood = -12576.99

State-space model

Sample: 1 - 3093 Number of obs = 3,093
Log likelihood = -12576.99
(1) [z]L.z = 1
(2) [close]z = 1

OIM
close Coef. Std. Err. z P>|z| [95% Conf. Interval]

z
z

L1. 1 (constrained)

close
z 1 (constrained)

var(z) 170.3456 7.584909 22.46 0.000 155.4794 185.2117
var(close) 15.24858 3.392457 4.49 0.000 8.599486 21.89767

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The results indicate that both components have nonzero variances. The output footer informs us
that the model is nonstationary at the estimated parameter values.

Technical note
In the previous example, we estimated the parameters of a nonstationary state-space model. The

model is nonstationary because one of the eigenvalues of the A matrix has unit modulus. That all
the coefficients in the A matrix are fixed is also important. See Lütkepohl (2005, 636–637) for why
the ML estimator for the parameters of a nonstationary state-model that is nonstationary because of
eigenvalues with unit moduli from a fixed A matrix is still consistent and asymptotically normal.

Example 7: A local linear-trend model

In another basic STS model, known as the local linear-trend model, both the level and the slope
of a linear time trend are random walks. Here are the state equations and the observation equation
for a local linear-trend model for the level of industrial production contained in variable ipman:(

µt
βt

)
=

(
1 1
0 1

)(
µt−1

βt−1

)
+

(
ν1t

ν2t

)
ipmant = µt + εt

538 sspace — State-space models

The estimated parameters are

. use http://www.stata-press.com/data/r14/dfex
(St. Louis Fed (FRED) macro data)

. constraint 15 [f1]L.f1 = 1

. constraint 16 [f1]L.f2 = 1

. constraint 17 [f2]L.f2 = 1

. constraint 18 [ipman]f1 = 1

. sspace (f1 L.f1 L.f2, state noconstant)
> (f2 L.f2, state noconstant)
> (ipman f1, noconstant), constraints(15/18)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -362.93861
Iteration 1: log likelihood = -362.12048

(output omitted)
Refining estimates:
Iteration 0: log likelihood = -359.1266
Iteration 1: log likelihood = -359.1266

State-space model

Sample: 1972m1 - 2008m11 Number of obs = 443
Log likelihood = -359.1266
(1) [f1]L.f1 = 1
(2) [f1]L.f2 = 1
(3) [f2]L.f2 = 1
(4) [ipman]f1 = 1

OIM
ipman Coef. Std. Err. z P>|z| [95% Conf. Interval]

f1
f1

L1. 1 (constrained)

f2
L1. 1 (constrained)

f2
f2

L1. 1 (constrained)

ipman
f1 1 (constrained)

var(f1) .1473071 .0407156 3.62 0.000 .067506 .2271082
var(f2) .0178752 .0065743 2.72 0.003 .0049898 .0307606

var(ipman) .0354429 .0148186 2.39 0.008 .0063989 .0644868

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

There is little evidence that either of the variance parameters are zero. The fit obtained indicates
that we could now proceed with specification testing and checks to see how well this model forecasts
these data.

sspace — State-space models 539

Stored results
sspace stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k obser) number of observation equations
e(k state) number of state equations
e(k obser err) number of observation-error terms
e(k state err) number of state-error terms
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise
e(rank) rank of VCE
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) sspace
e(cmdline) command as typed
e(depvar) unoperated names of dependent variables in observation equations
e(obser deps) names of dependent variables in observation equations
e(state deps) names of dependent variables in state equations
e(covariates) list of covariates
e(indeps) independent variables
e(tvar) variable denoting time within groups
e(eqnames) names of equations
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(R structure) structure of observed-variable-error covariance matrix
e(Q structure) structure of state-error covariance matrix
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(method) likelihood method
e(initial values) type of initial values
e(technique) maximization technique
e(tech steps) iterations taken in maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

540 sspace — State-space models

Matrices
e(b) parameter vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(gamma) mapping from parameter vector to state-space matrices
e(A) estimated A matrix
e(B) estimated B matrix
e(C) estimated C matrix
e(D) estimated D matrix
e(F) estimated F matrix
e(G) estimated G matrix
e(chol R) Cholesky factor of estimated R matrix
e(chol Q) Cholesky factor of estimated Q matrix
e(chol Sz0) Cholesky factor of initial state covariance matrix
e(z0) initial state vector augmented with a matrix identifying nonstationary components
e(d) additional term in diffuse initial state vector, if nonstationary model
e(T) inner part of quadratic form for initial state covariance in a partially nonstationary

model
e(M) outer part of quadratic form for initial state covariance in a partially nonstationary

model
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
Recall that our notation for linear state-space models with time-invariant coefficient matrices is

zt = Azt−1 + Bxt + Cεt

yt = Dzt + Fwt + Gνt

where

zt is an m× 1 vector of unobserved state variables;

xt is a kx × 1 vector of exogenous variables;

εt is a q × 1 vector of state-error terms, (q ≤ m);

yt is an n× 1 vector of observed endogenous variables;

wt is a kw × 1 vector of exogenous variables;

νt is an r × 1 vector of observation-error terms, (r ≤ n); and

A, B, C, D, F, and G are parameter matrices.

The equations for zt are known as the state equations, and the equations for yt are known as the
observation equations.

The error terms are assumed to be zero mean, normally distributed, serially uncorrelated, and
uncorrelated with each other;

εt ∼ N(0,Q)

νt ∼ N(0,R)

E[εtε
′
s] = 0 for all s 6= t

E[εtν
′
s] = 0 for all s and t

sspace — State-space models 541

sspace estimates the parameters of linear state-space models by maximum likelihood. The Kalman
filter is a method for recursively obtaining linear, least-squares forecasts of yt conditional on
past information. These forecasts are used to construct the log likelihood, assuming normality and
stationarity. When the model is nonstationary, a diffuse Kalman filter is used.

Hamilton (1994a; 1994b, 389) shows that the QML estimator, obtained when the normality
assumption is dropped, is consistent and asymptotically normal, although the variance–covariance
matrix of the estimator (VCE) must be estimated by the Huber/White/sandwich estimator. Hamilton’s
discussion applies to stationary models, and specifying vce(robust) produces a consistent estimator
of the VCE when the errors are not normal.

Methods for computing the log likelihood differ in how they calculate initial values for the Kalman
filter when the model is stationary, how they compute a diffuse Kalman filter when the model is
nonstationary, and whether terms for initial states are included. sspace offers the method(hybrid),
method(dejong), and method(kdiffuse) options for computing the log likelihood. All three
methods handle both stationary and nonstationary models.

method(hybrid), the default, uses the initial values for the states implied by stationarity to
initialize the Kalman filter when the model is stationary. Hamilton (1994b, 378) discusses this method
of computing initial values for the states and derives a log-likelihood function that does not include
terms for the initial states. When the model is nonstationary, method(hybrid) uses the De Jong
(1988, 1991) diffuse Kalman filter and log-likelihood function, which includes terms for the initial
states.

method(dejong) uses the stationary De Jong (1988) method when the model is stationary and
the De Jong (1988, 1991) diffuse Kalman filter when the model is nonstationary. The stationary
De Jong (1988) method estimates initial values for the Kalman filter as part of the log-likelihood
computation, as in De Jong (1988).

method(kdiffuse) implements the seldom-used large-κ diffuse approximation to the diffuse
Kalman filter when the model is nonstationary and uses initial values for the states implied by
stationarity when the model is stationary. The log likelihood does not include terms for the initial
states in either case. We recommend that you do not use method(kdiffuse) except to replicate
older results computed using this method.

De Jong (1988, 1991) and De Jong and Chu-Chun-Lin (1994) derive the log likelihood and a diffuse
Kalman filter for handling nonstationary data. De Jong (1988) replaces the stationarity assumption
with a time-immemorial assumption, which he uses to derive the log-likelihood function, an initial
state vector, and a covariance of the initial state vector when the model is nonstationary. By default,
and when method(hybrid) or method(dejong) is specified, sspace uses the diffuse Kalman filter
given in definition 5 of De Jong and Chu-Chun-Lin (1994). This method uses theorem 3 of De Jong
and Chu-Chun-Lin (1994) to compute the covariance of the initial states. When using this method,
sspace saves the matrices from their theorem 3 in e(), although the names are changed. e(Z) is
their U1, e(T) is their U2, e(A) is their T, and e(M) is their M.

See De Jong (1988, 1991) and De Jong and Chu-Chun-Lin (1994) for the details of the De Jong
diffuse Kalman filter.

Practical estimation and inference require that the maximum likelihood estimator be consistent and
normally distributed in large samples. These statistical properties of the maximum likelihood estimator
are well established when the model is stationary; see Caines (1988, chap. 5 and 7), Hamilton (1994b,
388–389), and Hannan and Deistler (1988, chap. 4). When the model is nonstationary, additional
assumptions must hold for the maximum likelihood estimator to be consistent and asymptotically
normal; see Harvey (1989, sec. 3.4), Lütkepohl (2005, 636–637), and Schneider (1988). Chang,
Miller, and Park (2009) show that the ML and the QML estimators are consistent and asymptotically
normal for a class of nonstationary state-space models.

542 sspace — State-space models

We now give an intuitive version of the Kalman filter. sspace uses theoretically equivalent, but
numerically more stable, methods. For each time t, the Kalman filter produces the conditional expected
state vector zt|t and the conditional covariance matrix Ωt|t; both are conditional on information up
to and including time t. Using the model and previous period results, for each t we begin with

zt|t−1 = Azt−1|t−1 + Bxt

Ωt|t−1 = AΩt−1|t−1A
′ + CQC′

yt|t−1 = Dzt|t−1 + Fwt

(6)

The residuals and the mean squared error (MSE) matrix of the forecast error are

ν̃t|t = yt − yt|t−1

Σt|t = DΩt|t−1D
′ + GRG′

(7)

In the last steps, we update the conditional expected state vector and the conditional covariance
with the time t information:

zt|t = zt|t−1 + Ωt|t−1DΣ−1
t|t ν̃t|t

Ωt|t = Ωt|t−1 − Ωt|t−1DΣ−1
t|t D′Ωt|t−1

(8)

Equations (6)–(8) are the Kalman filter. The equations denoted by (6) are the one-step predictions.
The one-step predictions do not use contemporaneous values of yt; only past values of yt, past values
of the exogenous xt, and contemporaneous values of xt are used. Equations (7) and (8) form the
update step of the Kalman filter; they incorporate the contemporaneous dependent variable information
into the predicted states.

The Kalman filter requires initial values for the states and a covariance matrix for the initial states
to start off the recursive process. Hamilton (1994b) discusses how to compute initial values for the
Kalman filter assuming stationarity. This method is used by default when the model is stationary. De
Jong (1988) discusses how to estimate initial values by maximum likelihood; this method is used
when method(dejong) is specified.

Letting δ be the vector of parameters in the model, Lütkepohl (2005) and Harvey (1989) show
that the log-likelihood function for the parameters of a stationary model is given by

lnL(δ) = −0.5

{
nT ln(2π) +

T∑
t=1

ln(|Σt|t−1|) +

T∑
t=1

et
′Σ−1
t|t−1et

}

where et = (yt − yt|t−1) depends on δ and Σ also depends on δ.

The variance–covariance matrix of the estimator (VCE) is estimated by the observed informa-
tion matrix (OIM) estimator by default. Specifying vce(robust) causes sspace to use the Hu-
ber/White/sandwich estimator. Both estimators of the VCE are standard and documented in Hamil-
ton (1994b).

Hamilton (1994b), Hannan and Deistler (1988), and Caines (1988) show that the ML estimator
is consistent and asymptotically normal when the model is stationary. Schneider (1988) establishes
consistency and asymptotic normality when the model is nonstationary because A has some eigenvalues
with modulus 1 and there are no unknown parameters in A.

sspace — State-space models 543

Not all state-space models are identified, as discussed in Hamilton (1994b) and Lütkepohl (2005).
sspace checks for local identification at the optimum. sspace will not declare convergence unless
the Hessian is full rank. This check for local identifiability is due to Rothenberg (1971).

Specifying method(dejong) causes sspace to maximize the log-likelihood function given in
section 2 (vii) of De Jong (1988). This log-likelihood function includes the initial states as parameters
to be estimated. We use some of the methods in Casals, Sotoca, and Jerez (1999) for computing the
De Jong (1988) log-likelihood function.

References
Anderson, B. D. O., and J. B. Moore. 1979. Optimal Filtering. Englewood Cliffs, NJ: Prentice Hall.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods. 2nd ed. New York: Springer.

Caines, P. E. 1988. Linear Stochastic Systems. New York: Wiley.

Casals, J., S. Sotoca, and M. Jerez. 1999. A fast and stable method to compute the likelihood of time invariant
state-space models. Economics Letters 65: 329–337.

Chang, Y., J. I. Miller, and J. Y. Park. 2009. Extracting a common stochastic trend: Theory with some applications.
Journal of Econometrics 150: 231–247.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

De Jong, P. 1988. The likelihood for a state space model. Biometrika 75: 165–169.

. 1991. The diffuse Kalman filter. Annals of Statistics 19: 1073–1083.

De Jong, P., and S. Chu-Chun-Lin. 1994. Stationary and non-stationary state space models. Journal of Time Series
Analysis 15: 151–166.

Drukker, D. M., and V. L. Wiggins. 2004. Verifying the solution from a nonlinear solver: A case study: Comment.
American Economic Review 94: 397–399.

Hamilton, J. D. 1994a. State-space models. In Vol. 4 of Handbook of Econometrics, ed. R. F. Engle and D. L.
McFadden, 3039–3080. Amsterdam: Elsevier.

. 1994b. Time Series Analysis. Princeton: Princeton University Press.

Hannan, E. J., and M. Deistler. 1988. The Statistical Theory of Linear Systems. New York: Wiley.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1993. Time Series Models. 2nd ed. Cambridge, MA: MIT Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Rothenberg, T. J. 1971. Identification in parametric models. Econometrica 39: 577–591.

Schneider, W. 1988. Analytical uses of Kalman filtering in econometrics: A survey. Statistical Papers 29: 3–33.

Stock, J. H., and M. W. Watson. 1989. New indexes of coincident and leading economic indicators. In NBER
Macroeconomics Annual 1989, ed. O. J. Blanchard and S. Fischer, vol. 4, 351–394. Cambridge, MA: MIT Press.

. 1991. A probability model of the coincident economic indicators. In Leading Economic Indicators: New
Approaches and Forecasting Records, ed. K. Lahiri and G. H. Moore, 63–89. Cambridge: Cambridge University
Press.

http://www.stata.com/bookstore/eie.html
http://www.stata.com/bookstore/imtsa.html

544 sspace — State-space models

Also see
[TS] sspace postestimation — Postestimation tools for sspace

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] dfactor — Dynamic-factor models

[TS] tsset — Declare data to be time-series data

[TS] ucm — Unobserved-components model

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

sspace postestimation — Postestimation tools for sspace

Postestimation commands predict Remarks and examples Methods and formulas
References Also see

Postestimation commands
The following standard postestimation commands are available after sspace:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

545

546 sspace postestimation — Postestimation tools for sspace

predict

Description for predict

predict creates a new variable containing predictions such as expected values. The root mean
squared error is available for all predictions. All predictions are also available as static one-step-ahead
predictions or as dynamic multistep predictions, and you can control when dynamic predictions begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

xb observable variables
states latent state variables
residuals residuals
rstandard standardized residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

equation(eqnames) name(s) of equation(s) for which predictions are to be made
rmse(stub* | newvarlist) put estimated root mean squared errors of predicted statistics in new

variables
dynamic(time constant) begin dynamic forecast at specified time

Advanced

smethod(method) method for predicting unobserved states

method Description

onestep predict using past information
smooth predict using all sample information
filter predict using past and contemporaneous information

sspace postestimation — Postestimation tools for sspace 547

Options for predict

� � �
Main �

xb, states, residuals, and rstandard specify the statistic to be predicted.

xb, the default, calculates the linear predictions of the observed variables.

states calculates the linear predictions of the latent state variables.

residuals calculates the residuals in the equations for observable variables. residuals may not
be specified with dynamic().

rstandard calculates the standardized residuals, which are the residuals normalized to be uncor-
related and to have unit variances. rstandard may not be specified with smethod(filter),
smethod(smooth), or dynamic().

� � �
Options �

equation(eqnames) specifies the equation(s) for which the predictions are to be calculated. If you
do not specify equation() or stub*, the results are the same as if you had specified the name
of the first equation for the predicted statistic.

You specify a list of equation names, such as equation(income consumption) or equa-
tion(factor1 factor2), to identify the equations. Specify names of state equations when
predicting states and names of observable equations in all other cases.

equation() may not be specified with stub*.

rmse(stub* | newvarlist) puts the root mean squared errors of the predicted statistics into the specified
new variables. The root mean squared errors measure the variances due to the disturbances but do
not account for estimation error.

dynamic(time constant) specifies when predict starts producing dynamic forecasts. The specified
time constant must be in the scale of the time variable specified in tsset, and the time constant
must be inside a sample for which observations on the dependent variables are available. For
example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of
2008, assuming that your time variable is quarterly; see [D] datetime. If the model contains
exogenous variables, they must be present for the whole predicted sample. dynamic() may not
be specified with rstandard, residuals, or smethod(smooth).

� � �
Advanced �

smethod(method) specifies the method for predicting the unobserved states; smethod(onestep),
smethod(filter), and smethod(smooth) cause different amounts of information on the de-
pendent variables to be used in predicting the states at each time period.

smethod(onestep), the default, causes predict to estimate the states at each time period using
previous information on the dependent variables. The Kalman filter is performed on previous
periods, but only the one-step predictions are made for the current period.

smethod(smooth) causes predict to estimate the states at each time period using all the sample
data by the Kalman smoother. smethod(smooth) may not be specified with rstandard.

smethod(filter) causes predict to estimate the states at each time period using previous and
contemporaneous data by the Kalman filter. The Kalman filter is performed on previous periods
and the current period. smethod(filter) may be specified only with states.

548 sspace postestimation — Postestimation tools for sspace

Remarks and examples
We assume that you have already read [TS] sspace. In this entry, we illustrate some of the features

of predict after using sspace to estimate the parameters of a state-space model.

All the predictions after sspace depend on the unobserved states, which are estimated recursively.
Changing the sample can alter the state estimates, which can change all other predictions.

Example 1: One-step predictions

In example 5 of [TS] sspace, we estimated the parameters of the dynamic-factor model(
ft
ft−1

)
=

(
θ1 θ2

1 0

)(
ft−1

ft−2

)
+

(
νt
0

)

∆ipmant
∆incomet
∆hourst
∆unempt

 =

γ1

γ2

γ3

γ4

 ft +

ε1t
ε2t
ε3t
ε4t

where

Var

ε1t
ε2t
ε3t
ε4t

 =

σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

by typing

. use http://www.stata-press.com/data/r14/dfex
(St. Louis Fed (FRED) macro data)

. constraint 1 [lf]L.f = 1

. sspace (f L.f L.lf, state noconstant)
> (lf L.f, state noconstant noerror)
> (D.ipman f, noconstant)
> (D.income f, noconstant)
> (D.hours f, noconstant)
> (D.unemp f, noconstant),
> covstate(identity) constraints(1)

(output omitted)

sspace postestimation — Postestimation tools for sspace 549

Below we obtain the one-step predictions for each of the four dependent variables in the model,
and then we graph the actual and predicted ipman:

. predict dep*
(option xb assumed; fitted values)

. tsline D.ipman dep1, lcolor(gs10) xtitle("") legend(rows(2))

−
4

−
2

0
2

1970m1 1980m1 1990m1 2000m1 2010m1

Industrial production; manufacturing (NAICS), D

xb prediction, D.ipman, onestep

The graph shows that the one-step predictions account for only a small part of the swings in the
realized ipman.

Example 2: Out-of-sample, dynamic predictions

We use the estimates from the previous example to make out-of-sample predictions. After using
tsappend to extend the dataset by six periods, we use predict with the dynamic() option and
graph the result.

. tsappend, add(6)

. predict Dipman_f, dynamic(tm(2008m12)) equation(D.ipman)

. tsline D.ipman Dipman_f if month>=tm(2008m1), xtitle("") legend(rows(2))

550 sspace postestimation — Postestimation tools for sspace

−
6

−
4

−
2

0
2

2008m1 2008m4 2008m7 2008m10 2009m1 2009m4

Industrial production; manufacturing (NAICS), D

xb prediction, D.ipman, dynamic(tm(2008m12))

The model predicts that the changes in industrial production will remain negative for the forecast
horizon, although they increase toward zero.

Example 3: Estimating an unobserved factor

In this example, we want to estimate the unobserved factor instead of predicting a dependent
variable. Specifying smethod(smooth) causes predict to use all sample information in estimating
the states by the Kalman smoother.

Below we estimate the unobserved factor by using the estimation sample, and we graph ipman
and the estimated factor:

. predict fac if e(sample), states smethod(smooth) equation(f)

. tsline D.ipman fac, xtitle("") legend(rows(2))

−
6

−
4

−
2

0
2

4

1970m1 1980m1 1990m1 2000m1 2010m1

Industrial production; manufacturing (NAICS), D

states, f, smooth

sspace postestimation — Postestimation tools for sspace 551

Example 4: Calculating residuals

The residuals and the standardized residuals are frequently used to review the specification of the
model.

Below we calculate the standardized residuals for each of the series and display them in a combined
graph:

. predict sres1-sres4 if e(sample), rstandard

. tsline sres1, xtitle("") name(sres1)

. tsline sres2, xtitle("") name(sres2)

. tsline sres3, xtitle("") name(sres3)

. tsline sres4, xtitle("") name(sres4)

. graph combine sres1 sres2 sres3 sres4, name(combined)

−
1
0

−
5

0
5

rs
ta

n
d
a
rd

,
D

.i
p
m

a
n
,
o
n
e
s
te

p

1970m1 1980m1 1990m1 2000m1 2010m1

−
5

0
5

1
0

rs
ta

n
d
a
rd

,
D

.i
n
c
o
m

e
,
o
n
e
s
te

p

1970m1 1980m1 1990m1 2000m1 2010m1

−
4

−
2

0
2

4
6

rs
ta

n
d
a
rd

,
D

.h
o
u
rs

,
o
n
e
s
te

p

1970m1 1980m1 1990m1 2000m1 2010m1

−
4

−
2

0
2

4
rs

ta
n
d
a
rd

,
D

.u
n
e
m

p
,
o
n
e
s
te

p

1970m1 1980m1 1990m1 2000m1 2010m1

Methods and formulas
Estimating the unobserved states is key to predicting the dependent variables.

By default and with the smethod(onestep) option, predict estimates the states in each period
by applying the Kalman filter to all previous periods and only making the one-step predictions to the
current period. (See Methods and formulas of [TS] sspace for the Kalman filter equations.)

With the smethod(filter) option, predict estimates the states in each period by applying
the Kalman filter on all previous periods and the current period. The computational difference be-
tween smethod(onestep) and smethod(filter) is that smethod(filter) performs the update
step on the current period while smethod(onestep) does not. The statistical difference between

552 sspace postestimation — Postestimation tools for sspace

smethod(onestep) and smethod(filter) is that smethod(filter) uses contemporaneous in-
formation on the dependent variables while smethod(onestep) does not.

As noted in [TS] sspace, sspace has both a stationary and a diffuse Kalman filter. predict uses
the same Kalman filter used for estimation.

With the smethod(smooth) option, predict estimates the states in each period using all the
sample information by applying the Kalman smoother. predict uses the Harvey (1989, sec. 3.6.2)
fixed-interval smoother with model-based initial values to estimate the states when the estimated
parameters imply a stationary model. De Jong (1989) provides a computationally efficient method.
Hamilton (1994) discusses the model-based initial values for stationary state-space models. When the
model is nonstationary, the De Jong (1989) diffuse Kalman smoother is used to predict the states.
The smoothed estimates of the states are subsequently used to predict the dependent variables.

The dependent variables are predicted by plugging in the estimated states. The residuals are
calculated as the differences between the predicted and the realized dependent variables. The root
mean squared errors are the square roots of the diagonal elements of the mean squared error matrices
that are computed by the Kalman filter. The standardized residuals are the residuals normalized by
the Cholesky factor of their mean squared error produced by the Kalman filter.

predict uses the Harvey (1989, sec. 3.5) methods to compute the dynamic forecasts and the root
mean squared errors. Let τ be the period at which the dynamic forecasts begin; τ must either be in
the specified sample or be in the period immediately following the specified sample.

The dynamic forecasts depend on the predicted states in the period τ−1, which predict obtains by
running the Kalman filter or the diffuse Kalman filter on the previous sample observations. The states
in the periods prior to starting the dynamic predictions may be estimated using smethod(onestep)
or smethod(smooth).

Using an if or in qualifier to alter the prediction sample can change the estimate of the unobserved
states in the period prior to beginning the dynamic predictions and hence alter the dynamic predictions.
The initial states are estimated using e(b) and the prediction sample.

References
De Jong, P. 1988. The likelihood for a state space model. Biometrika 75: 165–169.

. 1989. Smoothing and interpolation with the state-space model. Journal of the American Statistical Association
84: 1085–1088.

. 1991. The diffuse Kalman filter. Annals of Statistics 19: 1073–1083.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] sspace — State-space models

[TS] dfactor — Dynamic-factor models

[TS] dfactor postestimation — Postestimation tools for dfactor

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/imtsa.html

Title

tsappend — Add observations to a time-series dataset

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
tsappend appends observations to a time-series dataset or to a panel dataset. tsappend uses and

updates the information set by tsset or xtset. Any gaps in the dataset are removed.

Quick start
Add 10 time periods to tsset data

tsappend, add(10)

Incorporate additional months to data up to the third month of 1999
tsappend, last(1999m3) tsfmt(tm)

Add 2 time periods to the panel identified by pvar = 333 after xtset pvar tvar

tsappend, add(2) panel(333)

Menu
Statistics > Time series > Setup and utilities > Add observations to time-series dataset

553

554 tsappend — Add observations to a time-series dataset

Syntax
tsappend ,

{
add(#) | last(date | clock) tsfmt(string)

} [
options

]
options Description

∗add(#) add # observations
∗last(date | clock) add observations at date or clock
∗tsfmt(string) use time-series function string with last(date | clock)
panel(panel id) add observations to panel panel id

∗ Either add(#) is required, or last(date | clock) and tsfmt(string) are required.
You must tsset or xtset your data before using tsappend; see [TS] tsset and [XT] xtset.

Options
add(#) specifies the number of observations to add.

last(date | clock) and tsfmt(string) must be specified together and are an alternative to add().

last(date | clock) specifies the date or the date and time of the last observation to add.

tsfmt(string) specifies the name of the Stata time-series function to use in converting the date
specified in last() to an integer. The function names are tc (clock), tC (Clock), td (daily), tw
(weekly), tm (monthly), tq (quarterly), and th (half-yearly).

For clock times, the last time added (if any) will be earlier than the time requested in
last(date | clock) if last() is not a multiple of delta units from the last time in the data.

For instance, you might specify last(17may2007) tsfmt(td), last(2001m1) tsfmt(tm), or
last(17may2007 15:30:00) tsfmt(tc).

panel(panel id) specifies that observations be added only to panels with the ID specified in panel().

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using tsappend with time-series data
Using tsappend with panel data

Introduction
tsappend adds observations to a time-series dataset or to a panel dataset. You must tsset or

xtset your data before using tsappend. tsappend simultaneously removes any gaps from the
dataset.

There are two ways to use tsappend: you can specify the add(#) option to request that #
observations be added, or you can specify the last(date | clock) option to request that observations
be appended until the date specified is reached. If you specify last(), you must also specify tsfmt().
tsfmt() specifies the Stata time-series date function that converts the date held in last() to an
integer.

tsappend works with time series of panel data. With panel data, tsappend adds the requested
observations to all the panels, unless the panel() option is also specified.

tsappend — Add observations to a time-series dataset 555

Using tsappend with time-series data

tsappend can be useful for appending observations when dynamically predicting a time series.
Consider an example in which tsappend adds the extra observations before dynamically predicting
from an AR(1) regression:

. use http://www.stata-press.com/data/r14/tsappend1

. regress y l.y

Source SS df MS Number of obs = 479
F(1, 477) = 119.29

Model 115.349555 1 115.349555 Prob > F = 0.0000
Residual 461.241577 477 .966963473 R-squared = 0.2001

Adj R-squared = 0.1984
Total 576.591132 478 1.2062576 Root MSE = .98334

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

y
L1. .4493507 .0411417 10.92 0.000 .3685093 .5301921

_cons 11.11877 .8314581 13.37 0.000 9.484993 12.75254

. matrix b = e(b)

. matrix colnames b = L.xb one

. tsset
time variable: t2, 1960m2 to 2000m1

delta: 1 month

. tsappend, add(12)

. tsset
time variable: t2, 1960m2 to 2001m1

delta: 1 month

. predict xb if t2<=tm(2000m2)
(option xb assumed; fitted values)
(12 missing values generated)

. generate one=1

. matrix score xb=b if t2>=tm(2000m2), replace

The calls to tsset before and after tsappend were made without a time variable; thus both
commands display how the data are currently tsset. The results from the first tsset command
show that we have monthly data and that our time variable, t2, starts at 1960m2 and ends at 2000m1.

tsappend with the add(12) option used these results to add 12 months to the dataset. The results
of the second tsset command show that this new year of data has been added, as shown by the end
year now being 2001m1. We could have skipped these calls to tsset, but they are shown here to
illustrate how tsappend uses and updates time-series settings of the dataset.

We then used predict and matrix score to obtain the dynamic predictions, which allows us to
produce the following graph:

556 tsappend — Add observations to a time-series dataset

. line y xb t2 if t2>=tm(1995m1), ytitle("") xtitle("time")

1
8

1
9

2
0

2
1

2
2

2
3

1995m1 1996m1 1997m1 1998m1 1999m1 2000m1 2001m1
time

y Fitted values

In the call to tsappend, instead of saying that we wanted to add 12 observations, we could have
specified that we wanted to fill in observations through the first month of 2001:

. use http://www.stata-press.com/data/r14/tsappend1, clear

. tsset
time variable: t2, 1960m2 to 2000m1

delta: 1 month

. tsappend, last(2001m1) tsfmt(tm)

. tsset
time variable: t2, 1960m2 to 2001m1

delta: 1 month

We specified the tm() function in the tsfmt() option. [FN] Date and time functions contains a
list of time-series functions for translating date literals to integers. Because we have monthly data,
and since [FN] Date and time functions tells us that we want to use the tm() function, we specified
the tsfmt(tm) option. The following table shows the most common types of time-series data, their
formats, the appropriate translation functions, and the corresponding options for tsappend:

Description Format Function Option
time %tc tc() tsfmt(tc)
time %tC tC() tsfmt(tC)
daily %td td() tsfmt(td)

weekly %tw tw() tsfmt(tw)
monthly %tm tm() tsfmt(tm)

quarterly %tq tq() tsfmt(tq)
half-yearly %th th() tsfmt(th)

yearly %ty ty() tsfmt(ty)

tsappend — Add observations to a time-series dataset 557

Using tsappend with panel data

tsappend’s actions on panel data are similar to its action on time-series data, except that tsappend
performs those actions on each time series within the panels. To work within panels, a panel variable
must have been specified with tsset or xtset. It does not matter which command you use; the two
are equivalent.

If the end dates vary over panels, last() and add() will produce different results. add(#) always
adds # observations to each panel. If the data end at different periods before tsappend, add() is
used, the data will still end at different periods after tsappend, add(). In contrast, tsappend,
last() tsfmt() will cause all the panels to end on the specified last date. If the beginning dates
differ across panels, using tsappend, last() tsfmt() to provide a uniform ending date will not
create balanced panels because the number of observations per panel will still differ.

Consider the panel data summarized in the output below:

. use http://www.stata-press.com/data/r14/tsappend3, clear

. xtdescribe

id: 1, 2, ..., 3 n = 3
t2: 1998m1, 1998m2, ..., 2000m1 T = 25

Delta(t2) = 1 month
Span(t2) = 25 periods
(id*t2 uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
13 13 13 20 24 24 24

Freq. Percent Cum. Pattern

1 33.33 33.331111111111111
1 33.33 66.67 1111.11111111111111111111
1 33.33 100.00 11111111111111111111.....

3 100.00 XXXXXXXXXXXXXXXXXXXXXXXXX

. by id: summarize t2

-> id = 1

Variable Obs Mean Std. Dev. Min Max

t2 13 474 3.89444 468 480

-> id = 2

Variable Obs Mean Std. Dev. Min Max

t2 20 465.5 5.91608 456 475

-> id = 3

Variable Obs Mean Std. Dev. Min Max

t2 24 468.3333 7.322786 456 480

The output from xtdescribe and summarize on these data tells us that one panel starts later
than the other, that another panel ends before the other two, and that the remaining panel has a gap
in the time variable but otherwise spans the entire time frame.

558 tsappend — Add observations to a time-series dataset

Now consider the data after a call to tsappend, add(6):

. tsappend, add(6)

. xtdescribe

id: 1, 2, ..., 3 n = 3
t2: 1998m1, 1998m2, ..., 2000m7 T = 31

Delta(t2) = 1 month
Span(t2) = 31 periods
(id*t2 uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
19 19 19 26 31 31 31

Freq. Percent Cum. Pattern

1 33.33 33.331111111111111111111
1 33.33 66.67 11111111111111111111111111.....
1 33.33 100.00 1111111111111111111111111111111

3 100.00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. by id: summarize t2

-> id = 1

Variable Obs Mean Std. Dev. Min Max

t2 19 477 5.627314 468 486

-> id = 2

Variable Obs Mean Std. Dev. Min Max

t2 26 468.5 7.648529 456 481

-> id = 3

Variable Obs Mean Std. Dev. Min Max

t2 31 471 9.092121 456 486

This output from xtdescribe and summarize after the call to tsappend shows that the call to
tsappend, add(6) added 6 observations to each panel and filled in the gap in the time variable in
the second panel. tsappend, add() did not cause a uniform end date over the panels.

The following output illustrates the contrast between tsappend, add() and tsappend, last()
tsfmt() with panel data that end at different dates. The output from xtdescribe and summarize
shows that the call to tsappend, last() tsfmt() filled in the gap in t2 and caused all the panels
to end at the specified end date. The output also shows that the panels remain unbalanced because
one panel has a later entry date than the other two.

tsappend — Add observations to a time-series dataset 559

. use http://www.stata-press.com/data/r14/tsappend2, clear

. tsappend, last(2000m7) tsfmt(tm)

. xtdescribe

id: 1, 2, ..., 3 n = 3
t2: 1998m1, 1998m2, ..., 2000m7 T = 31

Delta(t2) = 1 month
Span(t2) = 31 periods
(id*t2 uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
19 19 19 31 31 31 31

Freq. Percent Cum. Pattern

2 66.67 66.67 1111111111111111111111111111111
1 33.33 100.001111111111111111111

3 100.00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. by id: summarize t2

-> id = 1

Variable Obs Mean Std. Dev. Min Max

t2 19 477 5.627314 468 486

-> id = 2

Variable Obs Mean Std. Dev. Min Max

t2 31 471 9.092121 456 486

-> id = 3

Variable Obs Mean Std. Dev. Min Max

t2 31 471 9.092121 456 486

Stored results
tsappend stores the following in r():

Scalars
r(add) number of observations added

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

Title

tsfill — Fill in gaps in time variable

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
tsfill is used to fill in gaps in time-series data and gaps in panel data with new observations,

which contain missing values. tsfill is not needed to obtain correct lags, leads, and differences
when gaps exist in a series because Stata’s time-series operators handle gaps automatically.

Quick start
Add new observations with missing values for missing time periods in a time-series dataset that has

been tsset

tsfill

Add new observations with missing values to eliminate gaps in a panel dataset that has been xtset

tsfill

As above, but making the panel strongly balanced
tsfill, full

Menu
Statistics > Time series > Setup and utilities > Fill in gaps in time variable

560

tsfill — Fill in gaps in time variable 561

Syntax
tsfill

[
, full

]
You must tsset or xtset your data before using tsfill; see [TS] tsset and [XT] xtset.

Option
full is for use with panel data only. With panel data, tsfill by default fills in observations for

each panel according to the minimum and maximum values of timevar for the panel. Thus if the
first panel spanned the times 5–20 and the second panel the times 1–15, after tsfill they would
still span the same periods; observations would be created to fill in any missing times from 5–20
in the first panel and from 1–15 in the second.

If full is specified, observations are created so that both panels span the time 1–20, the overall
minimum and maximum of timevar across panels.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using tsfill with time-series data
Using tsfill with panel data
Video example

Introduction

tsfill is used after tsset or xtset to fill gaps in time-series data and gaps in panel data
with new observations. Each new observation contains the appropriate values of the time variable,
timevar, and, when specified, the panel variable, panelvar, and missing values for all other variables
in the dataset. For instance, perhaps observations for timevar = 1, 3, 5, 6, . . . , 22 exist. tsfill would
create observations for timevar = 2 and timevar = 4 containing all missing values.

tsfill is intended as an intermediate step in a data management process. For example, you may
wish to use tsfill with time-series data if you plan to interpolate missing values or with panel data
if you intend to impute missing values.

You do not need to use tsfill to correctly create variables with lags, leads, and differencing,
because Stata’s time-series operators handle gaps in the series for you; see [U] 11.4.4 Time-series
varlists. These operators consider timevar, not the observation number. For example, suppose we have
data on GNP in the years 1989–1991 and 1993–1995. Referring to L.gnp to obtain lagged gnp values
would correctly produce a missing value of lagged gnp for timevar = 1989 and timevar = 1993 even
if missing values were not explicitly created using tsfill.

562 tsfill — Fill in gaps in time variable

Using tsfill with time-series data

You have monthly data, with gaps:

. use http://www.stata-press.com/data/r14/tsfillxmpl

. tsset
time variable: mdate, 1995m7 to 1996m3, but with gaps

delta: 1 month

. list mdate income

mdate income

1. 1995m7 1153
2. 1995m8 1181
3. 1995m11 1236
4. 1995m12 1297
5. 1996m1 1265

6. 1996m3 1282

You can fill in the gaps by interpolation easily with tsfill and ipolate. tsfill creates the
missing observations:

. tsfill

. list mdate income

mdate income

1. 1995m7 1153
2. 1995m8 1181
3. 1995m9 . ← new
4. 1995m10 . ← new
5. 1995m11 1236

6. 1995m12 1297
7. 1996m1 1265
8. 1996m2 . ← new
9. 1996m3 1282

We can now use ipolate (see [D] ipolate) to fill them in:

. ipolate income mdate, gen(ipinc)

. list mdate income ipinc

mdate income ipinc

1. 1995m7 1153 1153
2. 1995m8 1181 1181
3. 1995m9 . 1199.3333
4. 1995m10 . 1217.6667
5. 1995m11 1236 1236

6. 1995m12 1297 1297
7. 1996m1 1265 1265
8. 1996m2 . 1273.5
9. 1996m3 1282 1282

tsfill — Fill in gaps in time variable 563

Using tsfill with panel data

You have the following panel dataset:

. use http://www.stata-press.com/data/r14/tsfillxmpl2, clear

. tsset
panel variable: edlevel (unbalanced)
time variable: year, 1988 to 1992, but with a gap

delta: 1 unit

. list edlevel year income

edlevel year income

1. 1 1988 14500
2. 1 1989 14750
3. 1 1990 14950
4. 1 1991 15100
5. 2 1989 22100

6. 2 1990 22200
7. 2 1992 22800

Just as with nonpanel time-series datasets, you can use tsfill to fill in the gaps within each
panel:

. tsfill

. list edlevel year income

edlevel year income

1. 1 1988 14500
2. 1 1989 14750
3. 1 1990 14950
4. 1 1991 15100
5. 2 1989 22100

6. 2 1990 22200
7. 2 1991 . ← new
8. 2 1992 22800

You could instead use tsfill to produce fully balanced panels with the full option:

. tsfill, full

. list edlevel year income, sep(0)

edlevel year income

1. 1 1988 14500
2. 1 1989 14750
3. 1 1990 14950
4. 1 1991 15100
5. 1 1992 . ← new
6. 2 1988 . ← new
7. 2 1989 22100
8. 2 1990 22200
9. 2 1991 . ← new

10. 2 1992 22800

564 tsfill — Fill in gaps in time variable

Video example

Time series, part 1: Formatting dates, tsset, tsreport, and tsfill

Also see
[TS] tsappend — Add observations to a time-series dataset

[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

http://www.youtube.com/watch?v=SOQvXICIRNY

Title

tsfilter — Filter a time-series, keeping only selected periodicities

Description Syntax Remarks and examples Methods and formulas
Acknowledgments References Also see

Description
tsfilter separates a time series into trend and cyclical components. The trend component may

contain a deterministic or a stochastic trend. The stationary cyclical component is driven by stochastic
cycles at the specified periods.

Syntax
Filter one variable

tsfilter filter
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter filter
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter filter
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

filter Name See

bk Baxter–King [TS] tsfilter bk
bw Butterworth [TS] tsfilter bw
cf Christiano–Fitzgerald [TS] tsfilter cf
hp Hodrick–Prescott [TS] tsfilter hp

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
options differ across the filters and are documented in each filter’s manual entry.

Remarks and examples
The time-series filters implemented in tsfilter separate a time-series yt into trend and cyclical

components:
yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective of the methods implemented in tsfilter is to estimate ct, a stationary
cyclical component that is driven by stochastic cycles within a specified range of periods. The trend
component τt is calculated by the difference τt = yt − ct.

565

566 tsfilter — Filter a time-series, keeping only selected periodicities

Although the filters implemented in tsfilter have been widely applied by macroeconomists,
they are general time-series methods and may be of interest to other researchers.

Remarks are presented under the following headings:
An example dataset
A baseline method: Symmetric moving-average (SMA) filters
An overview of filtering in the frequency domain
SMA revisited: The Baxter–King filter
Filtering a random walk: The Christiano–Fitzgerald filter
A one-parameter high-pass filter: The Hodrick–Prescott filter
A two-parameter high-pass filter: The Butterworth filter

An example dataset

Time series are frequently filtered to remove unwanted characteristics, such as trends and seasonal
components, or to estimate components driven by stochastic cycles from a specific range of periods.
Although the filters implemented in tsfilter can be used for both purposes, their primary purpose
is the latter, and we restrict our discussion to that use.

We explain the methods implemented in tsfilter by estimating the business-cycle component
of a macroeconomic variable, because they are frequently used for this purpose. We estimate the
business-cycle component of the natural log of an index of the industrial production of the United
States, which is plotted below.

Example 1: A trending time series
. use http://www.stata-press.com/data/r14/ipq
(Federal Reserve Economic Data, St. Louis Fed)

. tsline ip_ln

1
2

3
4

5
lo

g
 o

f
in

d
u

s
tr

ia
l
p

ro
d

u
c
ti
o

n

1920q1 1930q1 1940q1 1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1

quarterly time variable

The above graph shows that ip ln contains a trend component. Time series may contain deter-
ministic trends or stochastic trends. A polynomial function of time is the most common deterministic
time trend. An integrated process is the most common stochastic trend. An integrated process is a
random variable that must be differenced one or more times to be stationary; see Hamilton (1994) for
a discussion. The different filters implemented in tsfilter allow for different orders of deterministic
time trends or integrated processes.

tsfilter — Filter a time-series, keeping only selected periodicities 567

We now illustrate the four methods implemented in tsfilter, each of which will remove the
trend and estimate the business-cycle component. Burns and Mitchell (1946) defined oscillations in
business data with recurring periods between 1.5 and 8 years to be business-cycle fluctuations; we
use their commonly accepted definition.

A baseline method: Symmetric moving-average (SMA) filters

Symmetric moving-average (SMA) filters form a baseline method for estimating a cyclical component
because of their properties and simplicity. An SMA filter of a time series yt, t ∈ {1, . . . , T}, is the
data transform defined by

y∗t =

q∑
j=−q

αjyt−j

for each t ∈ {q+ 1, . . . , T − q}, where α−j = αj for j ∈ {−q, . . . , q}. Although the original series
has T observations, the filtered series has only T − 2q, where q is known as the order of the SMA
filter.

SMA filters with weights that sum to zero remove deterministic and stochastic trends of order 2 or
less, as shown by Fuller (1996) and Baxter and King (1999).

Example 2: A trend-removing SMA filter

This trend-removal property of SMA filters with coefficients that sum to zero may surprise some
readers. For illustration purposes, we filter ip ln by the filter

−0.2ip lnt−2 − 0.2ip lnt−1 + 0.8ip lnt − 0.2ip lnt+1 − 0.2ip lnt+2

and plot the filtered series. We do not even need tsfilter to implement this second-order SMA
filter; we can use generate.

. generate ip_sma = -.2*L2.ip_ln-.2*L.ip_ln+.8*ip_ln-.2*F.ip_ln-.2*F2.ip_ln
(4 missing values generated)

. tsline ip_sma

−
.2

−
.1

0
.1

.2
ip

_
s
m

a

1920q1 1930q1 1940q1 1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1

quarterly time variable

568 tsfilter — Filter a time-series, keeping only selected periodicities

The filter has removed the trend.

There is no good reason why we chose that particular SMA filter. Baxter and King (1999) derived
a class of SMA filters with coefficients that sum to zero and get as close as possible to keeping only
the specified cyclical component.

An overview of filtering in the frequency domain

We need some concepts from the frequency-domain approach to time-series analysis to motivate
how Baxter and King (1999) defined “as close as possible”. These concepts also motivate the other
filters in tsfilter. The intuitive explanation presented here glosses over many technical details
discussed by Priestley (1981), Hamilton (1994), Fuller (1996), and Wei (2006).

As with much time-series analysis, the basic results are for covariance-stationary processes with
additional results handling some nonstationary cases. We present some useful results for covariance-
stationary processes and discuss how to handle nonstationary series below.

The autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its
variance and dependence structure. In the frequency-domain approach to time-series analysis, yt and
the autocovariances are specified in terms of independent stochastic cycles that occur at frequencies
ω ∈ [−π, π]. The spectral density function fy(ω) specifies the contribution of stochastic cycles at
each frequency ω relative to the variance of yt, which is denoted by σ2

y . The variance and the
autocovariances can be expressed as an integral of the spectral density function. Formally,

γj =

∫ π

−π
eiωjfy(ω)dω (1)

where i is the imaginary number i =
√
−1.

Equation (1) can be manipulated to show what fraction of the variance of yt is attributable to
stochastic cycles in a specified range of frequencies. Hamilton (1994, 156) discusses this point in
more detail.

Equation (1) implies that if fy(ω) = 0 for ω ∈ [ω1, ω2], then stochastic cycles at these frequencies
contribute zero to the variance and autocovariances of yt.

The goal of time-series filters is to transform the original series into a new series y∗t for which
the spectral density function of the filtered series fy∗(ω) is zero for unwanted frequencies and equal
to fy(ω) for desired frequencies.

A linear filter of yt can be written as

y∗t =

∞∑
j=−∞

αjyt−j = α(L)yt

where we let yt be an infinitely long series as required by some of the results below. To see the
impact of the filter on the components of yt at each frequency ω, we need an expression for fy∗(ω)
in terms of fy(ω) and the filter weights αj . Wei (2006, 282) shows that for each ω,

fy∗(ω) = |α(eiω)|2fy(ω) (2)

tsfilter — Filter a time-series, keeping only selected periodicities 569

where |α(eiω)| is known as the gain of the filter. Equation (2) makes explicit that the squared gain
function |a(eiω)|2 converts the spectral density of the original series, fy(ω), into the spectral density
of the filtered series, fy∗(ω). In particular, (2) says that for each frequency ω, the spectral density
of the filtered series is the product of the square of the gain of the filter and the spectral density of
the original series.

As we will see in the examples below, the gain function provides a crucial interpretation of what
a filter is doing. We want a filter for which fy∗(ω) = 0 for unwanted frequencies and for which
fy∗(ω) = fy(ω) for desired frequencies. So we seek a filter for which the gain is 0 for unwanted
frequencies and for which the gain is 1 for desired frequencies.

In practice, we cannot find such an ideal filter exactly, because the constraints an ideal filter places
on filter coefficients cannot be satisfied for time series with only a finite number of observations. The
expansive literature on filters is a result of the trade-offs involved in designing implementable filters
that approximate the ideal filter.

Ideally, filters pass or block the stochastic cycles at specified frequencies by having a gain of
1 or 0. Band-pass filters, such as the Baxter–King (BK) and the Christiano–Fitzgerald (CF) filters,
pass through stochastic cycles in the specified range of frequencies and block all the other stochastic
cycles. High-pass filters, such as the Hodrick–Prescott (HP) and Butterworth filters, only allow the
stochastic cycles at or above a specified frequency to pass through and block the lower-frequency
stochastic cycles. For band-pass filters, let [ω0, ω1] be the set of desired frequencies with all other
frequencies being undesired. For high-pass filters, let ω0 be the cutoff frequency with only those
frequencies ω ≥ ω0 being desired.

SMA revisited: The Baxter–King filter

We now return to the class of SMA filters with coefficients that sum to zero and get as close as
possible to keeping only the specified cyclical component as derived by Baxter and King (1999).

For an infinitely long series, there is an ideal band-pass filter for which the gain function is 1 for
ω ∈ [ω0, ω1] and 0 for all other frequencies. It just so happens that this ideal band-pass filter is an
SMA filter with coefficients that sum to zero. Baxter and King (1999) derive the coefficients of this
ideal band-pass filter and then define the BK filter to be the SMA filter with 2q + 1 terms that are
as close as possible to those of the ideal filter. There is a trade-off in choosing q: larger values of
q cause the gain of the BK filter to be closer to the gain of the ideal filter, but larger values also
increase the number of missing observations in the filtered series.

Although the mathematics of the frequency-domain approach to time-series analysis is in terms of
stochastic cycles at frequencies ω ∈ [−π, π], applied work is generally in terms of periods p, where
p = 2π/ω. So the options for the tsfilter subcommands are in terms of periods.

Example 3: A BK estimate of the business-cycle component

Below we use tsfilter bk, which implements the BK filter, to estimate the business-cycle
component composed of stochastic cycles between 6 and 32 periods, and then we graph the estimated
component.

570 tsfilter — Filter a time-series, keeping only selected periodicities

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32)

. tsline ip_bk

−
.3

−
.2

−
.1

0
.1

.2
ip

_
ln

 c
y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
k
 f

ilt
e

r

1920q1 1930q1 1940q1 1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1

quarterly time variable

The above graph tells us what the estimated business-cycle component looks like, but it presents no
evidence as to how well we have estimated the component. A periodogram is better for this purpose.
A periodogram is an estimator of a transform of the spectral density function; see [TS] pergram for
details. Below we plot the periodogram for the BK estimate of the business-cycle component. pergram
displays the results in natural frequencies, which are the standard frequencies divided by 2π. We use
the xline() option to draw vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125)
and the upper natural-frequency cutoff (1/6 ≈ 0.16667).

. pergram ip_bk, xline(0.03125 0.16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

ip
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
k
 f

ilt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

If the filter completely removed the stochastic cycles corresponding to the unwanted frequencies,
the periodogram would be a flat line at the minimum value of −6 outside the range identified by
the vertical lines. That the periodogram takes on values greater than −6 outside the specified range
indicates the inability of the BK filter to pass through only stochastic cycles at frequencies inside the
specified band.

tsfilter — Filter a time-series, keeping only selected periodicities 571

We can also evaluate the BK filter by plotting its gain function against the gain function of an
ideal filter. In the output below, we reestimate the business-cycle component to store the gain of the
BK filter for the specified parameters. (The coefficients and the gain of the BK filter are completely
determined by the specified minimum period, the maximum period, and the order of the SMA filter.)
We label the variable bkgain for the graph below.

. drop ip_bk

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32) gain(bkgain abk)

. label variable bkgain "BK filter"

Below we generate ideal, the gain function of the ideal band-pass filter at the frequencies f.
Then we plot the gain of the ideal filter and the gain of the BK filter.

. generate f = _pi*(_n-1)/_N

. generate ideal = cond(f<_pi/16, 0, cond(f<_pi/3, 1,0))

. label variable ideal "Ideal filter"

. twoway line ideal f || line bkgain abk

0
.5

1

0 1 2 3

Ideal filter BK filter

The graph reveals that the gain of the BK filter deviates markedly from the square-wave gain of the
ideal filter. Increasing the symmetric moving average via the smaorder() option will cause the gain
of the BK filter to more closely approximate the gain of the ideal filter at the cost of lost observations
in the filtered series.

Filtering a random walk: The Christiano–Fitzgerald filter

Although Baxter and King (1999) minimized the error between the coefficients in their filter and
the ideal band-pass filter, Christiano and Fitzgerald (2003) minimized the mean squared error between
the estimated component and the true component, assuming that the raw series is a random-walk
process. Christiano and Fitzgerald (2003) give three important reasons for using their filter:

1. The true dependence structure of the data affects which filter is optimal.

2. Many economic time series are well approximated by random-walk processes.

572 tsfilter — Filter a time-series, keeping only selected periodicities

3. Their filter does a good job passing through stochastic cycles of desired frequencies and blocking
stochastic cycles from unwanted frequencies on a range of processes that are close to being a
random-walk process.

The CF filter obtains its optimality properties at the cost of an additional parameter that must be
estimated and a loss of robustness. The CF filter is optimal for a random-walk process. If the true
process is a random walk with drift, then the drift term must be estimated and removed; see [TS] tsfilter
cf for details. The CF filter is not symmetric, so it will not remove second-order deterministic or
second-order integrated processes. tsfilter cf also implements another filter that Christiano and
Fitzgerald (2003) derived that is an SMA filter with coefficients that sum to zero. This filter is designed
to be as close as possible to the random-walk optimal filter under the constraint that it be an SMA
filter with constraints that sum to zero; see [TS] tsfilter cf for details.

Technical note

A random-walk process is a first-order integrated process; it must be differenced once to produce
a stationary process. Formally, a random-walk process is given by yt = yt−1 + εt, where εt is a zero-
mean stationary random variable. A random-walk-plus-drift process is given by ỹt = µ+ ỹt−1 + εt,
where εt is a zero-mean stationary random variable.

Example 4: A CF estimate of the business-cycle component

In this example, we use the CF filter to estimate the business-cycle component, and we plot the
periodogram of the CF estimates. We specify the drift option because ip ln is well approximated
by a random-walk-plus-drift process.

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift

. pergram ip_cf, xline(0.03125 0.16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

ip
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 c
f

fi
lt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram of the CF estimates of the business-cycle component indicates that the CF filter
did a better job than the BK filter of passing through only the desired stochastic cycles. Given that
ip ln is well approximated by a random-walk-plus-drift process, the relative performance of the CF
filter is not surprising.

tsfilter — Filter a time-series, keeping only selected periodicities 573

As with the BK filter, plotting the gain of the CF filter and the gain of the ideal filter gives an
impression of how well the filter isolates the specified components. In the output below, we reestimate
the business-cycle component, using the gain() option to store the gain of the CF filter, and we plot
the gain functions.

. drop ip_cf

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift gain(cfgain acf)

. label variable cfgain "CF filter"

. twoway line ideal f || line cfgain acf
0

.5
1

1
.5

0 1 2 3

Ideal filter CF filter

Comparing this graph with the graph of the BK gain function reveals that the CF filter is closer to
the gain of the ideal filter than is the BK filter. The graph also reveals that the gain of the CF filter
oscillates above and below 1 for desired frequencies.

The choice between the BK or the CF filter is one between robustness or efficiency. The BK filter
handles a broader class of stochastic processes, but the CF filter produces a better estimate of ct if
yt is close to a random-walk process or a random-walk-plus-drift process.

A one-parameter high-pass filter: The Hodrick–Prescott filter

Hodrick and Prescott (1997) motivated the Hodrick–Prescott (HP) filter as a trend-removal technique
that could be applied to data that came from a wide class of data-generating processes. In their view,
the technique specified a trend in the data, and the data were filtered by removing the trend. The
smoothness of the trend depends on a parameter λ. The trend becomes smoother as λ→∞. Hodrick
and Prescott (1997) recommended setting λ to 1,600 for quarterly data.

King and Rebelo (1993) showed that removing a trend estimated by the HP filter is equivalent to
a high-pass filter. They derived the gain function of this high-pass filter and showed that the filter
would make integrated processes of order 4 or less stationary, making the HP filter comparable with
the band-pass filters discussed above.

574 tsfilter — Filter a time-series, keeping only selected periodicities

Example 5: An HP estimate of the business-cycle component

We begin by applying the HP high-pass filter to ip ln and plotting the periodogram of the
estimated business-cycle component. We specify the gain() option because will use the gain of the
filter in the next example.

. tsfilter hp ip_hp = ip_ln, gain(hpg1600 ahp1600)

. label variable hpg1600 "HP(1600) filter"

. pergram ip_hp, xline(0.03125)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

ip
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 h
p

 f
ilt

e
r

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

Because the HP filter is a high-pass filter, the high-frequency stochastic cycles corresponding to
those periods below 6 remain in the estimated component. Of more concern is the presence of the
low-frequency stochastic cycles that the filter should remove. We address this issue in the example
below.

Example 6: Choosing the parameters for the HP filter

Hodrick and Prescott (1997) argued that the smoothing parameter λ should be 1,600 on the basis
of a heuristic argument that specified values for the variance of the cyclical component and the
variance of the second difference of the trend component, both recorded at quarterly frequencies. In
this example, we choose the smoothing parameter to be 677.13, which sets the gain of the filter to
0.5 at the frequency corresponding to 32 periods, as explained in the technical note below. We then
plot the periodogram of the filtered series.

tsfilter — Filter a time-series, keeping only selected periodicities 575

. tsfilter hp ip_hp2 = ip_ln, smooth(677.13) gain(hpg677 ahp677)

. label variable hpg677 "HP(677) filter"

. pergram ip_hp, xline(0.03125)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

ip
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 h
p

 f
ilt

e
r

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

Although the periodogram looks better than the periodogram with the default smoothing, the HP
filter still did not zero out the low-frequency stochastic cycles as well as the CF filter did. We take
another look at this issue by plotting the gain functions for these filters along with the gain function
from the ideal band-pass filter.

. twoway line ideal f || line hpg677 ahp677

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter HP(677) filter

Comparing the gain graphs reveals that the gain of the CF filter is closest to the gain of the ideal
filter. Both the BK and the HP filters allow some low-frequency stochastic cycles to pass through. The
plot also illustrates that the HP filter is a high-pass filter because its gain is 1 for those stochastic
cycles at frequencies above 6 periods, whereas the other gain functions go to zero.

576 tsfilter — Filter a time-series, keeping only selected periodicities

Technical note
Conventionally, economists have used λ = 1600, which Hodrick and Prescott (1997) recommended

for quarterly data. Ravn and Uhlig (2002) derived values for λ at monthly and annual frequencies that
are rescalings of the conventional λ = 1600 for quarterly data. These heuristic values are the default
values; see [TS] tsfilter hp for details. In the filter literature, filter parameters are set as functions of
the cutoff frequency; see Pollock (2000, 324), for instance. This method finds the filter parameter
that sets the gain of the filter equal to 1/2 at the cutoff frequency. Applying this method to selecting
λ at the cutoff frequency of 32 periods requires solving

1/2 =
4λ {1− cos(2π/32)}2

1 + 4λ {1− cos(2π/32)}2

for λ, which yields λ ≈ 677.13, which was used in the previous example.

The gain function of the HP filter is a function of the parameter λ, and λ sets both the location of
the cutoff frequency and the slope of the gain function. The graph below illustrates this dependence
by plotting the gain function of the HP filter for λ set to 10, 677.13, and 1,600 along with the gain
function for the ideal band-pass filter with cutoff periods of 32 periods and 6 periods.

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter HP(10) filter

HP(677) filter HP(1600) filter

A two-parameter high-pass filter: The Butterworth filter
Engineers have used Butterworth filters for a long time because they are “maximally flat”. The

gain functions of these filters are as close as possible to being a flat line at 0 for the unwanted periods
and a flat line at 1 for the desired periods; see Butterworth (1930) and Bianchi and Sorrentino (2007,
17–20).

Pollock (2000) showed that Butterworth filters can be derived from some axioms that specify
properties we would like a filter to have. Although the Butterworth and BK filters share the properties
of symmetry and phase neutrality, the coefficients of Butterworth filters do not need to sum to
zero. (Phase-neutral filters do not shift the signal forward or backward in time; see Pollock [1999].)
Although the BK filter relies on the detrending properties of SMA filters with coefficients that sum
to zero, Pollock (2000) shows that Butterworth filters have detrending properties that depend on the
filters’ parameters.

tsfilter — Filter a time-series, keeping only selected periodicities 577

tsfilter bw implements the high-pass Butterworth filter using the computational method that
Pollock (2000) derived. This filter has two parameters: the cutoff period and the order of the filter
denoted by m. The cutoff period sets the location where the gain function starts to filter out the
high-period (low-frequency) stochastic cycles, and m sets the slope of the gain function for a given
cutoff period. For a given cutoff period, the slope of the gain function at the cutoff period increases
with m. For a given m, the slope of the gain function at the cutoff period increases with the cutoff
period.

We cannot obtain a vertical slope at the cutoff frequency, which is the ideal, because the computation
becomes unstable; see Pollock (2000). The m for which the computation becomes unstable depends
on the cutoff period.

Pollock (2000) and Gómez (1999) argue that the additional flexibility produced by the additional
parameter makes the high-pass Butterworth filter a better filter than the HP filter for estimating the
cyclical components.

Pollock (2000) shows that the high-pass Butterworth filter can estimate the desired components of
the dth difference of a dth-order integrated process as long as m ≥ d.

Example 7: A Butterworth filter that removes low-frequency components

Below we use tsfilter bw to estimate the components driven by stochastic cycles greater than
32 periods using Butterworth filters of order 2 and order 6. We also compute, label, and plot the gain
functions for each filter.

. tsfilter bw ip_bw1 = ip_ln, gain(bwgain1 abw1) maxperiod(32) order(2)

. label variable bwgain1 "BW 2"

. tsfilter bw ip_bw6 = ip_ln, gain(bwgain6 abw6) maxperiod(32) order(6)

. label variable bwgain6 "BW 6"

. twoway line ideal f || line bwgain1 abw1 || line bwgain6 abw6

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter BW 2

BW 6

The graph illustrates that the slope of the gain function increases with the order of the filter.

The graph below provides another perspective by plotting the gain function from the ideal band-pass
filter on a graph with plots of the gain functions from the Butterworth filter of order 6, the CF filter,
and the HP(677) filter.

578 tsfilter — Filter a time-series, keeping only selected periodicities

. twoway line ideal f || line bwgain6 abw6 || line cfgain acf
> || line hpg677 ahp677

0
.2

5
.5

.7
5

1
1

.2
5

0 1 2 3

Ideal filter BW 6

CF filter HP(677) filter

Although the slope of the gain function from the CF filter is closer to being vertical at the cutoff
frequency, the gain function of the Butterworth filter does not oscillate above and below 1 after it first
reaches the value of 1. The flatness of the Butterworth filter below and above the cutoff frequency
is not an accident; it is one of the filter’s properties.

Example 8: A Butterworth filter that removes high-frequency components

In the previous example, we used the Butterworth filter of order 6 to remove low-frequency
stochastic cycles, and we saved the results in ip bw6. The Butterworth filter did not address the
high-frequency stochastic cycles below 6 periods because it is a high-pass filter. We remove those
high-frequency stochastic cycles in this example by keeping the trend produced by refiltering the
previously filtered series.

This example uses a common trick: keeping the trend produced by a high-pass filter turns that
high-pass filter into a low-pass filter. Because we want to remove the high-frequency stochastic cycles
still in the previously filtered series ip bw6, we need a low-pass filter. So we keep the trend produced
by refiltering the previously filtered series.

In the output below, we apply a Butterworth filter of order 20 to the previously filtered series
ip bw6. We explain why we used order 20 in the next example. We specify the trend() option to
keep the low-frequency components from these filters. Then we compute and graph the periodogram
for the trend variable.

tsfilter — Filter a time-series, keeping only selected periodicities 579

. tsfilter bw ip_bwu20 = ip_bw6, gain(bwg20 fbw20) maxperiod(6) order(20)
> trend(ip_bwb)

. label variable bwg20 "BW upper filter 20"

. pergram ip_bwb, xline(0.03125 0.16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

ip
_

b
w

6
 t

re
n

d
 c

o
m

p
o

n
e

n
t

fr
o

m
 b

w
 f

ilt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram reveals that the two-pass process has passed the original series ip ln through
a band-pass filter. It also reveals that the two-pass process did a reasonable job of filtering out the
stochastic cycles corresponding to the unwanted frequencies.

Example 9: Choosing the order of a Butterworth filter

In the previous example, when the cutoff period was 6, we set the order of the Butterworth filter
to 20. In contrast, in example 7, when the cutoff period was 32, we set the order of the Butterworth
filter to 6. We had to increase filter order because the slope of the gain function of the Butterworth
filter is increasing with the cutoff period. We needed a larger filter order to get an acceptable slope
at the lower cutoff period.

We illustrate this point in the output below. We apply Butterworth filters of orders 1 and 6 to the
previously filtered series ip bw6, we compute the gain functions, we label the gain variables, and
then we plot the gain functions from the ideal filter and the Butterworth filters.

580 tsfilter — Filter a time-series, keeping only selected periodicities

. tsfilter bw ip_bwu1 = ip_bw6, gain(bwg1 fbw1) maxperiod(6) order(2)

. label variable bwg1 "BW upper filter 2"

. tsfilter bw ip_bwu6 = ip_bw6, gain(bwg6 fbw6) maxperiod(6) order(6)

. label variable bwg6 "BW upper filter 6"

. twoway line ideal f || line bwg1 fbw1 || line bwg6 fbw6 || line bwg20 fbw20

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter BW upper filter 2

BW upper filter 6 BW upper filter 20

Because the cutoff period is 6, the gain functions for m = 2 and m = 6 are much flatter than the
gain functions for m = 2 and m = 6 in example 7 when the cutoff period was 32. The gain function
for m = 20 is reasonably close to vertical, so we used it in example 8. We mentioned above that
for any given cutoff period, the computation eventually becomes unstable for larger values of m. For
instance, when the cutoff period is 32, m = 20 is not numerically feasible.

Example 10: Comparing the Butterworth and CF estimates

As a conclusion, we plot the business-cycle components estimated by the CF filter and by the
two passes of Butterworth filters. The shaded areas identify recessions. The two estimates are close
but the differences could be important. Which estimate is better depends on whether the oscillations
around 1 in the graph of the CF gain function (the second graph of example 7) cause more problems
than the nonvertical slopes at the cutoff periods that occur in the BW6 gain function of that same
graph and the BW upper filter 20 gain function graphed above.

tsfilter — Filter a time-series, keeping only selected periodicities 581

−
.2

5
0

.2
5

1920q1 1930q1 1940q1 1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

Butterworth filter CF filter

There is a long tradition in economics of using models to estimate components. Instead of comparing
filters by their gain functions, some authors compare filters by finding underlying models for which
the filter parameters are the model parameters. For instance, Harvey and Jaeger (1993), Gómez (1999,
2001), Pollock (2000, 2006), and Harvey and Trimbur (2003) derive models that correspond to the
HP or the Butterworth filter. Some of these references also compare components estimated by filters
with components estimated by making predictions from estimated models. In effect, these references
point out that arima, dfactor, sspace, and ucm (see [TS] arima, [TS] dfactor, [TS] sspace, and
[TS] ucm) implement alternative methods to component estimation.

Methods and formulas
All filters work with both time-series data and panel data when there are many observations on

each panel. When used with panel data, the calculations are performed separately within each panel.

For these filters, the default minimum and maximum periods of oscillation correspond to the
boundaries used by economists (Burns and Mitchell 1946) for business cycles. Burns and Mitchell
defined business cycles as oscillations in business data with recurring periods between 1.5 and 8
years. Their definition continues to be cited by economists investigating correlations between business
cycles.

If yt is a time series, then the cyclical component is

ct = B(L)yt =

∞∑
j=−∞

bjyt−j

where bj are the coefficients of the impulse–response sequence of some ideal filter. The impulse–
response sequence is the inverse Fourier transform of either a square wave or step function depending
upon whether the filter is a band-pass or high-pass filter, respectively.

582 tsfilter — Filter a time-series, keeping only selected periodicities

In finite sequences, it is necessary to approximate this calculation with a finite impulse–response
sequence b̂j :

ĉt = B̂t(L)yt =

n2∑
j=−n1

b̂jyt−j

The infinite-order impulse–response sequence for the filters implemented in tsfilter are symmetric
and time-invariant.

In the frequency domain, the relationships between the true cyclical component and its finite
estimates respectively are

c(ω) = B(ω)y(ω)

and
ĉ(ω) = B̂(ω)y(ω)

where B(ω) and B̂(ω) are the frequency transfer functions of the filters B and B̂.

The frequency transfer function for B(ω) can be expressed in polar form as

B(ω) = |B(ω)|exp{iθ(ω)}

where |B(ω)| is the filter’s gain function and θ(ω) is the filter’s phase function. The gain function
determines whether the amplitude of the stochastic cycle is increased or decreased at a particular
frequency. The phase function determines how a cycle at a particular frequency is shifted forward or
backward in time.

In this form, it can be shown that the spectrum of the cyclical component, fc(ω), is related to the
spectrum of yt series by the squared gain:

fc(ω) = |B(ω)|2fy(ω)

Each of the four filters in tsfilter has an option for returning an estimate of the gain function
together with its associated scaled frequency a = ω/π, where 0 ≤ ω ≤ π. These are consistent
estimates of |B(ω)|, the gain from the ideal linear filter.

The band-pass filters implemented in tsfilter, the BK and CF filters, use a square wave as the
ideal transfer function:

B(ω) =

 1 if |ω| ∈ [ωl, ωh]

0 if |ω| /∈ [ωl, ωh]

The high-pass filters, the Hodrick–Prescott and Butterworth filters, use a step function as the ideal
transfer function:

B(ω) =

 1 if |ω| ≥ ωh

0 if |ω| < ωh

Acknowledgments
We thank Christopher F. Baum of the Department of Economics at Boston College and author of the

Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to Stata
Programming for his previous implementations of these filters: Baxter–King (bking), Christiano–
Fitzgerald (cfitzrw), Hodrick–Prescott (hprescott), and Butterworth (butterworth).

http://www.stata-press.com/books/imeus.html
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/isp.html

tsfilter — Filter a time-series, keeping only selected periodicities 583

We also thank D. S. G. Pollock of the Department of Economics at the University of Leicester,
UK, for his helpful responses to our questions about Butterworth filters and the methods that he has
developed.

References
Baxter, M., and R. G. King. 1999. Measuring business cycles: Approximate band-pass filters for economic time series.

Review of Economics and Statistics 81: 575–593.

Bianchi, G., and R. Sorrentino. 2007. Electronic Filter Simulation and Design. New York: McGraw–Hill.

Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic
Research.

Butterworth, S. 1930. On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer 7: 536–541.

Christiano, L. J., and T. J. Fitzgerald. 2003. The band pass filter. International Economic Review 44: 435–465.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Gómez, V. 1999. Three equivalent methods for filtering finite nonstationary time series. Journal of Business and
Economic Statistics 17: 109–116.

. 2001. The use of Butterworth filters for trend and cycle estimation in economic time series. Journal of Business
and Economic Statistics 19: 365–373.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C., and A. Jaeger. 1993. Detrending, stylized facts and the business cycle. Journal of Applied Econometrics
8: 231–247.

Harvey, A. C., and T. M. Trimbur. 2003. General model-based filters for extracting cycles and trends in economic
time series. The Review of Economics and Statistics 85: 244–255.

Hodrick, R. J., and E. C. Prescott. 1997. Postwar U.S. business cycles: An empirical investigation. Journal of Money,
Credit, and Banking 29: 1–16.

King, R. G., and S. T. Rebelo. 1993. Low frequency filtering and real business cycles. Journal of Economic Dynamics
and Control 17: 207–231.

Leser, C. E. V. 1961. A simple method of trend construction. Journal of the Royal Statistical Society, Series B 23:
91–107.

Pollock, D. S. G. 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic
Press.

. 2000. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics 99: 317–334.

. 2006. Econometric methods of signal extraction. Computational Statistics & Data Analysis 50: 2268–2292.

Priestley, M. B. 1981. Spectral Analysis and Time Series. London: Academic Press.

Ravn, M. O., and H. Uhlig. 2002. On adjusting the Hodrick–Prescott filter for the frequency of observations. Review
of Economics and Statistics 84: 371–376.

Schmidt, T. J. 1994. sts5: Detrending with the Hodrick–Prescott filter. Stata Technical Bulletin 17: 22–24. Reprinted
in Stata Technical Bulletin Reprints, vol. 3, pp. 216–219. College Station, TX: Stata Press.

Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

[TS] tssmooth — Smooth and forecast univariate time-series data

http://www.stata.com/products/stb/journals/stb17.pdf

Title

tsfilter bk — Baxter–King time-series filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tsfilter bk uses the Baxter and King (1999) band-pass filter to separate a time series into trend
and cyclical components. The trend component may contain a deterministic or a stochastic trend. The
stationary cyclical component is driven by stochastic cycles at the specified periods.

See [TS] tsfilter for an introduction to the methods implemented in tsfilter bk.

Quick start
Use the Baxter–King filter for y and obtain cyclical component ct using tsset data

tsfilter bk ct=y

As above, but filter out stochastic cycles with periods smaller than 5 and those with periods larger
than 20

tsfilter bk ct=y, minperiod(5) maxperiod(20)

As above, and save the trend component in the variable trendvar

tsfilter bk ct=y, minperiod(5) maxperiod(20) trend(trendvar)

Save gain in gain and angular frequency in angle

tsfilter bk ct=y, gain(gain angle)

Use the Baxter–King filter for variables y1, y2, and y3 to obtain cyclical components with prefix
cycl

tsfilter bk cycl*=y1 y2 y3

Note: The above commands can also be used to apply the filter separately to each panel of a panel
dataset when a panelvar has been specified by using tsset or xtset.

Menu
Statistics > Time series > Filters for cyclical components > Baxter-King

584

tsfilter bk — Baxter–King time-series filter 585

Syntax
Filter one variable

tsfilter bk
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter bk
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter bk
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

options Description

Main

minperiod(#) filter out stochastic cycles at periods smaller than #
maxperiod(#) filter out stochastic cycles at periods larger than #
smaorder(#) number of observations in each direction that contribute to

each filtered value
stationary use calculations for a stationary time series

Trend

trend(newvar | newvarlist | stub*) save the trend component(s) in new variable(s)

Gain

gain(gainvar anglevar) save the gain and angular frequency

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

minperiod(#) filters out stochastic cycles at periods smaller than #, where # must be at least 2
and less than maxperiod(). By default, if the units of the time variable are set to daily, weekly,
monthly, quarterly, or half-yearly, then # is set to the number of periods equivalent to 1.5 years;
yearly data use minperiod(2); otherwise, the default value is minperiod(6).

maxperiod(#) filters out stochastic cycles at periods larger than #, where # must be greater than
minperiod(). By default, if the units of the time variable are set to daily, weekly, monthly,
quarterly, half-yearly, or yearly, then # is set to the number of periods equivalent to 8 years;
otherwise, the default value is maxperiod(32).

smaorder(#) sets the order of the symmetric moving average, denoted by q. The order is an integer
that specifies the number of observations in each direction used in calculating the symmetric
moving average estimate of the cyclical component. This number must be an integer greater than
zero and less than (T − 1)/2. The estimate for the cyclical component for the tth observation, yt,
is based upon the 2q + 1 values yt−q , yt−q+1, . . . , yt, yt+1, . . . , yt+q . By default, if the units
of the time variable are set to daily, weekly, monthly, quarterly, half-yearly, or yearly, then # is
set to the number of periods equivalent to 3 years; otherwise, the default value is smaorder(12).

586 tsfilter bk — Baxter–King time-series filter

stationary modifies the filter calculations to those appropriate for a stationary series. By default,
the series is assumed nonstationary.

� � �
Trend �

trend(newvar | newvarlist | stub*) saves the trend component(s) in the new variable(s) specified by
newvar, newvarlist, or stub*.

� � �
Gain �

gain(gainvar anglevar) saves the gain in gainvar and its associated angular frequency in anglevar.
Gains are calculated at the N angular frequencies that uniformly partition the interval (0, π], where
N is the sample size.

Remarks and examples
We assume that you have already read [TS] tsfilter, which provides an introduction to filtering and

the methods implemented in tsfilter bk, more examples using tsfilter bk, and a comparison
of the four filters implemented by tsfilter. In particular, an understanding of gain functions as
presented in [TS] tsfilter is required to understand these remarks.

tsfilter bk uses the Baxter–King (BK) band-pass filter to separate a time-series yt into trend
and cyclical components:

yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective is to estimate ct, a stationary cyclical component that is driven by stochastic
cycles within a specified range of periods. The trend component τt is calculated by the difference
τt = yt − ct.

Although the BK band-pass filter implemented in tsfilter bk has been widely applied by
macroeconomists, it is a general time-series method and may be of interest to other researchers.

Symmetric moving-average (SMA) filters with coefficients that sum to zero remove stochastic and
deterministic trends of first and second order; see Fuller (1996), Baxter and King (1995), and Baxter
and King (1999).

For an infinitely long series, there is an ideal band-pass filter for which the gain function is 1 for
ω ∈ [ω0, ω1] and 0 for all other frequencies; see [TS] tsfilter for an introduction to gain functions.
It just so happens that this ideal band-pass filter is an SMA filter with coefficients that sum to zero.
Baxter and King (1999) derive the coefficients of this ideal band-pass filter and then define the BK
filter to be the SMA filter with 2q + 1 terms that are as close as possible to those of the ideal filter.
There is a trade-off in choosing q: larger values of q cause the gain of the BK filter to be closer to
the gain of the ideal filter, but they also increase the number of missing observations in the filtered
series.

The smaorder() option specifies q. The default value of smaorder() is the number of periods
equivalent to 3 years, following the Baxter and King (1999) recommendation.

Although the mathematics of the frequency-domain approach to time-series analysis is in terms of
stochastic cycles at frequencies ω ∈ [−π, π], applied work is generally in terms of periods p, where
p = 2π/ω. So tsfilter bk has the minperiod() and maxperiod() options to specify the desired
range of stochastic cycles.

tsfilter bk — Baxter–King time-series filter 587

Among economists, the BK filter is commonly used for investigating business cycles. Burns and
Mitchell (1946) defined business cycles as stochastic cycles in business data corresponding to periods
between 1.5 and 8 years. The default values for minperiod() and maxperiod() are the Burns–
Mitchell values of 1.5 and 8 years, scaled to the frequency of the dataset. The calculations of
the default values assume that the time variable is formatted as daily, weekly, monthly, quarterly,
half-yearly, or yearly; see [D] format.

For each variable, the band-pass BK filter estimate of ct is put in the corresponding new variable,
and when the trend() option is specified, the estimate of τt is put in the corresponding new variable.

tsfilter bk automatically detects panel data from the information provided when the dataset was
tsset or xtset. All calculations are done separately on each panel. Missing values at the beginning
and end of the sample are excluded from the sample. The sample may not contain gaps.

Baxter and King (1999) derived their method for nonstationary time series, but they noted that
a small modification makes it applicable to stationary time series. Imposing the condition that the
filter coefficients sum to zero is what makes their method applicable to nonstationary time series;
dropping this condition yields a filter for stationary time series. Specifying the stationary option
causes tsfilter bk to use coefficients calculated without the constraint that they sum to zero.

Example 1: Estimating a business-cycle component

In this and the subsequent examples, we use tsfilter bk to estimate the business-cycle component
of the natural log of real gross domestic product (GDP) of the United States. Our sample of quarterly
data goes from 1952q1 to 2010q4. Below we read in and plot the data.

. use http://www.stata-press.com/data/r14/gdp2
(Federal Reserve Economic Data, St. Louis Fed)

. tsline gdp_ln

7
.5

8
8

.5
9

9
.5

n
a

tu
ra

l
lo

g
 o

f
re

a
l
G

D
P

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

The series is nonstationary and is thus a candidate for the BK filter.

588 tsfilter bk — Baxter–King time-series filter

Below we use tsfilter bk to filter gdp ln, and we use pergram (see [TS] pergram) to compute
and to plot the periodogram of the estimated cyclical component.

. tsfilter bk gdp_bk = gdp_ln

. pergram gdp_bk, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
k
 f

ilt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

Because our sample is of quarterly data, tsfilter bk used the default values of minperiod(6),
maxperiod(32), and smaorder(12). The minimum and maximum periods are the Burns and
Mitchell (1946) business-cycle periods for quarterly data. The default of smaorder(12) was recom-
mend by Baxter and King (1999) for quarterly data.

In the periodogram, we added vertical lines at the natural frequencies corresponding to the
conventional Burns and Mitchell (1946) values for business-cycle components. pergram displays the
results in natural frequencies, which are the standard frequencies divided by 2π. We use the xline()
option to draw vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125) and the upper
natural-frequency cutoff (1/6 ≈ 0.16667).

If the filter completely removed the stochastic cycles at the unwanted frequencies, the periodogram
would be a flat line at the minimum value of −6 outside the range identified by the vertical lines.

The periodogram reveals that the default value of smaorder(12) did not do a good job of filtering
out the high-periodicity stochastic cycles, because there are too many points above −6.00 to the left
of the left-hand vertical line. It also reveals that the filter did not remove enough low-periodicity
stochastic cycles, because there are too many points above −6.00 to the right of the right-hand vertical
line.

We address these problems in the next example.

Example 2: Changing the order of the filter

In this example, we change the symmetric moving average of the filter via the smaorder() option
so that it will remove more of the unwanted stochastic cycles. As mentioned, larger values of q cause
the gain of the BK filter to be closer to the gain of the ideal filter, but larger values also increase the
number of missing observations in the filtered series.

tsfilter bk — Baxter–King time-series filter 589

In the output below, we estimate the business-cycle component and compute the gain functions
when the SMA-order of the filter is 12 and when it is 20. We also generate ideal, the gain function
of the ideal band-pass filter at the frequencies f. Then we plot the gain functions from all three filters.

. tsfilter bk gdp_bk12 = gdp_ln, gain(g12 a12)

. label variable g12 "BK SMA-order 12"

. tsfilter bk gdp_bk20 = gdp_ln, gain(g20 a20) smaorder(20)

. label variable g20 "BK SMA-order 20"

. generate f = _pi*(_n-1)/_N

. generate ideal = cond(f<_pi/16, 0, cond(f<_pi/3, 1,0))

. label variable ideal "Ideal filter"

. twoway line ideal f || line g12 a12 || line g20 a20

0
.5

1

0 1 2 3

Ideal filter BK SMA−order 12

BK SMA−order 20

As discussed in [TS] tsfilter, the gain function of the ideal filter is a square wave with a value of 0
at the frequencies corresponding to unwanted frequencies and a value of 1 at the desired frequencies.
The vertical lines in the gain function of the ideal filter occur at the frequencies π/16, corresponding
to 32 periods, and at π/3, corresponding to 6 periods. (Given that p = 2π/ω, where p is the period
corresponding to the frequency ω, the frequency is given by 2π/p.)

The differences between the gain function of the filter with SMA-order 12 and the gain function
of the ideal band-pass filter is the root of the issues mentioned at the end of example 1. The filter
with SMA-order 20 is closer to the gain function of the ideal band-pass filter at the cost of 16 more
missing values in the filtered series.

590 tsfilter bk — Baxter–King time-series filter

Below we compute and graph the periodogram of the series filtered with SMA-order 20.

. pergram gdp_bk20, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
k
 f

ilt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The above periodogram indicates that the filter of SMA-order 20 removed more of the stochastic cycles
at the unwanted periodicities than did the filter of SMA-order 12. Whether removing the stochastic
cycles at the unwanted periodicities is worth losing more observations in the filtered series is a
judgment call.

tsfilter bk — Baxter–King time-series filter 591

Below we plot the estimated business-cycle component with recessions identified by the shaded
areas.

−
.0

4
−

.0
2

0
.0

2
.0

4
g

d
p

_
ln

 c
y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
k
 f

ilt
e

r

1957q3 1969q3 1981q3 1993q3 2005q3

quarterly time variable

gdp_ln cyclical component from bk filter

Stored results
tsfilter bk stores the following in r():
Scalars

r(smaorder) order of the symmetric moving average
r(minperiod) minimum period of stochastic cycles
r(maxperiod) maximum period of stochastic cycles

Macros
r(varlist) original time-series variables
r(filterlist) variables containing estimates of the cyclical components
r(trendlist) variables containing estimates of the trend components, if trend() was specified
r(method) Baxter-King
r(stationary) yes or no, indicating whether the calculations assumed the series was or was not stationary
r(unit) units of time variable set using tsset or xtset

Matrices
r(filter) (q+1)×1 matrix of filter weights, where q is the order of the symmetric moving average

Methods and formulas
Baxter and King (1999) showed that there is an infinite-order SMA filter with coefficients that sum

to zero that can extract the specified components from a nonstationary time series. The components
are specified in terms of the minimum and maximum periods of the stochastic cycles that drive these
components in the frequency domain. This ideal filter is not feasible, because the constraints imposed
on the filter can only be satisfied using an infinite number of coefficients, so Baxter and King (1999)
derived a finite approximation to this ideal filter.

The infinite-order, ideal band-pass filter obtains the cyclical component with the calculation

ct =

∞∑
j=−∞

bjyt−j

592 tsfilter bk — Baxter–King time-series filter

Letting pl and ph be the minimum and maximum periods of the stochastic cycles of interest, the
weights bj in this calculation are given by

bj =

π−1(ωh − ωl) if j = 0

(jπ)−1{sin(jωh)− sin(jωl)} if j 6= 0

where ωl = 2π/pl and ωh = 2π/ph are the lower and higher cutoff frequencies, respectively.

For the default case of nonstationary time series with finite length, the ideal band-pass filter cannot
be used without modification. Baxter and King (1999) derived modified weights for a finite order
SMA filter with coefficients that sum to zero.

As a result, Baxter and King (1999) estimate ct by

ct =

+q∑
j=−q

b̂jyt−j

The coefficients b̂j in this calculation are equal to b̂j = bj − bq , where b̂−j = b̂j and bq is the mean
of the ideal coefficients truncated at ±q:

bq = (2q + 1)−1

q∑
j=−q

bj

Note that
∑+q
j=−q b̂j = 0 and that the first and last q values of the cyclical component cannot be

estimated using this filter.

If the stationary option is set, the BK filter sets the coefficients to the ideal coefficients, that is,
b̂j = bj . For these weights, b̂j = b̂−j , and although

∑∞
j=−∞ b̂j = 0, for small q,

∑q
−q b̂j 6= 0.

References
Baxter, M., and R. G. King. 1995. Measuring business cycles approximate band-pass filters for economic time series.

NBER Working Paper No. 5022, National Bureau of Economic Research. http://www.nber.org/papers/w5022.

. 1999. Measuring business cycles: Approximate band-pass filters for economic time series. Review of Economics
and Statistics 81: 575–593.

Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic
Research.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Pollock, D. S. G. 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic
Press.

. 2006. Econometric methods of signal extraction. Computational Statistics & Data Analysis 50: 2268–2292.

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[D] format — Set variables’ output format

[TS] tssmooth — Smooth and forecast univariate time-series data

http://www.nber.org/papers/w5022

Title

tsfilter bw — Butterworth time-series filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tsfilter bw uses the Butterworth high-pass filter to separate a time series into trend and cyclical
components. The trend component may contain a deterministic or a stochastic trend. The stationary
cyclical component is driven by stochastic cycles at the specified periods.

See [TS] tsfilter for an introduction to the methods implemented in tsfilter bw.

Quick start
Use the Butterworth filter for y and obtain cyclical component ct using tsset data

tsfilter bw ct=y

As above, but filter periods larger than 20
tsfilter bw ct=y, maxperiod(20)

As above, and save the trend component in the variable trendvar

tsfilter bw ct=y, maxperiod(20) trend(trendvar)

As above, and save gain and angular frequency with the names gain and angle

tsfilter bw ct=y, maxperiod(20) trend(trendvar) gain(gain angle)

Set the order of the filter to 4 and save the trend component in the variable trendvar

tsfilter bw ct=y, order(4) trend(trendvar)

Use Butterworth filter for variables y1, y2, and y3 to obtain cyclical components with prefix cycl

tsfilter bw cycl* = y1 y2 y3

Note: The above commands can also be used to apply the filter separately to each panel of a panel
dataset when a panelvar has been specified by using tsset or xtset.

Menu
Statistics > Time series > Filters for cyclical components > Butterworth

593

594 tsfilter bw — Butterworth time-series filter

Syntax
Filter one variable

tsfilter bw
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter bw
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter bw
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

options Description

Main

maxperiod(#) filter out stochastic cycles at periods larger than #
order(#) set the order of the filter; default is order(2)

Trend

trend(newvar|newvarlist|stub*) save the trend component(s) in new variable(s)

Gain

gain(gainvar anglevar) save the gain and angular frequency

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

maxperiod(#) filters out stochastic cycles at periods larger than #, where # must be greater than 2.
By default, if the units of the time variable are set to daily, weekly, monthly, quarterly, half-yearly,
or yearly, then # is set to the number of periods equivalent to 8 years; otherwise, the default value
is maxperiod(32).

order(#) sets the order of the Butterworth filter, which must be an integer. The default is order(2).

� � �
Trend �

trend(newvar | newvarlist | stub*) saves the trend component(s) in the new variable(s) specified by
newvar, newvarlist, or stub*.

� � �
Gain �

gain(gainvar anglevar) saves the gain in gainvar and its associated angular frequency in anglevar.
Gains are calculated at the N angular frequencies that uniformly partition the interval (0, π], where
N is the sample size.

tsfilter bw — Butterworth time-series filter 595

Remarks and examples
We assume that you have already read [TS] tsfilter, which provides an introduction to filtering and

the methods implemented in tsfilter bw, more examples using tsfilter bw, and a comparison
of the four filters implemented by tsfilter. In particular, an understanding of gain functions as
presented in [TS] tsfilter is required to understand these remarks.

tsfilter bw uses the Butterworth high-pass filter to separate a time-series yt into trend and
cyclical components:

yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective is to estimate ct, a stationary cyclical component that is driven by stochastic
cycles within a specified range of periods. The trend component τt is calculated by the difference
τt = yt − ct.

Although the Butterworth high-pass filter implemented in tsfilter bw has been widely applied
by macroeconomists and engineers, it is a general time-series method and may be of interest to other
researchers.

Engineers have used Butterworth filters for a long time because they are “maximally flat”. The
gain functions of these filters are as close as possible to being a flat line at 0 for the unwanted periods
and a flat line at 1 for the desired periods; see Butterworth (1930) and Bianchi and Sorrentino (2007,
17–20). (See [TS] tsfilter for an introduction to gain functions.)

The high-pass Butterworth filter is a two-parameter filter. The maxperiod() option specifies the
maximum period; the stochastic cycles of all higher periodicities are filtered out. The maxperiod()
option sets the location of the cutoff period in the gain function. The order() option specifies the
order of the filter, which determines the slope of the gain function at the cutoff frequency.

For a given cutoff period, the slope of the gain function at the cutoff period increases with filter
order. For a given filter order, the slope of the gain function at the cutoff period increases with the
cutoff period.

We cannot obtain a vertical slope at the cutoff frequency, which is the ideal, because the computation
becomes unstable; see Pollock (2000). The filter order for which the computation becomes unstable
depends on the cutoff period.

Among economists, the high-pass Butterworth filter is commonly used for investigating business
cycles. Burns and Mitchell (1946) defined business cycles as stochastic cycles in business data
corresponding to periods between 1.5 and 8 years. For this reason, the default value for maxperiod()
is the number of periods in 8 years, if the time variable is formatted as daily, weekly, monthly,
quarterly, half-yearly, or yearly; see [D] format. The default value for maxperiod() is 32 for all
other time formats.

For each variable, the high-pass Butterworth filter estimate of ct is put in the corresponding new
variable, and when the trend() option is specified, the estimate of τt is put in the corresponding
new variable.

tsfilter bw automatically detects panel data from the information provided when the dataset was
tsset or xtset. All calculations are done separately on each panel. Missing values at the beginning
and end of the sample are excluded from the sample. The sample may not contain gaps.

596 tsfilter bw — Butterworth time-series filter

Example 1: Estimating a business-cycle component

In this and the subsequent examples, we use tsfilter bw to estimate the business-cycle component
of the natural log of the real gross domestic product (GDP) of the United States. Our sample of quarterly
data goes from 1952q1 to 2010q4. Below we read in and plot the data.

. use http://www.stata-press.com/data/r14/gdp2
(Federal Reserve Economic Data, St. Louis Fed)

. tsline gdp_ln
7

.5
8

8
.5

9
9

.5
n

a
tu

ra
l
lo

g
 o

f
re

a
l
G

D
P

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

The series is nonstationary. Pollock (2000) shows that the high-pass Butterworth filter can estimate
the components driven by the stochastic cycles at the specified frequencies when the original series
is nonstationary.

Below we use tsfilter bw to filter gdp ln and use pergram (see [TS] pergram) to compute
and to plot the periodogram of the estimated cyclical component.

. tsfilter bw gdp_bw = gdp_ln

. pergram gdp_bw, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 b
w

 f
ilt

e
r

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

tsfilter bw — Butterworth time-series filter 597

tsfilter bw used the default value of maxperiod(32) because our sample is of quarterly data. In
the periodogram, we added vertical lines at the natural frequencies corresponding to the conventional
Burns and Mitchell (1946) values for business-cycle components. pergram displays the results in
natural frequencies, which are the standard frequencies divided by 2π. We use option xline() to draw
vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125) and the upper natural-frequency
cutoff (1/6 ≈ 0.16667).

If the filter completely removed the stochastic cycles at the unwanted frequencies, the periodogram
would be a flat line at the minimum value of −6 outside the range identified by the vertical lines.

The periodogram reveals two issues. First, it indicates that the default value of order(2) did not
do a good job of filtering out the high-periodicity stochastic cycles, because there are too many points
above −6.00 to the left of the left-hand vertical line. Second, it reveals the high-pass nature of the
filter, because none of the low-period (high-frequency) stochastic cycles have been filtered out.

We cope with these two issues in the remaining examples.

Example 2: Changing the order of the filter

In this example, we change the order of the filter so that it will remove more of the unwanted
low-frequency stochastic cycles. As previously mentioned, increasing the order of the filter increases
the slope of the gain function at the cutoff period.

For orders 2 and 8, we compute the filtered series, compute the gain functions, and label the gain
variables. We also generate ideal, the gain function of the ideal band-pass filter at the frequencies
f. Then we plot the gain function of the ideal band-pass filter and the gain functions of the high-pass
Butterworth filters of orders 2 and 8.

. tsfilter bw gdp_bw2 = gdp_ln, gain(g1 a1)

. label variable g1 "BW order 2"

. tsfilter bw gdp_bw8 = gdp_ln, gain(g8 a8) order(8)

. label variable g8 "BW order 8"

. generate f = _pi*(_n-1)/_N

. generate ideal = cond(f<_pi/16, 0, cond(f<_pi/3, 1,0))

. label variable ideal "Ideal filter"

. twoway line ideal f || line g1 a1 || line g8 a8

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter BW order 2

BW order 8

598 tsfilter bw — Butterworth time-series filter

As discussed in [TS] tsfilter, the gain function of the ideal filter is a square wave with a value of 0
at the frequencies corresponding to unwanted frequencies and a value of 1 at the desired frequencies.
The vertical lines in the gain function of the ideal filter occur at π/16, corresponding to 32 periods,
and at π/3, corresponding to 6 periods. (Given that p = 2π/ω, where p is the period corresponding
to frequency ω, the frequency is given by 2π/p.)

The distance between the gain function of the filter with order 2 and the gain function of the ideal
band-pass filter at π/16 is the root of the first issue mentioned at the end of example 1. The filter
with order 8 is much closer to the gain function of the ideal band-pass filter at π/16 than is the
filter with order 2. That both gain functions are 1 to the right of the vertical line at π/3 reveals the
high-pass nature of the filter.

Example 3: Removing the high-frequency component

In this example, we use a common trick to resolve the second issue mentioned at the end of
example 1. Keeping the trend produced by a high-pass filter turns that high-pass filter into a low-pass
filter. Because we want to remove the high-frequency stochastic cycles still in the previously filtered
series gdp bw8, we need to run gdp bw8 through a low-pass filter. So we keep the trend produced
by refiltering the previously filtered series.

To determine an order for the filter, we run the filter with order(8), then with order(15), and
then we plot the gain functions along with the gain function of the ideal filter.

. tsfilter bw gdp_bwn8 = gdp_bw8, gain(gc8 ac8) order(8)
> maxperiod(6) trend(gdp_bwc8)

. label variable gc8 "BW order 8"

. tsfilter bw gdp_bwn15 = gdp_bw8, gain(gc15 ac15) order(15)
> maxperiod(6) trend(gdp_bwc15)

. label variable gc15 "BW order 15"

. twoway line ideal f || line gc8 ac8 || line gc15 ac15

0
.2

.4
.6

.8
1

0 1 2 3

Ideal filter BW order 8

BW order 15

We specified much higher orders for the filter in this example because the cutoff period is 6 instead
of 32. (As previously mentioned, holding the order of the filter constant, the slope of the gain function
at the cutoff period decreases when the period decreases.) The above graph indicates that the filter
with order(15) is reasonably close to the gain function of the ideal filter.

tsfilter bw — Butterworth time-series filter 599

Now we compute and plot the periodogram of the estimated business-cycle component.

. pergram gdp_bwc15, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

b
w

8
 t

re
n

d
 c

o
m

p
o

n
e

n
t

fr
o

m
 b

w
 f

ilt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The graph indicates that the above applications of the Butterworth filter did a reasonable job of
filtering out the high-periodicity stochastic cycles but that the low-periodicity stochastic cycles have
not been completely removed.

Below we plot the estimated business-cycle component with recessions identified by the shaded
areas.

−
.0

4
−

.0
2

0
.0

2
.0

4
g

d
p

_
b

w
8

 t
re

n
d

 c
o

m
p

o
n

e
n

t
fr

o
m

 b
w

 f
ilt

e
r

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

gdp_bw8 trend component from bw filter

600 tsfilter bw — Butterworth time-series filter

Stored results
tsfilter bw stores the following in r():

Scalars
r(order) order of the filter
r(maxperiod) maximum period of stochastic cycles

Macros
r(varlist) original time-series variables
r(filterlist) variables containing estimates of the cyclical components
r(trendlist) variables containing estimates of the trend components, if trend() was specified
r(method) Butterworth
r(unit) units of time variable set using tsset or xtset

Methods and formulas
tsfilter bw uses the computational methods described in Pollock (2000) to implement the filter.

Pollock (2000) shows that the gain of the Butterworth high-pass filter is given by

ψ(ω) =

[
1 +

{
tan(ωc/2)

tan(ω/2)

}2m
]−1

where m is the order of the filter, ωc = 2π/ph is the cutoff frequency, and ph is the maximum
period.

Here is an outline of the computational procedure that Pollock (2000) derived.

Pollock (2000) showed that the Butterworth filter corresponds to a particular model. Actually, his
model is more general than the Butterworth filter, but tsfilter bw restricts the computations to the
case in which the model corresponds to the Butterworth filter.

The model represents the series to be filtered, yt, in terms of zero mean, covariance stationary,
and independent and identically distributed shocks νt and εt:

yt =
(1 + L)m

(1− L)m
νt + εt

From this model, Pollock (2000) shows that the optimal estimate for the cyclical component is
given by

c = λQ(ΩL + λΩH)−1Q′y

where Var{Q′(y − c)} = σ2
νΩL and Var{Q′c} = σ2

εΩH. Here ΩL and ΩH are symmetric Toeplitz
matrices with 2m + 1 nonzero diagonal bands and generating functions (1 + z)m(1 + z−1)m and
(1− z)m(1− z−1)m, respectively.

The parameter λ in this expression is a function of ph (the maximum period of stochastic cycles
filtered out) and the order of the filter:

λ = {tan(π/ph)}−2m

tsfilter bw — Butterworth time-series filter 601

The matrix Q′ in this expression is a function of the coefficients in the polynomial (1− L)d =
1 + δ1L+ · · ·+ δdL

d:

Q′ =

δd . . . δ1 1 . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

...
...

0 . . . δd δd−1 . . . 1 0 . . . 0 0
0 . . . 0 δd . . . δ1 1 . . . 0 0
...

...
...

. . .
. . .

...
...

0 . . . 0 0 . . . δd δd−1 . . . 1 0
0 . . . 0 0 . . . 0 δd . . . δ1 1

(T−d)×T

It can be shown that ΩH = Q′Q and ΩL = |ΩH |, which simplifies the calculation of the cyclical
component to

c = λQ{|Q′Q|+ λ(Q′Q)}−1Q′y

References
Bianchi, G., and R. Sorrentino. 2007. Electronic Filter Simulation and Design. New York: McGraw–Hill.

Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic
Research.

Butterworth, S. 1930. On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer 7: 536–541.

Pollock, D. S. G. 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic
Press.

. 2000. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics 99: 317–334.

. 2006. Econometric methods of signal extraction. Computational Statistics & Data Analysis 50: 2268–2292.

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[D] format — Set variables’ output format

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tsfilter cf — Christiano–Fitzgerald time-series filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tsfilter cf uses the Christiano and Fitzgerald (2003) band-pass filter to separate a time series
into trend and cyclical components. The trend component may contain a deterministic or a stochastic
trend. The stationary cyclical component is driven by stochastic cycles at the specified periods.

See [TS] tsfilter for an introduction to the methods implemented in tsfilter cf.

Quick start
Use the Christiano–Fitzgerald filter for y to obtain cyclical component ct using tsset data

tsfilter cf ct=y

As above, but filter for periods smaller than 5 and larger than 20
tsfilter cf ct=y, minperiod(5) maxperiod(20)

As above, and save the trend component in the variable trendvar

tsfilter cf ct=y, minperiod(5) maxperiod(20) trend(trendvar)

As above, and save gain and angular frequency with the names gain and angle

tsfilter cf ct=y, minperiod(5) maxperiod(20) trend(trendvar) ///
gain(gain angle)

Use the Christiano–Fitzgerald filter for variables y1, y2, and y3 to obtain cyclical components with
prefix cycl

tsfilter cf cycl*=y1 y2 y3

Note: The above commands can also be used to apply the filter separately to each panel of a panel
dataset when a panelvar has been specified by using tsset or xtset.

Menu
Statistics > Time series > Filters for cyclical components > Christiano-Fitzgerald

602

tsfilter cf — Christiano–Fitzgerald time-series filter 603

Syntax
Filter one variable

tsfilter cf
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter cf
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter cf
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

options Description

Main

minperiod(#) filter out stochastic cycles at periods smaller than #
maxperiod(#) filter out stochastic cycles at periods larger than #
smaorder(#) number of observations in each direction that contribute to

each filtered value
stationary use calculations for a stationary time series
drift remove drift from the time series

Trend

trend(newvar | newvarlist | stub*) save the trend component(s) in new variable(s)

Gain

gain(gainvar anglevar) save the gain and angular frequency

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

minperiod(#) filters out stochastic cycles at periods smaller than #, where # must be at least 2
and less than maxperiod(). By default, if the units of the time variable are set to daily, weekly,
monthly, quarterly, or half-yearly, then # is set to the number of periods equivalent to 1.5 years;
yearly data use minperiod(2); otherwise, the default value is minperiod(6).

maxperiod(#) filters out stochastic cycles at periods larger than #, where # must be greater than
minperiod(). By default, if the units of the time variable are set to daily, weekly, monthly,
quarterly, half-yearly, or yearly, then # is set to the number of periods equivalent to 8 years;
otherwise, the default value is maxperiod(32).

smaorder(#) sets the order of the symmetric moving average, denoted by q. By default, smaorder()
is not set, which invokes the asymmetric calculations for the Christiano–Fitzgerald filter. The order
is an integer that specifies the number of observations in each direction used in calculating the
symmetric moving average estimate of the cyclical component. This number must be an integer
greater than zero and less than (T − 1)/2. The estimate of the cyclical component for the tth
observation, yt, is based upon the 2q + 1 values yt−q , yt−q+1, . . . , yt, yt+1, . . . , yt+q .

604 tsfilter cf — Christiano–Fitzgerald time-series filter

stationary modifies the filter calculations to those appropriate for a stationary series. By default,
the series is assumed nonstationary.

drift removes drift using the approach described in Christiano and Fitzgerald (2003). By default,
drift is not removed.

� � �
Trend �

trend(newvar | newvarlist | stub*) saves the trend component(s) in the new variable(s) specified by
newvar, newvarlist, or stub*.

� � �
Gain �

gain(gainvar anglevar) saves the gain in gainvar and its associated angular frequency in anglevar.
Gains are calculated at the N angular frequencies that uniformly partition the interval (0, π], where
N is the sample size.

Remarks and examples

We assume that you have already read [TS] tsfilter, which provides an introduction to filtering and
the methods implemented in tsfilter cf, more examples using tsfilter cf, and a comparison
of the four filters implemented by tsfilter. In particular, an understanding of gain functions as
presented in [TS] tsfilter is required to understand these remarks.

tsfilter cf uses the Christiano–Fitzgerald (CF) band-pass filter to separate a time-series yt into
trend and cyclical components

yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective is to estimate ct, a stationary cyclical component that is driven by stochastic
cycles at a specified range of periods. The trend component τt is calculated by the difference
τt = yt − ct.

Although the CF band-pass filter implemented in tsfilter cf has been widely applied by
macroeconomists, it is a general time-series method and may be of interest to other researchers.

As discussed by Christiano and Fitzgerald (2003) and in [TS] tsfilter, if one had an infinitely long
series, one could apply an ideal band-pass filter that perfectly separates out cyclical components driven
by stochastic cycles at the specified periodicities. In finite samples, it is not possible to exactly satisfy
the conditions that a filter must fulfill to perfectly separate out the specified stochastic cycles; the
expansive filter literature reflects the trade-offs involved in choosing a finite-length filter to separate
out the specified stochastic cycles.

Christiano and Fitzgerald (2003) derive a finite-length CF band-pass filter that minimizes the mean
squared error between the filtered series and the series filtered by an ideal band-pass filter that perfectly
separates out components driven by stochastic cycles at the specified periodicities. Christiano and
Fitzgerald (2003) place two important restrictions on the mean squared error problem that their filter
solves. First, the CF filter is restricted to be a linear filter. Second, yt is assumed to be a random-walk
process; in other words, yt = yt−1 + εt, where εt is independent and identically distributed with
mean zero and finite variance. The CF filter is the best linear predictor of the series filtered by the
ideal band-pass filter when yt is a random walk.

tsfilter cf — Christiano–Fitzgerald time-series filter 605

Christiano and Fitzgerald (2003) make four points in support of the random-walk assumption.
First, the mean squared error problem solved by their filter requires that the process for yt be
specified. Second, they provide a method for removing drift so that their filter handles cases in
which yt is a random walk with drift. Third, many economic time series are well approximated by a
random-walk-plus-drift process. (We add that many time series encountered in applied statistics are
well approximated by a random-walk-plus-drift process.) Fourth, they provide simulation evidence
that their filter performs well when the process generating yt is not a random-walk-plus-drift process
but is close to being a random-walk-plus-drift process.

Comparing the CF filter with the Baxter–King (BK) filter provides some intuition and explains
the smaorder() option in tsfilter cf. As discussed in [TS] tsfilter and Baxter and King (1999),
symmetric moving-average (SMA) filters with coefficients that sum to zero can extract the components
driven by stochastic cycles at specified periodicities when the series to be filtered has a deterministic
or stochastic trend of order 1 or 2.

The coefficients of the finite-length BK filter are as close as possible to the coefficients of an ideal
SMA band-pass filter under the constraints that the BK coefficients are symmetric and sum to zero.
The coefficients of the CF filter are not symmetric nor do they sum to zero, but the CF filter was
designed to filter out the specified periodicities when yt has a first-order stochastic trend.

To be robust to second-order trends, Christiano and Fitzgerald (2003) derive a constrained version
of the CF filter. The coefficients of the constrained filter are constrained to be symmetric and to
sum to zero. Subject to these constraints, the coefficients of the constrained CF filter minimize the
mean squared error between the filtered series and the series filtered by an ideal band-pass filter that
perfectly separates out the components. Christiano and Fitzgerald (2003) note that the higher-order
detrending properties of this constrained filter come at the cost of lost efficiency. If the constraints
are binding, the constrained filter cannot predict the series filtered by the ideal filter as well as the
unconstrained filter can.

Specifying the smaorder() option causes tsfilter cf to compute the SMA-constrained CF filter.

The choice between the BK and the CF filters is one between robustness and efficiency. The BK
filter handles a broader class of stochastic processes than does the CF filter, but the CF filter produces
a better estimate of ct if yt is close to a random-walk process or a random-walk-plus-drift process.

Among economists, the CF filter is commonly used for investigating business cycles. Burns and
Mitchell (1946) defined business cycles as stochastic cycles in business data corresponding to periods
between 1.5 and 8 years. The default values for minperiod() and maxperiod() are the Burns–
Mitchell values of 1.5 and 8 years scaled to the frequency of the dataset. The calculations of the default
values assume that the time variable is formatted as daily, weekly, monthly, quarterly, half-yearly, or
yearly; see [D] format.

When yt is assumed to be a random-walk-plus-drift process instead of a random-walk process,
specify the drift option, which removes the linear drift in the series before applying the filter. Drift
is removed by transforming the original series to a new series by using the calculation

zt = yt −
(t− 1)(yT − y1)

T − 1

The cyclical component ct is calculated from drift-adjusted series zt. The trend component τt is
calculated by τt = yt − ct.

By default, the CF filter assumes the series is nonstationary. If the series is stationary, the
stationary option is used to change the calculations to those appropriate for a stationary series.

For each variable, the CF filter estimate of ct is put in the corresponding new variable, and when
the trend() option is specified, the estimate of τt is put in the corresponding new variable.

606 tsfilter cf — Christiano–Fitzgerald time-series filter

tsfilter cf automatically detects panel data from the information provided when the dataset was
tsset or xtset. All calculations are done separately on each panel. Missing values at the beginning
and end of the sample are excluded from the sample. The sample may not contain gaps.

Example 1: Estimating a business-cycle component

In this and the subsequent examples, we use tsfilter cf to estimate the business-cycle component
of the natural log of real gross domestic product (GDP) of the United States. Our sample of quarterly
data goes from 1952q1 to 2010q4. Below we read in and plot the data.

. use http://www.stata-press.com/data/r14/gdp2
(Federal Reserve Economic Data, St. Louis Fed)

. tsline gdp_ln

7
.5

8
8

.5
9

9
.5

n
a

tu
ra

l
lo

g
 o

f
re

a
l
G

D
P

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

The series looks like it might be generated by a random-walk-plus-drift process and is thus a
candidate for the CF filter.

tsfilter cf — Christiano–Fitzgerald time-series filter 607

Below we use tsfilter cf to filter gdp ln, and we use pergram (see [TS] pergram) to compute
and to plot the periodogram of the estimated cyclical component.

. tsfilter cf gdp_cf = gdp_ln

. pergram gdp_cf, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 c
f

fi
lt
e

r
L

o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

Because our sample is of quarterly data, tsfilter cf used the default values of minperiod(6)
and maxperiod(32). The minimum and maximum periods are the Burns and Mitchell (1946)
business-cycle periods for quarterly data.

In the periodogram, we added vertical lines at the natural frequencies corresponding to the
conventional Burns and Mitchell (1946) values for business-cycle components. pergram displays the
results in natural frequencies, which are the standard frequencies divided by 2π. We use the xline()
option to draw vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125) and the upper
natural-frequency cutoff (1/6 ≈ 0.16667).

If the filter completely removed the stochastic cycles at the unwanted frequencies, the periodogram
would be a flat line at the minimum value of −6 outside the range identified by the vertical lines.

The periodogram reveals that the CF did a reasonable job of filtering out the unwanted stochastic
cycles.

608 tsfilter cf — Christiano–Fitzgerald time-series filter

Below we plot the estimated business-cycle component with recessions identified by the shaded
areas.

−
.0

4
−

.0
2

0
.0

2
.0

4
g

d
p

_
ln

 c
y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 c
f

fi
lt
e

r

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1

quarterly time variable

gdp_ln cyclical component from cf filter

Stored results
tsfilter cf stores the following in r():

Scalars
r(smaorder) order of the symmetric moving average, if specified
r(minperiod) minimum period of stochastic cycles
r(maxperiod) maximum period of stochastic cycles

Macros
r(varlist) original time-series variables
r(filterlist) variables containing estimates of the cyclical components
r(trendlist) variables containing estimates of the trend components, if trend() was specified
r(method) Christiano-Fitzgerald
r(symmetric) yes or no, indicating whether the symmetric version of the filter was or was not used
r(drift) yes or no, indicating whether drift was or was not removed before filtering
r(stationary) yes or no, indicating whether the calculations assumed the series was or was not stationary
r(unit) units of time variable set using tsset or xtset

Matrices
r(filter) (q+1)×1 matrix of weights (̂b0 ,̂b1,...,̂bq)

′, where q is the order of the symmetric moving
average, and the weights are the Christiano–Fitzgerald coefficients; only returned when
smaorder() is used to set q

Methods and formulas
For an infinitely long series, there is an ideal band-pass filter that extracts the cyclical component

by using the calculation

ct =

∞∑
j=−∞

bjyt−j

If pl and ph are the minimum and maximum periods of the stochastic cycles of interest, the weights
bj in the ideal band-pass filter are given by

tsfilter cf — Christiano–Fitzgerald time-series filter 609

bj =

π−1(ωh − ωl) if j = 0

(jπ)−1{sin(jωh)− sin(jωl)} if j 6= 0

where ωl = 2π/pl and ωh = 2π/ph are the lower and higher cutoff frequencies, respectively.

Because our time series has finite length, the ideal band-pass filter cannot be computed exactly.
Christiano and Fitzgerald (2003) derive the finite-length CF band-pass filter that minimizes the mean
squared error between the filtered series and the series filtered by an ideal band-pass filter that
perfectly separates out the components. This filter is not symmetric nor do the coefficients sum to
zero. The formula for calculating the value of cyclical component ct for t = 2, 3, . . . , T − 1 using
the asymmetric version of the CF filter can be expressed as

ct = b0yt +

T−t−1∑
j=1

bjyt+j + b̃T−tyT +

t−2∑
j=1

bjyt−j + b̃t−1y1

where b0, b1, . . . are the weights used by the ideal band-pass filter. b̃T−t and b̃t−1 are linear functions
of the ideal weights used in this calculation. The CF filter uses two different calculations for b̃t
depending upon whether the series is assumed to be stationary or nonstationary.

For the default nonstationary case with 1 < t < T , Christiano and Fitzgerald (2003) set b̃T−t and
b̃t−1 to

b̃T−t = −1

2
b0 −

T−t−1∑
j=1

bj and b̃t−1 = −1

2
b0 −

t−2∑
j=1

bj

which forces the weights to sum to zero.

For the nonstationary case, when t = 1 or t = T , the two endpoints (c1 and cT) use only one
modified weight, b̃T−1:

c1 =
1

2
b0y1 +

T−2∑
j=1

bjyj+1 + b̃T−1yT and cT =
1

2
b0yT +

T−2∑
j=1

bjyT−j + b̃T−1y1

When the stationary option is used to invoke the stationary calculations, all weights are set to
the ideal filter weight, that is, b̃j = bj .

If the smaorder() option is set, the symmetric version of the CF filter is used. This option specifies
the length of the symmetric moving average denoted by q. The symmetric calculations for ct are
similar to those used by the BK filter:

ct = b̂q{L−q(yt) + Lq(yt)}+

q−1∑
j=−q+1

bjL
j(yt)

where, for the default nonstationary calculations, b̂q = −(1/2)b0 −
∑q−1
j=1 bj . If the smaorder()

and stationary options are set, then b̂q is set equal to the ideal weight bq .

610 tsfilter cf — Christiano–Fitzgerald time-series filter

References
Baxter, M., and R. G. King. 1999. Measuring business cycles: Approximate band-pass filters for economic time series.

Review of Economics and Statistics 81: 575–593.

Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic
Research.

Christiano, L. J., and T. J. Fitzgerald. 2003. The band pass filter. International Economic Review 44: 435–465.

Pollock, D. S. G. 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic
Press.

. 2006. Econometric methods of signal extraction. Computational Statistics & Data Analysis 50: 2268–2292.

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[D] format — Set variables’ output format

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tsfilter hp — Hodrick–Prescott time-series filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tsfilter hp uses the Hodrick–Prescott high-pass filter to separate a time series into trend and
cyclical components. The trend component may contain a deterministic or a stochastic trend. The
smoothing parameter determines the periods of the stochastic cycles that drive the stationary cyclical
component.

See [TS] tsfilter for an introduction to the methods implemented in tsfilter hp.

Quick start
Use the Hodrick–Prescott filter for y to obtain cyclical component ct using tsset data

tsfilter hp ct=y

As above, and save the trend component in the variable trendvar

tsfilter hp ct=y, trend(trendvar)

As above, and save gain and angular frequency with the names gain and angle

tsfilter hp ct=y, trend(trendvar) gain(gain angle)

As above, but set the Hodrick–Prescott smoothing parameter to be 1700
tsfilter hp ct=y, trend(trendvar) gain(gain angle) smooth(1700)

Use Hodrick–Prescott filter for variables y1, y2, and y3 to obtain cyclical components with prefix
cycl

tsfilter hp cycl*=y1 y2 y3

Note: The above commands can also be used to apply the filter separately to each panel of a panel
dataset when a panelvar has been specified by using tsset or xtset.

Menu
Statistics > Time series > Filters for cyclical components > Hodrick-Prescott

611

612 tsfilter hp — Hodrick–Prescott time-series filter

Syntax
Filter one variable

tsfilter hp
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter hp
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter hp
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

options Description

Main

smooth(#) smoothing parameter for the Hodrick–Prescott filter

Trend

trend(newvar | newvarlist | stub*) save the trend component(s) in new variable(s)

Gain

gain(gainvar anglevar) save the gain and angular frequency

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

smooth(#) sets the smoothing parameter for the Hodrick–Prescott filter. By default, if the units of the
time variable are set to daily, weekly, monthly, quarterly, half-yearly, or yearly, then the Ravn–Uhlig
rule is used to set the smoothing parameter; otherwise, the default value is smooth(1600). The
Ravn–Uhlig rule sets # to 1600p4

q , where pq is the number of periods per quarter. The smoothing
parameter must be greater than 0.

� � �
Trend �

trend(newvar | newvarlist | stub*) saves the trend component(s) in the new variable(s) specified by
newvar, newvarlist, or stub*.

� � �
Gain �

gain(gainvar anglevar) saves the gain in gainvar and its associated angular frequency in anglevar.
Gains are calculated at the N angular frequencies that uniformly partition the interval (0, π], where
N is the sample size.

tsfilter hp — Hodrick–Prescott time-series filter 613

Remarks and examples
We assume that you have already read [TS] tsfilter, which provides an introduction to filtering and

the methods implemented in tsfilter hp, more examples using tsfilter hp, and a comparison
of the four filters implemented by tsfilter. In particular, an understanding of gain functions as
presented in [TS] tsfilter is required to understand these remarks.

tsfilter hp uses the Hodrick–Prescott (HP) high-pass filter to separate a time-series yt into trend
and cyclical components

yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective is to estimate ct, a stationary cyclical component that is driven by stochastic
cycles at a range of periods. The trend component τt is calculated by the difference τt = yt − ct.

Although the HP high-pass filter implemented in tsfilter hp has been widely applied by
macroeconomists, it is a general time-series method and may be of interest to other researchers.

Hodrick and Prescott (1997) motivated the HP filter as a trend-removal technique that could be
applied to data that came from a wide class of data-generating processes. In their view, the technique
specified a trend in the data and the data was filtered by removing the trend. The smoothness of
the trend depends on a parameter λ. The trend becomes smoother as λ → ∞, and Hodrick and
Prescott (1997) recommended setting λ to 1,600 for quarterly data.

King and Rebelo (1993) showed that removing a trend estimated by the HP filter is equivalent to
a high-pass filter. They derived the gain function of this high-pass filter and showed that the filter
would make integrated processes of order 4 or less stationary, making the HP filter comparable to the
other filters implemented in tsfilter.

Example 1: Estimating a business-cycle component

In this and the subsequent examples, we use tsfilter hp to estimate the business-cycle component
of the natural log of real gross domestic product (GDP) of the United States. Our sample of quarterly
data goes from 1952q1 to 2010q4. Below we read in and plot the data.

. use http://www.stata-press.com/data/r14/gdp2
(Federal Reserve Economic Data, St. Louis Fed)

. tsline gdp_ln

7
.5

8
8

.5
9

9
.5

n
a

tu
ra

l
lo

g
 o

f
re

a
l
G

D
P

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

614 tsfilter hp — Hodrick–Prescott time-series filter

The series is nonstationary and is thus a candidate for the HP filter.

Below we use tsfilter hp to filter gdp ln, and we use pergram (see [TS] pergram) to compute
and to plot the periodogram of the estimated cyclical component.

. tsfilter hp gdp_hp = gdp_ln

. pergram gdp_hp, xline(.03125 .16667)

Because our sample is of quarterly data, tsfilter hp used the default value for the smoothing
parameter of 1,600.

In the periodogram, we added vertical lines at the natural frequencies corresponding to the
conventional Burns and Mitchell (1946) values for business-cycle components of 32 periods and
6 periods. pergram displays the results in natural frequencies, which are the standard frequencies
divided by 2π. We use the xline() option to draw vertical lines at the lower natural-frequency cutoff
(1/32 = 0.03125) and the upper natural-frequency cutoff (1/6 ≈ 0.16667).

If the filter completely removed the stochastic cycles at the unwanted frequencies, the periodogram
would be a flat line at the minimum value of −6 outside the range identified by the vertical lines.

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 h
p

 f
ilt

e
r

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

The periodogram reveals a high-periodicity issue and a low-periodicity issue. The points above −6.00
to the left of the left-hand vertical line in the periodogram reveal that the filter did not do a good
job of filtering out the high-periodicity stochastic cycles with the default value smoothing parameter
of 1,600. That there is no tendency of the points to the right of the right-hand vertical line to be
smoothed toward −6.00 reveals that the HP filter did not remove any of the low-periodicity stochastic
cycles. This result is not surprising, because the HP filter is a high-pass filter.

In the next example, we address the high-periodicity issue. See [TS] tsfilter and [TS] tsfilter bw
for how to turn a high-pass filter into a band-pass filter.

Example 2: Choosing the filter parameters

In the filter literature, filter parameters are set as functions of the cutoff frequency; see Pollock (2000,
324), for instance. This method finds the filter parameter that sets the gain of the filter equal to 1/2
at the cutoff frequency. In a technical note in [TS] tsfilter, we showed that applying this method to
selecting λ at the cutoff frequency of 32 periods suggests setting λ ≈ 677.13. In the output below, we

tsfilter hp — Hodrick–Prescott time-series filter 615

estimate the business-cycle component using this value for the smoothing parameter, and we compute
and plot the periodogram of the estimated business-cycle component.

. tsfilter hp gdp_hp677 = gdp_ln, smooth(677.13)

. pergram gdp_hp677, xline(.03125 .16667)

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

−
6

.0
0

−
4

.0
0

−
2

.0
0

0
.0

0
2

.0
0

4
.0

0
6

.0
0

g
d

p
_

ln
 c

y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 h
p

 f
ilt

e
r

L
o

g
 P

e
ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

A comparison of the two periodograms reveals that setting the smoothing parameter to 677.13
removes more of the high-periodicity stochastic cycles than does the default 1,600. In [TS] tsfilter,
we found that the HP filter was not as good at removing the high-periodicity stochastic cycles as
was the Christiano–Fitzgerald filter implemented in tsfilter cf or as was the Butterworth filter
implemented in tsfilter bw.

Below we plot the estimated business-cycle component with recessions identified by the shaded
areas.

−
.0

4
−

.0
2

0
.0

2
.0

4
g

d
p

_
ln

 c
y
c
lic

a
l
c
o

m
p

o
n

e
n

t
fr

o
m

 h
p

 f
ilt

e
r

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1

quarterly time variable

gdp_ln cyclical component from hp filter

tsfilter hp automatically detects panel data from the information provided when the dataset was
tsset or xtset. All calculations are done separately on each panel. Missing values at the beginning
and end of the sample are excluded from the sample. The sample may not contain gaps.

616 tsfilter hp — Hodrick–Prescott time-series filter

Stored results
tsfilter hp stores the following in r():

Scalars
r(smooth) smoothing parameter λ

Macros
r(varlist) original time-series variables
r(filterlist) variables containing estimates of the cyclical components
r(trendlist) variables containing estimates of the trend components, if trend() was specified
r(method) Hodrick-Prescott
r(unit) units of time variable set using tsset or xtset

Methods and formulas
Formally, the filter is defined as the solution to the following optimization problem for τt

minτt

[T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

{(τt+1 − τt)− (τt − τt−1)}2
]

where the smoothing parameter λ is set fixed to a value.

If λ = 0, the solution degenerates to τt = yt, in which case the filter excludes all frequencies,
that is, ct = 0. On the other extreme, as λ→∞, the solution approaches the least-squares fit to the
line τt = β0 + β1t; see Hodrick and Prescott (1997) for a discussion.

For a fixed λ, it can be shown that the cyclical component c′ = (c1, c2, . . . , cT) is calculated by

c = (IT −M−1)y

where y is the column vector y′ = (y1, y2, . . . , yT), IT is the T × T identity matrix, and M is the
T × T matrix:

M =

(1 + λ) −2λ λ 0 0 0 . . . 0
−2λ (1 + 5λ) −4λ λ 0 0 . . . 0
λ −4λ (1 + 6λ) −4λ λ 0 . . . 0
0 λ −4λ (1 + 6λ) −4λ λ . . . 0
...

. . .
. . .

. . .
. . .

.
...

... 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . λ −4λ (1 + 6λ) −4λ λ 0
0 . . . 0 λ −4λ (1 + 6λ) −4λ λ
0 . . . 0 0 λ −4λ (1 + 5λ) −2λ
0 . . . 0 0 0 λ −2λ (1 + λ)

The gain of the HP filter is given by (see King and Rebelo [1993], Maravall and del Rio [2007],

or Harvey and Trimbur [2008])

ψ(ω) =
4λ{1− cos(ω)}2

1 + 4λ{1− cos(ω)}2

tsfilter hp — Hodrick–Prescott time-series filter 617

As discussed in [TS] tsfilter, there are two approaches to selecting λ. One method, based on
the heuristic argument of Hodrick and Prescott (1997), is used to compute the default values for λ.
The method sets λ to 1,600 for quarterly data and to the rescaled values worked out by Ravn and
Uhlig (2002). The rescaled default values for λ are 6.25 for yearly data, 100 for half-yearly data,
129,600 for monthly data, 1600× 124 for weekly data, and 1600× (365/4)4 for daily data.

The second method for selecting λ uses the recommendations of Pollock (2000, 324), who uses
the gain function of the filter to identify a value for λ.

Additional literature critiques the HP filter by pointing out that the HP filter corresponds to a specific
model. Harvey and Trimbur (2008) show that the cyclical component estimated by the HP filter is
equivalent to one estimated by a particular unobserved-components model. Harvey and Jaeger (1993),
Gómez (1999), Pollock (2000), and Gómez (2001) also show this result and provide interesting
comparisons of estimating ct by filtering and model-based methods.

References
Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic

Research.

Gómez, V. 1999. Three equivalent methods for filtering finite nonstationary time series. Journal of Business and
Economic Statistics 17: 109–116.

. 2001. The use of Butterworth filters for trend and cycle estimation in economic time series. Journal of Business
and Economic Statistics 19: 365–373.

Harvey, A. C., and A. Jaeger. 1993. Detrending, stylized facts and the business cycle. Journal of Applied Econometrics
8: 231–247.

Harvey, A. C., and T. M. Trimbur. 2008. Trend estimation and the Hodrick–Prescott filter. Journal of the Japanese
Statistical Society 38: 41–49.

Hodrick, R. J., and E. C. Prescott. 1997. Postwar U.S. business cycles: An empirical investigation. Journal of Money,
Credit, and Banking 29: 1–16.

King, R. G., and S. T. Rebelo. 1993. Low frequency filtering and real business cycles. Journal of Economic Dynamics
and Control 17: 207–231.

Leser, C. E. V. 1961. A simple method of trend construction. Journal of the Royal Statistical Society, Series B 23:
91–107.

Maravall, A., and A. del Rio. 2007. Temporal aggregation, systematic sampling, and the Hodrick–Prescott filter.
Working Paper No. 0728, Banco de España.
http://www.bde.es/webbde/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/07/Fic/dt0728e.pdf.

Pollock, D. S. G. 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic
Press.

. 2000. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics 99: 317–334.

. 2006. Econometric methods of signal extraction. Computational Statistics & Data Analysis 50: 2268–2292.

Ravn, M. O., and H. Uhlig. 2002. On adjusting the Hodrick–Prescott filter for the frequency of observations. Review
of Economics and Statistics 84: 371–376.

Also see
[TS] tsset — Declare data to be time-series data

[XT] xtset — Declare data to be panel data

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[D] format — Set variables’ output format

[TS] tssmooth — Smooth and forecast univariate time-series data

http://www.bde.es/webbde/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/07/Fic/dt0728e.pdf
http://www.bde.es/webbde/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/07/Fic/dt0728e.pdf

Title

tsline — Plot time-series data

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
tsline draws line plots for time-series data.

tsrline draws a range plot with lines for time-series data.

Quick start
Line plot for the time series y1 using tsset data

tsline y1

Add plots of time series y2 and y3

tsline y1 y2 y3

Range plot with lines for the lower and upper values of time series y1 stored in y1 lower and
y1 upper, respectively

tsrline y1_lower y1_upper

Overlay a range plot of the lower and upper values of time series y1 stored in y1 lower and
y1 upper, respectively, on a plot of y1

tsline y1 || tsrline y1_lower y1_upper

Menu
Statistics > Time series > Graphs > Line plots

618

tsline — Plot time-series data 619

Syntax
Time-series line plot[

twoway
]
tsline varlist

[
if
] [

in
] [

, tsline options
]

Time-series range plot with lines[
twoway

]
tsrline y1 y2

[
if
] [

in
] [

, tsrline options
]

where the time variable is assumed set by tsset (see [TS] tsset), varlist has the interpretation
y1

[
y2 . . . yk

]
.

tsline options Description

Plots

scatter options any options documented in [G-2] graph twoway scatter with
the exception of marker options, marker placement options,
and marker label options, which will be ignored if specified

Y axis, Time axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

tsrline options Description

Plots

rline options any options documented in [G-2] graph twoway rline

Y axis, Time axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

Options

� � �
Plots �

scatter options are any of the options allowed by the graph twoway scatter command except that
marker options, marker placement option, and marker label options will be ignored if specified;
see [G-2] graph twoway scatter.

rline options are any of the options allowed by the graph twoway rline command; see [G-2] graph
twoway rline.

� � �
Y axis, Time axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options
for titling the graph (see [G-3] title options), options for saving the graph to disk (see [G-3] sav-
ing option), and the by() option, which will allow you to simultaneously plot different subsets
of the data (see [G-3] by option).

Also see the recast() option discussed in [G-3] advanced options for information on how to
plot spikes, bars, etc., instead of lines.

620 tsline — Plot time-series data

Remarks and examples
Remarks are presented under the following headings:

Basic examples
Advanced example
Video example

Basic examples

Example 1: A time-series line plot

We simulated two separate time series (each of 200 observations) and placed them in a Stata
dataset, tsline1.dta. The first series simulates an AR(2) process with φ1 = 0.8 and φ2 = 0.2; the
second series simulates an MA(2) process with θ1 = 0.8 and θ2 = 0.2. We use tsline to graph
these two series.

. use http://www.stata-press.com/data/r14/tsline1

. tsset lags
time variable: lags, 0 to 199

delta: 1 unit

. tsline ar ma

−
1

0
1

2
3

4

0 50 100 150 200
lags

Simulated AR(.8,.2) Simulated MA(.8,.2)

Example 2: Using options to highlight information

Suppose that we kept a calorie log for an entire calendar year. At the end of the year, we would
have a dataset (for example, tsline2.dta) that contains the number of calories consumed for 365
days. We could then use tsset to identify the date variable and tsline to plot calories versus time.
Knowing that we tend to eat a little more food on Thanksgiving and Christmas day, we use the
ttick() and ttext() options to point out these days on the time axis.

tsline — Plot time-series data 621

. use http://www.stata-press.com/data/r14/tsline2

. tsset day
time variable: day, 01jan2002 to 31dec2002

delta: 1 day

. tsline calories, ttick(28nov2002 25dec2002, tpos(in))
> ttext(3470 28nov2002 "thanks" 3470 25dec2002 "x-mas", orient(vert))

th
a

n
k
s

x
−

m
a

s

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

C
a

lo
ri
e

s
 c

o
n

s
u

m
e

d

01jan2002 01apr2002 01jul2002 01oct2002 01jan2003
Date

Options associated with the time axis allow dates (and times) to be specified in place of numeric
date (and time) values. For instance, we used

ttick(28nov2002 25dec2002, tpos(in))

to place tick marks at the specified dates. This works similarly for tlabel(), tmlabel(), and
tmtick().

Suppose that we wanted to place vertical lines for the previously mentioned holidays. We could
specify the dates in the tline() option as follows:

. tsline calories, tline(28nov2002 25dec2002)

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

C
a

lo
ri
e

s
 c

o
n

s
u

m
e

d

01jan2002 01apr2002 01jul2002 01oct2002 01jan2003
Date

622 tsline — Plot time-series data

Example 3: Formatting the time axis

We could also modify the format of the time axis so that the labeled ticks display only the day
in the year:

. tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)")

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

C
a

lo
ri
e

s
 c

o
n

s
u

m
e

d

Jan1 Apr1 Jul1 Oct1 Jan1
Date (2002)

Advanced example

tsline and tsrline are both commands and plottypes as defined in [G-2] graph twoway. Thus
the syntax for tsline is

. graph twoway tsline ...

. twoway tsline ...

. tsline ...

and similarly for tsrline. Being plot types, these commands may be combined with other plot types
in the twoway family, as in,

. twoway (tsrline . . .) (tsline . . .) (lfit . . .) . . .

which can equivalently be written as

. tsrline . . . || tsline . . . || lfit . . . || . . .

tsline — Plot time-series data 623

Example 4: Combining line and range plots

In the first plot of example 2, we were uncertain of the exact values we logged, so we also gave
a range for each day. Here is a plot of the summer months.

. tsrline lcalories ucalories if tin(1may2002,31aug2002) || tsline calories ||
> if tin(1may2002,31aug2002), ytitle(Calories)

3
3

0
0

3
4

0
0

3
5

0
0

3
6

0
0

3
7

0
0

3
8

0
0

C
a

lo
ri
e

s

01may2002 01jun2002 01jul2002 01aug2002 01sep2002
Date

Calorie range Calories consumed

Video example

Time series, part 2: Line graphs and tin()

References
Cox, N. J. 2009a. Speaking Stata: Graphs for all seasons. Stata Journal 6: 397–419.

. 2009b. Stata tip 76: Separating seasonal time series. Stata Journal 9: 321–326.

. 2012. Speaking Stata: Transforming the time axis. Stata Journal 12: 332–341.

Also see
[TS] tsset — Declare data to be time-series data

[G-2] graph twoway — Twoway graphs

[XT] xtline — Panel-data line plots

http://www.youtube.com/watch?v=JYrnG71zJhM
http://www.stata-journal.com/sjpdf.html?articlenum=gr0025
http://www.stata-journal.com/sjpdf.html?articlenum=gr0037
http://www.stata-journal.com/article.html?article=gr0052

Title

tsreport — Report time-series aspects of a dataset or estimation sample

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
tsreport reports time gaps in a dataset or in a subset of variables. By default, tsreport reports

periods in which no information is recorded in the dataset; the time variable does not include these
periods. When you specify varlist, tsreport reports periods in which either no information is
recorded in the dataset or the time variable is present, but one or more variables in varlist contain a
missing value.

Quick start
Report time gaps in a tsset time-series dataset

tsreport

Report time gaps for the variable y

tsreport y

As above, and report the beginning and ending times of each gap
tsreport y, detail

Report time gaps, ignoring panel changes, using tsset or xtset data
tsreport, panel

Menu
Statistics > Time series > Setup and utilities > Report time-series aspects of dataset

624

tsreport — Report time-series aspects of a dataset or estimation sample 625

Syntax
tsreport

[
varlist

] [
if
] [

in
] [

, options
]

options Description

Main

detail list periods for each gap
casewise treat a period as a gap if any of the specified variables are missing
panel do not count panel changes as gaps

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

detail reports the beginning and ending times of each gap.

casewise specifies that a period for which any of the specified variables are missing be counted as
a gap. By default, gaps are reported for each variable individually.

panel specifies that panel changes not be counted as gaps. Whether panel changes are counted as
gaps usually depends on how the calling command handles panels.

Remarks and examples
Remarks are presented under the following headings:

Basic examples
Video example

Basic examples

Time-series commands sometimes require that observations be on a fixed time interval with no
gaps, or the command may not function properly. tsreport provides a tool for reporting the gaps
in a sample.

Example 1: A simple panel-data example

The following monthly panel data have two panels and a missing month (March) in the second
panel:

. use http://www.stata-press.com/data/r14/tsrptxmpl

. list edlevel month income in 1/6, sep(0)

edlevel month income

1. 1 1998m1 687
2. 1 1998m2 783
3. 1 1998m3 790
4. 2 1998m1 1435
5. 2 1998m2 1522
6. 2 1998m4 1532

626 tsreport — Report time-series aspects of a dataset or estimation sample

Invoking tsreport gives us the following report:
. tsreport

Panel variable: edlevel
Time variable: month

Starting period = 1998m1
Ending period = 1998m4
Observations = 6
Number of gaps = 2
(Gap count includes panel changes)

Two gaps are reported in the sample. We know the second panel is missing the month of March, but
where is the second gap? The note at the bottom of the output is telling us something about panel
changes. Let’s use the detail option to get more information:

. tsreport, detail

Panel variable: edlevel
Time variable: month

Starting period = 1998m1
Ending period = 1998m4
Observations = 6
Number of gaps = 2
(Gap count includes panel changes)

Gap report

Obs. edlevel Start End N. Obs.

3 1 1998m4 . .
5 6 2 1998m3 1998m3 1

We now see what is happening. tsreport is counting the change from the first panel to the second
panel as a gap. Look at the output from the list command above. The value of month in observation
4 is not one month later than the value of month in observation 3, so tsreport reports a gap. (If
we are programmers writing a procedure that does not account for panels, a change from one panel
to the next represents a break in the time series just as a gap in the data does.) For the second gap,
tsreport indicates that just one observation is missing because we are only missing the month of
March. This gap is between observations 5 and 6 of the data.

In other cases, we may not care about changes in panels and not want them counted as gaps. We
can use the panel option to specify that tsreport should ignore panel changes:

. tsreport, detail panel

Panel variable: edlevel
Time variable: month

Starting period = 1998m1
Ending period = 1998m4
Observations = 6
Number of gaps = 1

Gap report

Obs. edlevel Start End N. Obs.

5 6 2 1998m3 1998m3 1

tsreport now indicates there is just one gap, corresponding to March for the second panel.

tsreport — Report time-series aspects of a dataset or estimation sample 627

Example 2: Variables with missing data

We asked two large hotels in Las Vegas to record the prices they were quoting people who called
to make reservations. Because these prices change frequently in response to promotions and market
conditions, we asked the hotels to record their prices hourly. Unfortunately, the managers did not
consider us a top priority, so we are missing some data. Our dataset looks like this:

. use http://www.stata-press.com/data/r14/hotelprice

. list, sep(0)

hour price1 price2

1. 13feb2007 08:00:00 140 245
2. 13feb2007 09:00:00 155 250
3. 13feb2007 10:00:00 . 250
4. 13feb2007 11:00:00 155 250
5. 13feb2007 12:00:00 160 255
6. 13feb2007 13:00:00 . .
7. 13feb2007 14:00:00 165 255
8. 13feb2007 15:00:00 170 260
9. 13feb2007 16:00:00 175 265

10. 13feb2007 17:00:00 180 .
11. 13feb2007 20:00:00 190 270

First, let’s invoke tsreport without specifying price1 or price2. We will specify the detail
option so that we can see the periods corresponding to the gap or gaps reported:

. tsreport, detail

Time variable: hour

Starting period = 13feb2007 08:00:00
Ending period = 13feb2007 20:00:00
Observations = 11
Number of gaps = 1

Gap report

Obs. Start End N. Obs.

10 11 13feb2007 18:00:00 13feb2007 19:00:00 2

One gap is reported, lasting two periods. We have no data corresponding to 6:00 p.m. and 7:00 p.m.
on February 13, 2007.

What about observations 3, 6, and 10? We are missing data on one or both of the price variables for
those observations, but the time variable itself is present for those observations. By default, tsreport
defines gaps as periods in which no information, not even the time variable itself, is recorded.

If we instead want to obtain information about when one or more variables are missing information,
then we specify those variables in our call to tsreport. Here we specify price1, first without the
detail option:

. tsreport price1

Gap summary report

Number of
Variable Start End Obs. Gaps

price1 13feb2007 08:00:00 13feb2007 20:00:00 9 3

628 tsreport — Report time-series aspects of a dataset or estimation sample

The output indicates that we have data on price1 from 8:00 a.m. to 8:00 p.m. However, we only
have 9 observations on price1 during that span because we have 3 gaps in the data. Let’s specify
the detail option to find out where:

. tsreport price1, detail

Variable: price1
Time variable: hour

Starting period = 13feb2007 08:00:00
Ending period = 13feb2007 20:00:00
Observations = 9
Number of gaps = 3

Gap report

Obs. Start End N. Obs.

2 4 13feb2007 10:00:00 13feb2007 10:00:00 1
5 7 13feb2007 13:00:00 13feb2007 13:00:00 1

10 11 13feb2007 18:00:00 13feb2007 19:00:00 2

The three gaps correspond to observations 3 and 6, for which price1 is missing, as well as the
two-period gap in the evening when not even the time variable is recorded in the dataset.

When you specify multiple variables with tsreport, by default, it summarizes gaps in each
variable separately. Apart from combining the information into one table, typing

. tsreport price1 price2

is almost the same as typing

. tsreport price1

. tsreport price2

The only difference between the two methods is that the former stores results for both variables in
r-class macros for later use, whereas if you were to type the latter two commands in succession,
r-class macros would only contain results for price2.

In many types of analyses, including linear regression, you can only use observations for which
all the variables contain nonmissing data. Similarly, you can have tsreport report as gaps periods
in which any of the specified variables contain missing values. To do that, you use the casewise
option.

Example 3: Casewise analyses

Continuing with our hotel data, we specify both price1 and price2 in the variable list of
tsreport. We request casewise analysis, and we specify the detail option to get information on
each gap tsreport finds.

tsreport — Report time-series aspects of a dataset or estimation sample 629

. tsreport price1 price2, casewise detail

Variables: price1 and price2
Time variable: hour

Starting period = 13feb2007 08:00:00
Ending period = 13feb2007 20:00:00
Observations = 8
Number of gaps = 3

Gap report

Obs. Start End N. Obs.

2 4 13feb2007 10:00:00 13feb2007 10:00:00 1
5 7 13feb2007 13:00:00 13feb2007 13:00:00 1

9 11 13feb2007 17:00:00 13feb2007 19:00:00 3

The first gap reported by tsreport corresponds to observation 3, when price1 is missing, and the
second gap corresponds to observation 6, when both price1 and price2 are missing. The third gap
spans 3 observations: the 5:00 p.m. observation is missing for price2, and as we discovered earlier,
not even the time variable is present at 6:00 p.m. and 7:00 p.m.

Video example

Time series, part 1: Formatting dates, tsset, tsreport, and tsfill

Stored results
tsreport, when no varlist is specified or when casewise is specified, stores the following in

r():
Scalars

r(N gaps) number of gaps
r(N obs) number of observations
r(start) first time in series
r(end) last time in series

Macros
r(tsfmt) %fmt of time variable

Matrices
r(table) matrix containing start and end times of each gap, if detail is specified

tsreport, when a varlist is specified and casewise is not specified, stores the following in r():
Scalars

r(N gaps#) number of gaps for variable #
r(N obs#) number of observations for variable #
r(start#) first time in series for variable #
r(end#) last time in series for variable #

Macros
r(tsfmt) %fmt of time variable
r(var#) name of variable #

Matrices
r(table#) matrix containing start and end times of each gap for variable #, if detail is specified

When k variables are specified in varlist, # ranges from 1 to k.

http://www.youtube.com/watch?v=SOQvXICIRNY

630 tsreport — Report time-series aspects of a dataset or estimation sample

Also see
[TS] tsset — Declare data to be time-series data

Title

tsrevar — Time-series operator programming command

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

tsrevar, substitute takes a varlist that might contain op.varname combinations and substitutes
equivalent temporary variables for the combinations.

tsrevar, list creates no new variables. It returns in r(varlist) the list of base variables
corresponding to varlist.

Quick start
Create temporary variables containing the first lag and difference of y using tsset data and store

the temporary variable names in r(varlist)

tsrevar l.y d.y

Store the name of the base variable, y, in r(varlist) and do not create any temporary variables
tsrevar l.y d.y, list

Syntax
tsrevar

[
varlist

] [
if
] [

in
] [

, substitute list
]

You must tsset your data before using tsrevar; see [TS] tsset.

Options

substitute specifies that tsrevar resolve op.varname combinations by creating temporary variables
as described above. substitute is the default action taken by tsrevar; you do not need to
specify the option.

list specifies that tsrevar return a list of base variable names.

Remarks and examples
tsrevar substitutes temporary variables for any op.varname combinations in a variable list. For

instance, the original varlist might be “gnp L.gnp r”, and tsrevar, substitute would create
newvar = L.gnp and create the equivalent varlist “gnp newvar r”. This new varlist could then be
used with commands that do not otherwise support time-series operators, or it could be used in a
program to make execution faster at the expense of using more memory.

631

632 tsrevar — Time-series operator programming command

tsrevar, substitute might create no new variables, one new variable, or many new variables,
depending on the number of op.varname combinations appearing in varlist. Any new variables created
are temporary. The new, equivalent varlist is returned in r(varlist). The new varlist corresponds
one to one with the original varlist.

tsrevar, list returns in r(varlist) the list of base variable names of varlist with the time-
series operators removed. tsrevar, list creates no new variables. For instance, if the original
varlist were “gnp l.gnp l2.gnp r l.cd”, then r(varlist) would contain “gnp r cd”. This is
useful for programmers who might want to create programs to keep only the variables corresponding
to varlist.

Example 1

. use http://www.stata-press.com/data/r14/tsrevarex

. tsrevar l.gnp d.gnp r

creates two temporary variables containing the values for l.gnp and d.gnp. The variable r appears
in the new variable list but does not require a temporary variable.

The resulting variable list is

. display "‘r(varlist)’"
00014P 00014Q r

(Your temporary variable names may be different, but that is of no consequence.)

We can see the results by listing the new variables alongside the original value of gnp.

. list gnp ‘r(varlist)’ in 1/5

gnp __00014P __00014Q r

1. 128 . . 3.2
2. 135 128 7 3.8
3. 132 135 -3 2.6
4. 138 132 6 3.9
5. 145 138 7 4.2

Temporary variables automatically vanish when the program concludes.

If we had needed only the base variable names, we could have specified

. tsrevar l.gnp d.gnp r, list

. display "‘r(varlist)’"
gnp r

The order of the list will probably differ from that of the original list; base variables are listed only
once and are listed in the order that they appear in the dataset.

tsrevar — Time-series operator programming command 633

Technical note
tsrevar, substitute avoids creating duplicate variables. Consider

. tsrevar gnp l.gnp r cd l.cd l.gnp

l.gnp appears twice in the varlist. tsrevar will create only one new variable for l.gnp and use
that new variable twice in the resulting r(varlist). Moreover, tsrevar will even do this across
multiple calls:

. tsrevar gnp l.gnp cd l.cd

. tsrevar cpi l.gnp

l.gnp appears in two separate calls. At the first call, tsrevar creates a temporary variable corre-
sponding to l.gnp. At the second call, tsrevar remembers what it has done and uses that same
temporary variable for l.gnp again.

Stored results
tsrevar stores the following in r():

Macros
r(varlist) the modified variable list or list of base variable names

Also see
[P] syntax — Parse Stata syntax

[P] unab — Unabbreviate variable list

[U] 11 Language syntax
[U] 11.4.4 Time-series varlists
[U] 18 Programming Stata

Title

tsset — Declare data to be time-series data

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
tsset manages the time-series settings of a dataset. tsset timevar declares the data in memory

to be a time series. This allows you to use Stata’s time-series operators and to analyze your data
with the ts commands. tsset panelvar timevar declares the data to be panel data, also known as
cross-sectional time-series data, which contain one time series for each value of panelvar. This allows
you to also analyze your data with the xt commands without having to xtset your data.

tsset without arguments displays how the data are currently set and sorts the data on timevar or
panelvar timevar.

tsset, clear is a rarely used programmer’s command to declare that the data are no longer a
time series.

Quick start
Declare data to be a time series with time variable tvar

tsset tvar

As above, but specify that tvar records time for a weekly time series
tsset tvar, weekly

As above, but specify that observations occur every two weeks
tsset tvar, weekly delta(2)

Declare a panel dataset with panel identifier pvar and time variable tvar

tsset pvar tvar

As above, but specify that observations on each panel are made daily
tsset pvar tvar, daily

As above, but specify that observations on each panel are made every three days
tsset pvar tvar, daily delta(3 days)

Display current time-series settings and sort data by pvar and tvar if they are sorted differently
tsset

Menu
Statistics > Time series > Setup and utilities > Declare dataset to be time-series data

634

tsset — Declare data to be time-series data 635

Syntax
Declare data to be time series

tsset timevar
[
, options

]
tsset panelvar timevar

[
, options

]
Display how data are currently tsset

tsset

Clear time-series settings

tsset, clear

In the declare syntax, panelvar identifies the panels and timevar identifies the times.

options Description

Main

unitoptions specify units of timevar

Delta

deltaoption specify period of timevar

noquery suppress summary calculations and output

noquery is not shown in the dialog box.

unitoptions Description

(default) timevar’s units to be obtained from timevar’s display format
clocktime timevar is %tc: 0 = 1jan1960 00:00:00.000, 1 = 1jan1960 00:00:00.001, . . .
daily timevar is %td: 0 = 1jan1960, 1 = 2jan1960, . . .
weekly timevar is %tw: 0 = 1960w1, 1 = 1960w2, . . .
monthly timevar is %tm: 0 = 1960m1, 1 = 1960m2, . . .
quarterly timevar is %tq: 0 = 1960q1, 1 = 1960q2,. . .
halfyearly timevar is %th: 0 = 1960h1, 1 = 1960h2,. . .
yearly timevar is %ty: 1960 = 1960, 1961 = 1961, . . .
generic timevar is %tg: 0 = ?, 1 = ?, . . .

format(% fmt) specify timevar’s format and then apply default rule

In all cases, negative timevar values are allowed.

636 tsset — Declare data to be time-series data

deltaoption specifies the period between observations in timevar units and may be specified as

deltaoption Example

delta(#) delta(1) or delta(2)
delta((exp)) delta((7*24))

delta(# units) delta(7 days) or delta(15 minutes) or delta(7 days 15 minutes)

delta((exp) units) delta((2+3) weeks)

Allowed units for %tc and %tC timevars are

seconds second secs sec
minutes minute mins min
hours hour
days day
weeks week

and for all other %t timevars, units specified must match the frequency of the data; for example, for
%ty, units must be year or years.

Options

� � �
Main �

unitoptions clocktime, daily, weekly, monthly, quarterly, halfyearly, yearly, generic,
and format(% fmt) specify the units in which timevar is recorded.

timevar will usually be a %t variable; see [D] datetime. If timevar already has a %t display format
assigned to it, you do not need to specify a unitoption; tsset will obtain the units from the
format. If you have not yet bothered to assign the appropriate %t format, however, you can use the
unitoptions to tell tsset the units. Then tsset will set timevar’s display format for you. Thus,
the unitoptions are convenience options; they allow you to skip formatting the time variable. The
following all have the same net result:

Alternative 1 Alternative 2 Alternative 3

format t %td (t not formatted) (t not formatted)
tsset t tsset t, daily tsset t, format(%td)

timevar is not required to be a %t variable; it can be any variable of your own concocting so
long as it takes on only integer values. In such cases, it is called generic and considered to be
%tg. Specifying the unitoption generic or attaching a special format to timevar, however, is not
necessary because tsset will assume that the variable is generic if it has any numerical format
other than a %t format (or if it has a %tg format).

clear—used in tsset, clear—makes Stata forget that the data ever were tsset. This is a rarely
used programmer’s option.

� � �
Delta �

delta() specifies the period of timevar and is commonly used when timevar is %tc. delta() is
only sometimes used with the other %t formats or with generic time variables.

tsset — Declare data to be time-series data 637

If delta() is not specified, delta(1) is assumed. This means that at timevar = 5, the previous
time is timevar = 5 − 1 = 4 and the next time would be timevar = 5 + 1 = 6. Lag and lead
operators, for instance, would work this way. This would be assumed regardless of the units of
timevar.

If you specified delta(2), then at timevar = 5, the previous time would be timevar = 5− 2 = 3
and the next time would be timevar = 5 + 2 = 7. Lag and lead operators would work this way.
In the observation with timevar = 5, L.price would be the value of price in the observation
for which timevar = 3 and F.price would be the value of price in the observation for which
timevar = 7. If you then add an observation with timevar = 4, the operators will still work
appropriately; that is, at timevar = 5, L.price will still have the value of price at timevar = 3.

There are two aspects of timevar: its units and its periodicity. The unitoptions set the units.
delta() sets the periodicity.

We mentioned that delta() is commonly used with %tc timevars because Stata’s %tc variables
have units of milliseconds. If delta() is not specified and in some model you refer to L.price,
you will be referring to the value of price 1 ms ago. Few people have data with periodicity
of a millisecond. Perhaps your data are hourly. You could specify delta(3600000). Or you
could specify delta((60*60*1000)), because delta() will allow expressions if you include an
extra pair of parentheses. Or you could specify delta(1 hour). They all mean the same thing:
timevar has periodicity of 3,600,000 ms. In an observation for which timevar = 1,489,572,000,000
(corresponding to 15mar2007 10:00:00), L.price would be the observation for which timevar =
1,489,572,000,000− 3,600,000 = 1,489,568,400,000 (corresponding to 15mar2007 9:00:00).

When you tsset the data and specify delta(), tsset verifies that all the observations follow the
specified periodicity. For instance, if you specified delta(2), then timevar could contain any subset
of {. . . ,−4,−2, 0, 2, 4, . . . } or it could contain any subset of {. . . ,−3,−1, 1, 3, . . . }. If timevar
contained a mix of values, tsset would issue an error message. If you also specify panelvar—you
type tsset panelvar timevar, delta(2)—the check is made on each panel independently. One
panel might contain timevar values from one set and the next, another, and that would be fine.

The following option is available with tsset but is not shown in the dialog box:

noquery prevents tsset from performing most of its summary calculations and suppresses output.
With this option, only the following results are posted:

r(tdelta) r(tsfmt)
r(panelvar) r(unit)
r(timevar) r(unit1)

Remarks and examples

Remarks are presented under the following headings:

Overview
Panel data
Video example

638 tsset — Declare data to be time-series data

Overview

tsset sets timevar so that Stata’s time-series operators are understood in varlists and expressions.
The time-series operators are

Operator Meaning

L. lag xt−1

L2. 2-period lag xt−2

. . .

F. lead xt+1

F2. 2-period lead xt+2

. . .

D. difference xt − xt−1

D2. difference of difference xt − xt−1 − (xt−1 − xt−2) = xt − 2xt−1 + xt−2

. . .

S. “seasonal” difference xt − xt−1

S2. lag-2 (seasonal) difference xt − xt−2

. . .

Time-series operators may be repeated and combined. L3.gnp refers to the third lag of variable
gnp, as do LLL.gnp, LL2.gnp, and L2L.gnp. LF.gnp is the same as gnp. DS12.gnp refers to the
one-period difference of the 12-period difference. LDS12.gnp refers to the same concept, lagged
once.

D1. = S1., but D2. 6= S2., D3. 6= S3., and so on. D2. refers to the difference of the difference.
S2. refers to the two-period difference. If you wanted the difference of the difference of the 12-period
difference of gnp, you would write D2S12.gnp.

Operators may be typed in uppercase or lowercase. Most users would type d2s12.gnp instead of
D2S12.gnp.

You may type operators however you wish; Stata internally converts operators to their canonical
form. If you typed ld2ls12d.gnp, Stata would present the operated variable as L2D3S12.gnp.

Stata also understands operator(numlist). to mean a set of operated variables. For instance, typing
L(1/3).gnp in a varlist is the same as typing ‘L.gnp L2.gnp L3.gnp’. The operators can also be
applied to a list of variables by enclosing the variables in parentheses; for example,

. list year L(1/3).(gnp cpi)

year L.gnp L2.gnp L3.gnp L.cpi L2.cpi L3.cpi

1. 1989
2. 1990 5452.8 . . 100 . .
3. 1991 5764.9 5452.8 . 105 100 .
4. 1992 5932.4 5764.9 5452.8 108 105 100

(output omitted)
8. 1996 7330.1 6892.2 6519.1 122 119 112

In operator#., making # zero returns the variable itself. L0.gnp is gnp. Thus, you can type list
year l(0/3).gnp to mean list year gnp L.gnp L2.gnp L3.gnp.

The parenthetical notation may be used with any operator. Typing D(1/3).gnp would return the
first through third differences.

tsset — Declare data to be time-series data 639

The parenthetical notation may be used in operator lists with multiple operators, such as
L(0/3)D2S12.gnp.

Operator lists may include up to one set of parentheses, and the parentheses may enclose a numlist;
see [U] 11.1.8 numlist.

Before you can use these time-series operators, however, the dataset must satisfy two requirements:

1. the dataset must be tsset and

2. the dataset must be sorted by timevar or, if it is a cross-sectional time-series dataset, by panelvar
timevar.

tsset handles both requirements. As you use Stata, however, you may later use a command that
re-sorts that data, and if you do, the time-series operators will not work:

. tsset time
(output omitted)

. regress y x l.x
(output omitted)

. (you continue to use Stata and, sometime later:)

. regress y x l.x
not sorted
r(5);

Then typing tsset without arguments will reestablish the sort order:

. tsset
(output omitted)

. regress y x l.x
(output omitted)

Here typing tsset is the same as typing sort time. Had we previously tsset country time,
however, typing tsset would be the same as typing sort country time. You can type the sort
command or type tsset without arguments; it makes no difference.

There are two syntaxes for setting your data:

tsset timevar
tsset panelvar timevar

In both, timevar must contain integer values. If panelvar is specified, it too must contain integer values,
and the dataset is declared to be a cross-section of time series, such as a collection of time series
for different countries. Such datasets can be analyzed with xt commands as well as ts commands.
If you tsset panelvar timevar, you do not need to xtset the data to use the xt commands.

If you save the data after typing tsset, the data will be remembered to be time series, and you
will not have to tsset the data again.

Example 1: Numeric time variable

You have monthly data on personal income. Variable t records the time of an observation, but
there is nothing special about the name of the variable. There is nothing special about the values of
the variable, either. t is not required to be %tm variable—perhaps you do not even know what that
means. t is just a numeric variable containing integer values that represent the month, and we will
imagine that t takes on the values 1, 2, . . . , 9, although it could just as well be −3, −2 . . . , 5,
or 1,023, 1,024, . . . , 1,031. What is important is that the values are dense: adjacent months have a
time value that differs by 1.

640 tsset — Declare data to be time-series data

. use http://www.stata-press.com/data/r14/tssetxmpl

. list t income

t income

1. 1 1153
2. 2 1181

(output omitted)
9. 9 1282

. tsset t
time variable: t, 1 to 9

delta: 1 unit

. regress income l.income

(output omitted)

Example 2: Adjusting the starting date

In the example above, that t started at 1 was not important. As we said, the t variable could
just as well be recorded −3, −2 . . . , 5, or 1,023, 1,024, . . . , 1,031. What is important is that the
difference in t between observations be delta() when there are no gaps.

Although how time is measured makes no difference, Stata has formats to display time nicely if
it is recorded in certain ways; you can learn about the formats by seeing [D] datetime. Stata likes
time variables in which 1jan1960 is recorded as 0. In our previous example, if t = 1 corresponds to
July 1995, then we could make a variable that fits Stata’s preference by typing

. generate newt = tm(1995m7) + t - 1

tm() is the function that returns a month equivalent; tm(1995m7) evaluates to the constant 426,
meaning 426 months after January 1960. We now have variable newt containing

. list t newt income

t newt income

1. 1 426 1153
2. 2 427 1181
3. 3 428 1208

(output omitted)
9. 9 434 1282

If we put a %tm format on newt, it will display more cleanly:

. format newt %tm

. list t newt income

t newt income

1. 1 1995m7 1153
2. 2 1995m8 1181
3. 3 1995m9 1208

(output omitted)
9. 9 1996m3 1282

tsset — Declare data to be time-series data 641

We could now tsset newt rather than t:

. tsset newt
time variable: newt, 1995m7 to 1996m3

delta: 1 month

Technical note
In addition to monthly, Stata understands clock times (to the millisecond level) as well as daily,

weekly, quarterly, half-yearly, and yearly data. See [D] datetime for a description of these capabilities.

Let’s reconsider the previous example, but rather than monthly, let’s assume the data are daily,
weekly, etc. The only thing to know is that, corresponding to function tm(), there are functions
td(), tw(), tq(), th(), and ty() and that, corresponding to format %tm, there are formats %td,
%tw, %tq, %th, and %ty. Here is what we would have typed had our data been on a different time
scale:

Daily: if your t variable had t=1 corresponding to 15mar1993
. generate newt = td(15mar1993) + t - 1
. tsset newt, daily

Weekly: if your t variable had t=1 corresponding to 1994w1:
. generate newt = tw(1994w1) + t - 1
. tsset newt, weekly

Monthly: if your t variable had t=1 corresponding to 2004m7:
. generate newt = tm(2004m7) + t - 1
. tsset newt, monthly

Quarterly: if your t variable had t=1 corresponding to 1994q1:
. generate newt = tq(1994q1) + t - 1
. tsset newt, quarterly

Half-yearly: if your t variable had t=1 corresponding to 1921h2:
. generate newt = th(1921h2) + t - 1
. tsset newt, halfyearly

Yearly: if your t variable had t=1 corresponding to 1842:
. generate newt = 1842 + t - 1
. tsset newt, yearly

In each example above, we subtracted one from our time variable in constructing the new time
variable newt because we assumed that our starting time value was 1. For the quarterly example, if
our starting time value were 5 and that corresponded to 1994q1, we would type

. generate newt = tq(1994q1) + t - 5

Had our initial time value been t = 742 and that corresponded to 1994q1, we would have typed

. generate newt = tq(1994q1) + t - 742

642 tsset — Declare data to be time-series data

Example 3: Time-series data but no time variable

Perhaps we have the same time-series data but no time variable:

. use http://www.stata-press.com/data/r14/tssetxmpl2, clear

. list income

income

1. 1153
2. 1181
3. 1208
4. 1272
5. 1236

6. 1297
7. 1265
8. 1230
9. 1282

Say that we know that the first observation corresponds to July 1995 and continues without gaps. We
can create a monthly time variable and format it by typing

. generate t = tm(1995m7) + _n - 1

. format t %tm

We can now tsset our dataset and list it:

. tsset t
time variable: t, 1995m7 to 1996m3

delta: 1 month

. list t income

t income

1. 1995m7 1153
2. 1995m8 1181
3. 1995m9 1208

(output omitted)
9. 1996m3 1282

tsset — Declare data to be time-series data 643

Example 4: Time variable as a string

Your data might include a time variable that is encoded into a string. In the example below
each monthly observation is identified by string variable yrmo containing the month and year of the
observation, sometimes with punctuation between:

. use http://www.stata-press.com/data/r14/tssetxmpl, clear

. list yrmo income

yrmo income

1. 7/1995 1153
2. 8/1995 1181
3. 9-1995 1208
4. 10,1995 1272
5. 11 1995 1236

6. 12 1995 1297
7. 1/1996 1265
8. 2.1996 1230
9. 3- 1996 1282

The first step is to convert the string to a numeric representation. Doing so is easy using the monthly()
function; see [D] datetime.

. generate mdate = monthly(yrmo, "MY")

. list yrmo mdate income

yrmo mdate income

1. 7/1995 426 1153
2. 8/1995 427 1181
3. 9-1995 428 1208

(output omitted)
9. 3- 1996 434 1282

Our new variable, mdate, contains the number of months from January 1960. Now that we have
numeric variable mdate, we can tsset the data:

. format mdate %tm

. tsset mdate
time variable: mdate, 1995m7 to 1996m3

delta: 1 month

In fact, we can combine the two and type

. tsset mdate, format(%tm)
time variable: mdate, 1995m7 to 1996m3

delta: 1 month

or type

. tsset mdate, monthly
time variable: mdate, 1995m7 to 1996m3

delta: 1 month

644 tsset — Declare data to be time-series data

In all cases, we obtain

. list yrmo mdate income

yrmo mdate income

1. 7/1995 1995m7 1153
2. 8/1995 1995m8 1181
3. 9-1995 1995m9 1208
4. 10,1995 1995m10 1272
5. 11 1995 1995m11 1236

6. 12 1995 1995m12 1297
7. 1/1996 1996m1 1265
8. 2.1996 1996m2 1230
9. 3- 1996 1996m3 1282

Stata can translate many different date formats, including strings like 12jan2009; January 12, 2009;
12-01-2009; 01/12/2009; 01/12/09; 12jan2009 8:14; 12-01-2009 13:12; 01/12/09 1:12 pm; Wed Jan
31 13:03:25 CST 2009; 1998q1; and more. See [D] datetime.

Example 5: Time-series data with gaps

Gaps in the time series cause no difficulties:

. use http://www.stata-press.com/data/r14/tssetxmpl3, clear

. list yrmo income

yrmo income

1. 7/1995 1153
2. 8/1995 1181
3. 11 1995 1236
4. 12 1995 1297
5. 1/1996 1265

6. 3- 1996 1282

. generate mdate = monthly(yrmo, "MY")

. tsset mdate, monthly
time variable: mdate, 1995m7 to 1996m3, but with gaps

delta: 1 month

Once the dataset has been tsset, we can use the time-series operators. The D operator specifies first
differences:

. list mdate income d.income

mdate income D.income

1. 1995m7 1153 .
2. 1995m8 1181 28
3. 1995m11 1236 .
4. 1995m12 1297 61
5. 1996m1 1265 -32

6. 1996m3 1282 .

tsset — Declare data to be time-series data 645

We can use the operators in an expression or varlist context; we do not have to create a new variable
to hold D.income. We can use D.income with the list command, with regress or any other Stata
command that allows time-series varlists.

Example 6: Clock times

We have data from a large hotel in Las Vegas that changes the reservation prices for its rooms
hourly. A piece of the data looks like

. use http://www.stata-press.com/data/r14/tssetxmpl4, clear

. list in 1/5

time price

1. 02.13.2007 08:00 140
2. 02.13.2007 09:00 155
3. 02.13.2007 10:00 160
4. 02.13.2007 11:00 155
5. 02.13.2007 12:00 160

Variable time is a string variable. The first step in making this dataset a time-series dataset is to
translate the string to a numeric variable:

. generate double t = clock(time, "MDY hm")

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1.487e+12
2. 02.13.2007 09:00 155 1.487e+12
3. 02.13.2007 10:00 160 1.487e+12
4. 02.13.2007 11:00 155 1.487e+12
5. 02.13.2007 12:00 160 1.487e+12

See [D] datetime for an explanation of what is going on here. clock() is the function that converts
strings to datetime (%tc) values. We typed clock(time, "MDY hm") to convert string variable time,
and we told clock() that the values in time were in the order month, day, year, hour, and minute.
We stored new variable t as a double because time values are large, and doing so is required to
prevent rounding. Even so, the resulting values 1.487e+12 look rounded, but that is only because of
the default display format for new variables. We can see the values better if we change the format:

. format t %20.0gc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1,486,972,800,000
2. 02.13.2007 09:00 155 1,486,976,400,000
3. 02.13.2007 10:00 160 1,486,980,000,000
4. 02.13.2007 11:00 155 1,486,983,600,000
5. 02.13.2007 12:00 160 1,486,987,200,000

646 tsset — Declare data to be time-series data

Even better would be to change the format to %tc—Stata’s clock-time format:

. format t %tc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 13feb2007 08:00:00
2. 02.13.2007 09:00 155 13feb2007 09:00:00
3. 02.13.2007 10:00 160 13feb2007 10:00:00
4. 02.13.2007 11:00 155 13feb2007 11:00:00
5. 02.13.2007 12:00 160 13feb2007 12:00:00

We could drop variable time. New variable t contains the same information as time and t is better
because it is a Stata time variable, the most important property of which being that it is numeric
rather than string. We can tsset it. Here, however, we also need to specify the period with tsset’s
delta() option. Stata’s time variables are numeric, but they record milliseconds since 01jan1960
00:00:00. By default, tsset uses delta(1), and that means the time-series operators would not
work as we want them to work. For instance, L.price would look back only 1 ms (and find nothing).
We want L.price to look back 1 hour (3,600,000 ms):

. tsset t, delta(1 hour)
time variable: t,

13feb2007 08:00:00.000 to 13feb2007 14:00:00.000
delta: 1 hour

. list t price l.price in 1/5

t price L.price

1. 13feb2007 08:00:00 140 .
2. 13feb2007 09:00:00 155 140
3. 13feb2007 10:00:00 160 155
4. 13feb2007 11:00:00 155 160
5. 13feb2007 12:00:00 160 155

Example 7: Clock times must be double

In the previous example, it was of vital importance that when we generated the %tc variable t,

. generate double t = clock(time, "MDY hm")

we generated it as a double. Let’s see what would have happened had we forgotten and just typed
generate t = clock(time, "MDY hm"). Let’s go back and start with the same original data:

. use http://www.stata-press.com/data/r14/tssetxmpl4, clear

. list in 1/5

time price

1. 02.13.2007 08:00 140
2. 02.13.2007 09:00 155
3. 02.13.2007 10:00 160
4. 02.13.2007 11:00 155
5. 02.13.2007 12:00 160

tsset — Declare data to be time-series data 647

Remember, variable time is a string variable, and we need to translate it to numeric. So we translate,
but this time we forget to make the new variable a double:

. generate t = clock(time, "MDY hm")

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1.49e+12
2. 02.13.2007 09:00 155 1.49e+12
3. 02.13.2007 10:00 160 1.49e+12
4. 02.13.2007 11:00 155 1.49e+12
5. 02.13.2007 12:00 160 1.49e+12

We see the first difference—t now lists as 1.49e+12 rather than 1.487e+12 as it did previously—but
this is nothing that would catch our attention. We would not even know that the value is different.
Let’s continue.

We next put a %20.0gc format on t to better see the numerical values. In fact, that is not something
we would usually do in an analysis. We did that in the example to emphasize to you that the t values
were really big numbers. We will repeat the exercise just to be complete, but in real analysis, we
would not bother.

. format t %20.0gc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1,486,972,780,544
2. 02.13.2007 09:00 155 1,486,976,450,560
3. 02.13.2007 10:00 160 1,486,979,989,504
4. 02.13.2007 11:00 155 1,486,983,659,520
5. 02.13.2007 12:00 160 1,486,987,198,464

Okay, we see big numbers in t. Let’s continue.

Next we put a %tc format on t, and that is something we would usually do, and you should
always do. You should also list a bit of the data, as we did:

. format t %tc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 13feb2007 07:59:40
2. 02.13.2007 09:00 155 13feb2007 09:00:50
3. 02.13.2007 10:00 160 13feb2007 09:59:49
4. 02.13.2007 11:00 155 13feb2007 11:00:59
5. 02.13.2007 12:00 160 13feb2007 11:59:58

By now, you should see a problem: the translated datetime values are off by a second or two. That
was caused by rounding. Dates and times should be the same, not approximately the same, and when
you see a difference like this, you should say to yourself, “The translation is off a little. Why is
that?” and then you should think, “Of course, rounding. I bet that I did not create t as a double.”

648 tsset — Declare data to be time-series data

Let us assume, however, that you do not do this. You instead plow ahead:

. tsset t, delta(1 hour)
time values with period less than delta() found
r(451);

And that is what will happen when you forget to create t as a double. The rounding will cause
uneven period, and tsset will complain.

By the way, it is only important that clock times (%tc and %tC variables) be stored as doubles.
The other date values %td, %tw, %tm, %tq, %th, and %ty are small enough that they can safely be
stored as floats, although forgetting and storing them as doubles does no harm.

Technical note
Stata provides two clock-time formats, %tc and %tC. %tC provides a clock with leap seconds. Leap

seconds are occasionally inserted to account for randomness of the earth’s rotation, which gradually
slows. Unlike the extra day inserted in leap years, the timing of when leap seconds will be inserted
cannot be foretold. The authorities in charge of such matters announce a leap second approximately
6 months before insertion. Leap seconds are inserted at the end of the day, and the leap second is
called 23:59:60 (that is, 11:59:60 p.m.), which is then followed by the usual 00:00:00 (12:00:00 a.m.).
Most nonastronomers find these leap seconds vexing. The added seconds cause problems because
of their lack of predictability—knowing how many seconds there will be between 01jan2012 and
01jan2013 is not possible—and because there are not necessarily 24 hours in a day. If you use a leap
second adjusted–clock, most days have 24 hours, but a few have 24 hours and 1 second. You must
look at a table to find out.

From a time-series analysis point of view, the nonconstant day causes the most problems. Let’s
say that you have data on blood pressure, taken hourly at 1:00, 2:00, . . . , and that you have tsset
your data with delta(1 hour). On most days, L24.bp would be blood pressure at the same time
yesterday. If the previous day had a leap second, however, and your data were recorded using a
leap second adjusted–clock, there would be no observation L24.bp because 86,400 seconds before
the current reading does not correspond to an on-the-hour time; 86,401 seconds before the current
reading corresponds to yesterday’s time. Thus, whenever possible, using Stata’s %tc encoding rather
than %tC is better.

When times are recorded by computers using leap second–adjusted clocks, however, avoiding %tC
is not possible. For performing most time-series analysis, the recommended procedure is to map the
%tC values to %tc and then tsset those. You must ask yourself whether the process you are studying
is based on the clock—the nurse does something at 2 o’clock every day—or the true passage of
time—the emitter spits out an electron every 86,400,000 ms.

When dealing with computer-recorded times, first find out whether the computer (and its time-
recording software) use a leap second–adjusted clock. If it does, translate that to a %tC value. Then
use function cofC() to convert to a %tc value and tsset that. If variable T contains the %tC value,

. generate double t = cofC(T)

. format t %tc

. tsset t, delta(. . .)

Function cofC() moves leap seconds forward: 23:59:60 becomes 00:00:00 of the next day.

tsset — Declare data to be time-series data 649

Panel data

Example 8: Time-series data for multiple groups

Assume that we have a time series on average annual income and that we have the series for two
groups: individuals who have not completed high school (edlevel = 1) and individuals who have
(edlevel = 2).

. use http://www.stata-press.com/data/r14/tssetxmpl5, clear

. list edlevel year income, sep(0)

edlevel year income

1. 1 1988 14500
2. 1 1989 14750
3. 1 1990 14950
4. 1 1991 15100
5. 2 1989 22100
6. 2 1990 22200
7. 2 1992 22800

We declare the data to be a panel by typing

. tsset edlevel year, yearly
panel variable: edlevel, (unbalanced)
time variable: year, 1988 to 1992, but with a gap

delta: 1 year

Having tsset the data, we can now use time-series operators. The difference operator, for example,
can be used to list annual changes in income:

. list edlevel year income d.income, sep(0)

edlevel year income D.income

1. 1 1988 14500 .
2. 1 1989 14750 250
3. 1 1990 14950 200
4. 1 1991 15100 150
5. 2 1989 22100 .
6. 2 1990 22200 100
7. 2 1992 22800 .

We see that in addition to producing missing values due to missing times, the difference operator
correctly produced a missing value at the start of each panel. Once we have tsset our panel data,
we can use time-series operators and be assured that they will handle missing time periods and panel
changes correctly.

650 tsset — Declare data to be time-series data

Video example

Time series, part 1: Formatting dates, tsset, tsreport, and tsfill

Stored results
tsset stores the following in r():

Scalars
r(imin) minimum panel ID
r(imax) maximum panel ID
r(tmin) minimum time
r(tmax) maximum time
r(tdelta) delta

Macros
r(panelvar) name of panel variable
r(timevar) name of time variable
r(tdeltas) formatted delta
r(tmins) formatted minimum time
r(tmaxs) formatted maximum time
r(tsfmt) %fmt of time variable
r(unit) units of time variable: Clock, clock, daily, weekly, monthly, quarterly,

halfyearly, yearly, or generic
r(unit1) units of time variable: C, c, d, w, m, q, h, y, or ""
r(balanced) unbalanced, weakly balanced, or strongly balanced; a set of panels

are strongly balanced if they all have the same time values, otherwise
balanced if same number of time values, otherwise unbalanced

References
Baum, C. F. 2000. sts17: Compacting time series data. Stata Technical Bulletin 57: 44–45. Reprinted in Stata Technical

Bulletin Reprints, vol. 10, pp. 369–370. College Station, TX: Stata Press.

Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Also see
[TS] tsfill — Fill in gaps in time variable

http://www.youtube.com/watch?v=SOQvXICIRNY
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0052
http://www.stata-journal.com/article.html?article=dm0065

Title

tssmooth — Smooth and forecast univariate time-series data

Description Syntax Remarks and examples References Also see

Description
tssmooth creates new variable newvar and fills it in by passing the specified expression (usually

a variable name) through the requested smoother.

Syntax
tssmooth smoother

[
type

]
newvar = exp

[
if
] [

in
] [

, . . .
]

Smoother category smoother

Moving average
with uniform weights ma
with specified weights ma

Recursive
exponential exponential
double exponential dexponential
nonseasonal Holt–Winters hwinters
seasonal Holt–Winters shwinters

Nonlinear filter nl

See [TS] tssmooth ma, [TS] tssmooth exponential, [TS] tssmooth dexponential,
[TS] tssmooth hwinters, [TS] tssmooth shwinters, and [TS] tssmooth nl.

Remarks and examples
The recursive smoothers may also be used for forecasting univariate time series; indeed, the

Holt–Winters methods are used almost exclusively for this. All can perform dynamic out-of-sample
forecasts, and the smoothing parameters may be chosen to minimize the in-sample sum-of-squared
prediction errors.

The moving-average and nonlinear smoothers are generally used to extract the trend—or signal—
from a time series while omitting the high-frequency or noise components.

All smoothers work both with time-series data and panel data. When used with panel data, the
calculation is performed separately within panel.

Several texts provide good introductions to the methods available in tssmooth. Chatfield (2004)
discusses how these methods fit into time-series analysis in general. Abraham and Ledolter (1983);
Montgomery, Johnson, and Gardiner (1990); Bowerman, O’Connell, and Koehler (2005); and Chat-
field (2001) discuss using these methods for modern time-series forecasting. Becketti (2013) includes
a Stata-centric discussion of these techniques. As he emphasizes, these methods often work as well as
more complicated methods and are easier to explain to lay audiences. Do not dismiss these techniques
as being too simplistic or inferior.

651

652 tssmooth — Smooth and forecast univariate time-series data

References
Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Bowerman, B. L., R. T. O’Connell, and A. B. Koehler. 2005. Forecasting, Time Series, and Regression: An Applied
Approach. 4th ed. Pacific Grove, CA: Brooks/Cole.

Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.

. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.

Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting 20: 5–10.

Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New
York: McGraw–Hill.

Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.

Also see
[TS] tsset — Declare data to be time-series data

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[R] smooth — Robust nonlinear smoother

http://www.stata-press.com/books/introduction-to-time-series-using-stata/

Title

tssmooth dexponential — Double-exponential smoothing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tssmooth dexponential models the trend of a variable whose difference between changes from
the previous values is serially correlated. More precisely, it models a variable whose second difference
follows a low-order, moving-average process.

Quick start
Create smooth using a double-exponential smoother over y with tsset data

tssmooth dexponential smooth=y

As above, but forecast 10 periods out of sample
tssmooth dexponential smooth=y, forecast(10)

As above, but use 111 and 112 as the initial values for the recursion
tssmooth dexponential smooth=y, forecast(10) s0(111 112)

As above, but use 0.5 as the smoothing parameter
tssmooth dexponential smooth=y, forecast(10) s0(111 112) parms(.5)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Double-exponential smoothing

653

654 tssmooth dexponential — Double-exponential smoothing

Syntax

tssmooth dexponential
[

type
]

newvar = exp
[

if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α) use #α as smoothing parameter
samp0(#) use # observations to obtain initial values for recursions
s0(#1 #2) use #1 and #2 as initial values for recursions
forecast(#) use # periods for the out-of-sample forecast

You must tsset your data before using tssmooth dexponential; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α) specifies the parameter α for the double-exponential smoothers; 0 < #α < 1. If
parms(#α) is not specified, the smoothing parameter is chosen to minimize the in-sample
sum-of-squared forecast errors.

samp0(#) and s0(#1 #2) are mutually exclusive ways of specifying the initial values for the recursion.

By default, initial values are obtained by fitting a linear regression with a time trend, using the
first half of the observations in the dataset; see Remarks and examples.

samp0(#) specifies that the first # be used in that regression.

s0(#1 #2) specifies that #1 #2 be used as initial values.

forecast(#) specifies the number of periods for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0), which is equivalent to not performing an out-of-sample forecast.

Remarks and examples
The double-exponential smoothing procedure is designed for series that can be locally approximated

as
x̂t = mt + btt

where x̂t is the smoothed or predicted value of the series x, and the terms mt and bt change over time.
Abraham and Ledolter (1983), Bowerman, O’Connell, and Koehler (2005), and Montgomery, Johnson,
and Gardiner (1990) all provide good introductions to double-exponential smoothing. Chatfield (2001,
2004) provides helpful discussions of how double-exponential smoothing relates to modern time-series
methods.

The double-exponential method has been used both as a smoother and as a prediction method.
[TS] tssmooth exponential shows that the single-exponential smoothed series is given by

St = αxt + (1− α)St−1

tssmooth dexponential — Double-exponential smoothing 655

where α is the smoothing constant and xt is the original series. The double-exponential smoother is
obtained by smoothing the smoothed series,

S
[2]
t = αSt + (1− α)S

[2]
t−1

Values of S0 and S
[2]
0 are necessary to begin the process. Per Montgomery, Johnson, and Gar-

diner (1990), the default method is to obtain S0 and S[2]
0 from a regression of the first Npre values

of xt on t̃ = (1, . . . , Npre − t0)′. By default, Npre is equal to one-half the number of observations
in the sample. Npre can be specified using the samp0() option.

The values of S0 and S[2]
0 can also be specified using the option s0().

Example 1: Smoothing a locally trending series

Suppose that we had some data on the monthly sales of a book and that we wanted to smooth
this series. The graph below illustrates that this series is locally trending over time, so we would not
want to use single-exponential smoothing.

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
S

a
le

s

0 20 40 60
Time

Monthly book sales

656 tssmooth dexponential — Double-exponential smoothing

The following example illustrates that double-exponential smoothing is simply smoothing the
smoothed series. Because the starting values are treated as time-zero values, we actually lose 2
observations when smoothing the smoothed series.

. use http://www.stata-press.com/data/r14/sales2

. tssmooth exponential double sm1=sales, p(.7) s0(1031)

exponential coefficient = 0.7000
sum-of-squared residuals = 13923
root mean squared error = 13.192

. tssmooth exponential double sm2=sm1, p(.7) s0(1031)

exponential coefficient = 0.7000
sum-of-squared residuals = 7698.6
root mean squared error = 9.8098

. tssmooth dexponential double sm2b=sales, p(.7) s0(1031 1031)

double-exponential coefficient = 0.7000
sum-of-squared residuals = 3724.4
root mean squared error = 6.8231

. generate double sm2c = f2.sm2
(2 missing values generated)

. list sm2b sm2c in 1/10

sm2b sm2c

1. 1031 1031
2. 1028.3834 1028.3834
3. 1030.6306 1030.6306
4. 1017.8182 1017.8182
5. 1022.938 1022.938

6. 1026.0752 1026.0752
7. 1041.8587 1041.8587
8. 1042.8341 1042.8341
9. 1035.9571 1035.9571

10. 1030.6651 1030.6651

The double-exponential method can also be viewed as a forecasting mechanism. The exponential
forecast method is a constrained version of the Holt–Winters method implemented in [TS] tssmooth
hwinters (as discussed by Gardner [1985] and Chatfield [2001]). Chatfield (2001) also notes that the
double-exponential method arises when the underlying model is an ARIMA(0,2,2) with equal roots.

This method produces predictions x̂t for t = t1, . . . , T + forecast(). These predictions are
obtained as a function of the smoothed series and the smoothed-smoothed series. For t ∈ [t0, T],

x̂t =
(

2 +
α

1− α

)
St −

(
1 +

α

1− α

)
S

[2]
t

where St and S[2]
t are as given above.

The out-of-sample predictions are obtained as a function of the constant term, the linear term of the
smoothed series at the last observation in the sample, and time. The constant term is aT = 2ST −S[2]

T ,
and the linear term is bT = α

1−α (ST − S[2]
T). The τ th-step-ahead out-of-sample prediction is given

by
x̂t = at + τbT

tssmooth dexponential — Double-exponential smoothing 657

Example 2: Forecasting a locally trending series

Specifying the forecast option puts the double-exponential forecast into the new variable instead
of the double-exponential smoothed series. The code given below uses the smoothed series sm1 and
sm2 that were generated above to illustrate how the double-exponential forecasts are computed.

. tssmooth dexponential double f1=sales, p(.7) s0(1031 1031) forecast(4)

double-exponential coefficient = 0.7000
sum-of-squared residuals = 20737
root mean squared error = 16.1

. generate double xhat = (2 + .7/.3) * sm1 - (1 + .7/.3)* f.sm2
(5 missing values generated)

. list xhat f1 in 1/10

xhat f1

1. 1031 1031
2. 1031 1031
3. 1023.524 1023.524
4. 1034.8039 1034.8039
5. 994.0237 994.0237

6. 1032.4463 1032.4463
7. 1031.9015 1031.9015
8. 1071.1709 1071.1709
9. 1044.6454 1044.6454

10. 1023.1855 1023.1855

Example 3: Choosing an optimal parameter to forecast

Generally, when you are forecasting, you do not know the smoothing parameter. tssmooth
dexponential computes the double-exponential forecasts of a series and obtains the optimal smoothing
parameter by finding the smoothing parameter that minimizes the in-sample sum-of-squared forecast
errors.

. tssmooth dexponential f2=sales, forecast(4)
computing optimal double-exponential coefficient (0,1)

optimal double-exponential coefficient = 0.3631
sum-of-squared residuals = 16075.805
root mean squared error = 14.175598

The following graph describes the fit that we obtained by applying the double-exponential forecast
method to our sales data. The out-of-sample dynamic predictions are not constant, as in the single-
exponential case.

658 tssmooth dexponential — Double-exponential smoothing

. line f2 sales t, title("Double exponential forecast with optimal alpha")
> ytitle(Sales) xtitle(time)

9
5

0
1

0
0

0
1

0
5

0
1

1
0

0
S

a
le

s

0 20 40 60 80
time

dexpc(0.3631) = sales sales

Double exponential forecast with optimal alpha

tssmooth dexponential automatically detects panel data from the information provided when
the dataset was tsset. The starting values are chosen separately for each series. If the smoothing
parameter is chosen to minimize the sum-of-squared prediction errors, the optimization is performed
separately on each panel. The stored results contain the results from the last panel. Missing values at
the beginning of the sample are excluded from the sample. After at least one value has been found,
missing values are filled in using the one-step-ahead predictions from the previous period.

Stored results
tssmooth dexponential stores the following in r():

Scalars
r(N) number of observations
r(alpha) α smoothing parameter
r(rss) sum-of-squared errors
r(rmse) root mean squared error
r(N pre) number of observations used in calculating starting values, if starting values calculated
r(s2 0) initial value for linear term, i.e., S[2]

0

r(s1 0) initial value for constant term, i.e., S0

r(linear) final value of linear term
r(constant) final value of constant term
r(period) period, if filter is seasonal

Macros
r(method) smoothing method
r(exp) expression specified
r(timevar) time variable specified in tsset
r(panelvar) panel variable specified in tsset

tssmooth dexponential — Double-exponential smoothing 659

Methods and formulas
A truncated description of the specified double-exponential filter is used to label the new variable.

See [D] label for more information on labels.

An untruncated description of the specified double-exponential filter is saved in the characteristic
tssmooth for the new variable. See [P] char for more information on characteristics.

The updating equations for the smoothing and forecasting versions are as given previously.

The starting values for both the smoothing and forecasting versions of double-exponential are
obtained using the same method, which begins with the model

xt = β0 + β1t

where xt is the series to be smoothed and t is a time variable that has been normalized to equal 1 in
the first period included in the sample. The regression coefficient estimates β̂0 and β̂1 are obtained
via OLS. The sample is determined by the option samp0(). By default, samp0() includes the first
half of the observations. Given the estimates β̂0 and β̂1, the starting values are

S0 = β̂0 − {(1− α)/α}β̂1

S
[2]
0 = β̂0 − 2{(1− α)/α}β̂1

References
Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.

Bowerman, B. L., R. T. O’Connell, and A. B. Koehler. 2005. Forecasting, Time Series, and Regression: An Applied
Approach. 4th ed. Pacific Grove, CA: Brooks/Cole.

Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.

. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.

Gardner, E. S., Jr. 1985. Exponential smoothing: The state of the art. Journal of Forecasting 4: 1–28.

Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting 20: 5–10.

Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New
York: McGraw–Hill.

Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tssmooth exponential — Single-exponential smoothing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

tssmooth exponential models the trend of a variable whose change from the previous value
is serially correlated. More precisely, it models a variable whose first difference follows a low-order,
moving-average process.

Quick start
Create smooth using a single-exponential smoother over y with tsset data

tssmooth exponential smooth=y

As above, but forecast 10 periods out of sample
tssmooth exponential smooth=y, forecast(10)

As above, but use 111 as the initial value for the recursion
tssmooth exponential smooth=y, forecast(10) s0(111)

As above, but use 0.5 as the smoothing parameter
tssmooth exponential smooth=y, forecast(10) s0(111) parms(.5)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Single-exponential smoothing

660

tssmooth exponential — Single-exponential smoothing 661

Syntax
tssmooth exponential

[
type

]
newvar = exp

[
if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α) use #α as smoothing parameter
samp0(#) use # observations to obtain initial value for recursion
s0(#) use # as initial value for recursion
forecast(#) use # periods for the out-of-sample forecast

You must tsset your data before using tssmooth exponential; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α) specifies the parameter α for the exponential smoother; 0 < #α < 1. If parms(#α)
is not specified, the smoothing parameter is chosen to minimize the in-sample sum-of-squared
forecast errors.

samp0(#) and s0(#) are mutually exclusive ways of specifying the initial value for the recursion.

samp0(#) specifies that the initial value be obtained by calculating the mean over the first #
observations of the sample.

s0(#) specifies the initial value to be used.

If neither option is specified, the default is to use the mean calculated over the first half of the
sample.

forecast(#) gives the number of observations for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0) and is equivalent to not forecasting out of sample.

Remarks and examples
Introduction
Examples
Treatment of missing values

Introduction
Exponential smoothing can be viewed either as an adaptive-forecasting algorithm or, equivalently,

as a geometrically weighted moving-average filter. Exponential smoothing is most appropriate when
used with time-series data that exhibit no linear or higher-order trends but that do exhibit low-
velocity, aperiodic variation in the mean. Abraham and Ledolter (1983), Bowerman, O’Connell, and
Koehler (2005), and Montgomery, Johnson, and Gardiner (1990) all provide good introductions to
single-exponential smoothing. Chatfield (2001, 2004) discusses how single-exponential smoothing
relates to modern time-series methods. For example, simple exponential smoothing produces optimal
forecasts for several underlying models, including ARIMA(0,1,1) and the random-walk-plus-noise
state-space model. (See Chatfield [2001, sec. 4.3.1].)

662 tssmooth exponential — Single-exponential smoothing

The exponential filter with smoothing parameter α creates the series St, where

St = αXt + (1− α)St−1 for t = 1, . . . , T

and S0 is the initial value. This is the adaptive forecast-updating form of the exponential smoother.
This implies that

St = α
T−1∑
k=0

(1− α)KXT−k + (1− α)TS0

which is the weighted moving-average representation, with geometrically declining weights. The
choice of the smoothing constant α determines how quickly the smoothed series or forecast will adjust
to changes in the mean of the unfiltered series. For small values of α, the response will be slow
because more weight is placed on the previous estimate of the mean of the unfiltered series, whereas
larger values of α will put more emphasis on the most recently observed value of the unfiltered series.

Examples

Example 1: Smoothing a series for specified parameters

Let’s consider some examples using sales data. Here we forecast sales for three periods with a
smoothing parameter of 0.4:

. use http://www.stata-press.com/data/r14/sales1

. tssmooth exponential sm1=sales, parms(.4) forecast(3)

exponential coefficient = 0.4000
sum-of-squared residuals = 8345
root mean squared error = 12.919

To compare our forecast with the actual data, we graph the series and the forecasted series over
time.

. line sm1 sales t, title("Single exponential forecast")
> ytitle(Sales) xtitle(Time)

1
0

0
0

1
0

2
0

1
0

4
0

1
0

6
0

1
0

8
0

1
1

0
0

S
a

le
s

0 10 20 30 40 50
Time

exp parms(0.4000) = sales sales

Single exponential forecast

tssmooth exponential — Single-exponential smoothing 663

The graph indicates that our forecasted series may not be adjusting rapidly enough to the changes
in the actual series. The smoothing parameter α controls the rate at which the forecast adjusts.
Smaller values of α adjust the forecasts more slowly. Thus we suspect that our chosen value of 0.4
is too small. One way to investigate this suspicion is to ask tssmooth exponential to choose the
smoothing parameter that minimizes the sum-of-squared forecast errors.

. tssmooth exponential sm2=sales, forecast(3)

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.7815
sum-of-squared residuals = 6727.7056
root mean squared error = 11.599746

The output suggests that the value of α = 0.4 is too small. The graph below indicates that the
new forecast tracks the series much more closely than the previous forecast.

. line sm2 sales t, title("Single exponential forecast with optimal alpha")
> ytitle(sales) xtitle(Time)

1
0

0
0

1
0

2
0

1
0

4
0

1
0

6
0

1
0

8
0

1
1

0
0

S
a

le
s

0 10 20 30 40 50
Time

parms(0.7815) = sales sales

Single exponential forecast with optimal alpha

We noted above that simple exponential forecasts are optimal for an ARIMA (0,1,1) model. (See
[TS] arima for fitting ARIMA models in Stata.) Chatfield (2001, 90) gives the following useful
derivation that relates the MA coefficient in an ARIMA (0,1,1) model to the smoothing parameter in
single-exponential smoothing. An ARIMA (0,1,1) is given by

xt − xt−1 = εt + θεt−1

where εt is an independent and identically distributed white-noise error term. Thus given θ̂, an estimate
of θ, an optimal one-step prediction of x̂t+1 is x̂t+1 = xt + θ̂εt. Because εt is not observable, it
can be replaced by

ε̂t = xt − x̂t−1

yielding
x̂t+1 = xt + θ̂(xt − x̂t−1)

Letting α̂ = 1 + θ̂ and doing more rearranging implies that

x̂t+1 = (1 + θ̂)xt − θ̂x̂t−1

x̂t+1 = α̂xt − (1− α̂)x̂t−1

664 tssmooth exponential — Single-exponential smoothing

Example 2: Comparing ARIMA to exponential smoothing

Let’s compare the estimate of the optimal smoothing parameter of 0.7815 with the one we could
obtain using [TS] arima. Below we fit an ARIMA(0,1,1) to the sales data and then remove the estimate
of α. The two estimates of α are quite close, given the large estimated standard error of θ̂.

. arima sales, arima(0,1,1)

(setting optimization to BHHH)
Iteration 0: log likelihood = -189.91037
Iteration 1: log likelihood = -189.62405
Iteration 2: log likelihood = -189.60468
Iteration 3: log likelihood = -189.60352
Iteration 4: log likelihood = -189.60343
(switching optimization to BFGS)
Iteration 5: log likelihood = -189.60342

ARIMA regression

Sample: 2 - 50 Number of obs = 49
Wald chi2(1) = 1.41

Log likelihood = -189.6034 Prob > chi2 = 0.2347

OPG
D.sales Coef. Std. Err. z P>|z| [95% Conf. Interval]

sales
_cons .5025469 1.382727 0.36 0.716 -2.207548 3.212641

ARMA
ma

L1. -.1986561 .1671699 -1.19 0.235 -.5263031 .1289908

/sigma 11.58992 1.240607 9.34 0.000 9.158378 14.02147

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. di 1 + _b[ARMA:L.ma]

.80134387

Example 3: Handling panel data

tssmooth exponential automatically detects panel data. Suppose that we had sales figures for
five companies in long form. Running tssmooth exponential on the variable that contains all five
series puts the smoothed series and the predictions in one variable in long form. When the smoothing
parameter is chosen to minimize the squared prediction error, an optimal value for the smoothing
parameter is chosen separately for each panel.

tssmooth exponential — Single-exponential smoothing 665

. use http://www.stata-press.com/data/r14/sales_cert, clear

. tsset
panel variable: id (strongly balanced)
time variable: t, 1 to 100

delta: 1 unit

. tssmooth exponential sm5=sales, forecast(3)

-> id = 1

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.8702
sum-of-squared residuals = 16070.567
root mean squared error = 12.676974

-> id = 2

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.7003
sum-of-squared residuals = 20792.393
root mean squared error = 14.419568

-> id = 3

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.6927
sum-of-squared residuals = 21629
root mean squared error = 14.706801

-> id = 4

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.3866
sum-of-squared residuals = 22321.334
root mean squared error = 14.940326

-> id = 5

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.4540
sum-of-squared residuals = 20714.095
root mean squared error = 14.392392

tssmooth exponential computed starting values and chose an optimal α for each panel individually.

Treatment of missing values

Missing values in the middle of the data are filled in with the one-step-ahead prediction using the
previous values. Missing values at the beginning or end of the data are treated as if the observations
were not there.

tssmooth exponential treats observations excluded from the sample by if and in just as if
they were missing.

666 tssmooth exponential — Single-exponential smoothing

Example 4: Handling missing data in the middle of a sample

Here the 28th observation is missing. The prediction for the 29th observation is repeated in the
new series.

. use http://www.stata-press.com/data/r14/sales1, clear

. tssmooth exponential sm1=sales, parms(.7) forecast(3)

(output omitted)
. generate sales2=sales if t!=28
(4 missing values generated)

. tssmooth exponential sm3=sales2, parms(.7) forecast(3)

exponential coefficient = 0.7000
sum-of-squared residuals = 6842.4
root mean squared error = 11.817

. list t sales2 sm3 if t>25 & t<31

t sales2 sm3

26. 26 1011.5 1007.5
27. 27 1028.3 1010.3
28. 28 . 1022.9
29. 29 1028.4 1022.9
30. 30 1054.8 1026.75

Because the data for t = 28 are missing, the prediction for period 28 has been used in its place.
This implies that the updating equation for period 29 is

S29 = αS28 + (1− α)S28 = S28

which explains why the prediction for t = 28 is repeated.

Because this is a single-exponential procedure, the loss of that one observation will not be noticed
several periods later.

. generate diff = sm3-sm1 if t>28
(28 missing values generated)

. list t diff if t>28 & t<39

t diff

29. 29 -3.5
30. 30 -1.050049
31. 31 -.3150635
32. 32 -.0946045
33. 33 -.0283203

34. 34 -.0085449
35. 35 -.0025635
36. 36 -.0008545
37. 37 -.0003662
38. 38 -.0001221

tssmooth exponential — Single-exponential smoothing 667

Example 5: Handling missing data at the beginning and end of a sample

Now consider an example in which there are data missing at the beginning and end of the sample.

. generate sales3=sales if t>2 & t<49
(7 missing values generated)

. tssmooth exponential sm4=sales3, parms(.7) forecast(3)

exponential coefficient = 0.7000
sum-of-squared residuals = 6215.3
root mean squared error = 11.624

. list t sales sales3 sm4 if t<5 | t>45

t sales sales3 sm4

1. 1 1031 . .
2. 2 1022.1 . .
3. 3 1005.6 1005.6 1016.787
4. 4 1025 1025 1008.956

46. 46 1055.2 1055.2 1057.2

47. 47 1056.8 1056.8 1055.8
48. 48 1034.5 1034.5 1056.5
49. 49 1041.1 . 1041.1
50. 50 1056.1 . 1041.1
51. 51 . . 1041.1

52. 52 . . 1041.1
53. 53 . . 1041.1

The output above illustrates that missing values at the beginning or end of the sample cause the
sample to be truncated. The new series begins with nonmissing data and begins predicting immediately
after it stops.

One period after the actual data concludes, the exponential forecast becomes a constant. After the
actual end of the data, the forecast at period t is substituted for the missing data. This also illustrates
why the forecasted series is a constant.

Stored results
tssmooth exponential stores the following in r():

Scalars
r(N) number of observations
r(alpha) α smoothing parameter
r(rss) sum-of-squared prediction errors
r(rmse) root mean squared error
r(N pre) number of observations used in calculating starting values
r(s1 0) initial value for St

Macros
r(method) smoothing method
r(exp) expression specified
r(timevar) time variable specified in tsset
r(panelvar) panel variable specified in tsset

668 tssmooth exponential — Single-exponential smoothing

Methods and formulas
The formulas for deriving smoothed series are as given in the text. When the value of α is not

specified, an optimal value is found that minimizes the mean squared forecast error. A method of
bisection is used to find the solution to this optimization problem.

A truncated description of the specified exponential filter is used to label the new variable. See
[D] label for more information about labels.

An untruncated description of the specified exponential filter is saved in the characteristic tssmooth
for the new variable. See [P] char for more information about characteristics.

References
Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.

Bowerman, B. L., R. T. O’Connell, and A. B. Koehler. 2005. Forecasting, Time Series, and Regression: An Applied
Approach. 4th ed. Pacific Grove, CA: Brooks/Cole.

Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.

. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.

Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting 20: 5–10.

Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New
York: McGraw–Hill.

Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tssmooth hwinters — Holt–Winters nonseasonal smoothing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
tssmooth hwinters is used in smoothing or forecasting a series that can be modeled as a linear

trend in which the intercept and the coefficient on time vary over time.

Quick start
Create smooth using Holt–Winters nonseasonal smoothing over y with tsset data

tssmooth hwinters smooth=y

As above, but forecast 10 periods out of sample
tssmooth hwinters smooth=y, forecast(10)

As above, but use 111 and 112 as the initial values for the recursion
tssmooth hwinters smooth=y, forecast(10) s0(111 112)

As above, but use 0.5 and 0.3 as the smoothing parameters
tssmooth hwinters smooth=y, forecast(10) s0(111 112) parms(.5 .3)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Holt-Winters nonseasonal smoothing

669

670 tssmooth hwinters — Holt–Winters nonseasonal smoothing

Syntax
tssmooth hwinters

[
type

]
newvar = exp

[
if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α #β) use #α and #β as smoothing parameters
samp0(#) use # observations to obtain initial values for recursion
s0(#cons #lt) use #cons and #lt as initial values for recursion
forecast(#) use # periods for the out-of-sample forecast

Options

diff alternative initial-value specification; see Options

Maximization

maximize options control the maximization process; seldom used
from(#α #β) use #α and #β as starting values for the parameters

You must tsset your data before using tssmooth hwinters; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α #β), 0 ≤ #α ≤ 1 and 0 ≤ #β ≤ 1, specifies the parameters. If parms() is not specified,
the values are chosen by an iterative process to minimize the in-sample sum-of-squared prediction
errors.

If you experience difficulty converging (many iterations and “not concave” messages), try using
from() to provide better starting values.

samp0(#) and s0(#cons #lt) specify how the initial values #cons and #lt for the recursion are
obtained.

By default, initial values are obtained by fitting a linear regression with a time trend using the
first half of the observations in the dataset.

samp0(#) specifies that the first # observations be used in that regression.

s0(#cons #lt) specifies that #cons and #lt be used as initial values.

forecast(#) specifies the number of periods for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0), which is equivalent to not performing an out-of-sample forecast.

� � �
Options �

diff specifies that the linear term is obtained by averaging the first difference of expt and the intercept
is obtained as the difference of exp in the first observation and the mean of D.expt.

If the diff option is not specified, a linear regression of expt on a constant and t is fit.

tssmooth hwinters — Holt–Winters nonseasonal smoothing 671

� � �
Maximization �

maximize options controls the process for solving for the optimal α and β when parms() is not
specified.

maximize options: nodifficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

from(#α #β), 0 < #α < 1 and 0 < #β < 1, specifies starting values from which the optimal values
of α and β will be obtained. If from() is not specified, from(.5 .5) is used.

Remarks and examples
The Holt–Winters method forecasts series of the form

x̂t+1 = at + btt

where x̂t is the forecast of the original series xt, at is a mean that drifts over time, and bt is a
coefficient on time that also drifts. In fact, as Gardner (1985) has noted, the Holt–Winters method
produces optimal forecasts for an ARIMA(0,2,2) model and some local linear models. See [TS] arima
and the references in that entry for ARIMA models, and see Harvey (1989) for a discussion of the
local linear model and its relationship to the Holt–Winters method. Abraham and Ledolter (1983),
Bowerman, O’Connell, and Koehler (2005), and Montgomery, Johnson, and Gardiner (1990) all
provide good introductions to the Holt–Winters method. Chatfield (2001, 2004) provides helpful
discussions of how this method relates to modern time-series analysis.

The Holt–Winters method can be viewed as an extension of double-exponential smoothing with
two parameters, which may be explicitly set or chosen to minimize the in-sample sum-of-squared
forecast errors. In the latter case, as discussed in Methods and formulas, the smoothing parameters
are chosen to minimize the in-sample sum-of-squared forecast errors plus a penalty term that helps
to achieve convergence when one of the parameters is too close to the boundary.

Given the series xt, the smoothing parameters α and β, and the starting values a0 and b0, the
updating equations are

at = αxt + (1− α) (at−1 + bt−1)

bt = β (at − at−1) + (1− β) bt−1

After computing the series of constant and linear terms, at and bt, respectively, the τ -step-ahead
prediction of xt is given by

x̂t+τ = at + btτ

Example 1: Smoothing a series for specified parameters

Below we show how to use tssmooth hwinters with specified smoothing parameters. This
example also shows that the Holt–Winters method can closely follow a series in which both the mean
and the time coefficient drift over time.

672 tssmooth hwinters — Holt–Winters nonseasonal smoothing

Suppose that we have data on the monthly sales of a book and that we want to forecast this series
with the Holt–Winters method.

. use http://www.stata-press.com/data/r14/bsales

. tssmooth hwinters hw1=sales, parms(.7 .3) forecast(3)

Specified weights:
alpha = 0.7000
beta = 0.3000

sum-of-squared residuals = 2301.046
root mean squared error = 6.192799

. line sales hw1 t, title("Holt-Winters Forecast with alpha=.7 and beta=.3")
> ytitle(Sales) xtitle(Time)

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
S

a
le

s

0 20 40 60
Time

sales hw parms(0.700 0.300) = sales

Holt−Winters forecast with alpha=.7 and beta = .3

The graph indicates that the forecasts are for linearly decreasing sales. Given aT and bT , the out-of-
sample predictions are linear functions of time. In this example, the slope appears to be too steep,
probably because our choice of α and β.

Example 2: Choosing the initial values

The graph in the previous example illustrates that the starting values for the linear and constant
series can affect the in-sample fit of the predicted series for the first few observations. The previous
example used the default method for obtaining the initial values for the recursion. The output below
illustrates that, for some problems, the differenced-based initial values provide a better in-sample fit
for the first few observations. However, the differenced-based initial values do not always outperform
the regression-based initial values. Furthermore, as shown in the output below, for series of reasonable
length, the predictions produced are nearly identical.

tssmooth hwinters — Holt–Winters nonseasonal smoothing 673

. tssmooth hwinters hw2=sales, parms(.7 .3) forecast(3) diff

Specified weights:
alpha = 0.7000
beta = 0.3000

sum-of-squared residuals = 2261.173
root mean squared error = 6.13891

. list hw1 hw2 if _n<6 | _n>57

hw1 hw2

1. 93.31973 97.80807
2. 98.40002 98.11447
3. 100.8845 99.2267
4. 98.50404 96.78276
5. 93.62408 92.2452

58. 116.5771 116.5771
59. 119.2146 119.2146
60. 119.2608 119.2608
61. 111.0299 111.0299
62. 109.2815 109.2815

63. 107.5331 107.5331

When the smoothing parameters are chosen to minimize the in-sample sum-of-squared forecast
errors, changing the initial values can affect the choice of the optimal α and β. When changing the
initial values results in different optimal values for α and β, the predictions will also differ.

When the Holt–Winters model fits the data well, finding the optimal smoothing parameters
generally proceeds well. When the model fits poorly, finding the α and β that minimize the in-sample
sum-of-squared forecast errors can be difficult.

Example 3: Forecasting with optimal parameters

In this example, we forecast the book sales data using the α and β that minimize the in-sample
squared forecast errors.

674 tssmooth hwinters — Holt–Winters nonseasonal smoothing

. tssmooth hwinters hw3=sales, forecast(3)
computing optimal weights

Iteration 0: penalized RSS = -2632.2073 (not concave)
Iteration 1: penalized RSS = -1982.8431
Iteration 2: penalized RSS = -1976.4236
Iteration 3: penalized RSS = -1975.9172
Iteration 4: penalized RSS = -1975.9036
Iteration 5: penalized RSS = -1975.9036

Optimal weights:
alpha = 0.8209
beta = 0.0067

penalized sum-of-squared residuals = 1975.904
sum-of-squared residuals = 1975.904
root mean squared error = 5.738617

The following graph contains the data and the forecast using the optimal α and β. Comparing
this graph with the one above illustrates how different choices of α and β can lead to very different
forecasts. Instead of linearly decreasing sales, the new forecast is for linearly increasing sales.

. line sales hw3 t, title("Holt-Winters Forecast with optimal alpha and beta")
> ytitle(Sales) xtitle(Time)

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
S

a
le

s

0 20 40 60
Time

sales hw parms(0.821 0.007) = sales

Holt−Winters forecast with optimal alpha and beta

Stored results
tssmooth hwinters stores the following in r():

Scalars
r(N) number of observations r(N pre) number of observations used
r(alpha) α smoothing parameter in calculating starting values
r(beta) β smoothing parameter r(s2 0) initial value for linear term
r(rss) sum-of-squared errors r(s1 0) initial value for constant term
r(prss) penalized sum-of-squared errors, r(linear) final value of linear term

if parms() not specified r(constant) final value of constant term
r(rmse) root mean squared error

Macros
r(method) smoothing method r(timevar) time variables specified in tsset
r(exp) expression specified r(panelvar) panel variables specified in tsset

tssmooth hwinters — Holt–Winters nonseasonal smoothing 675

Methods and formulas
A truncated description of the specified Holt–Winters filter is used to label the new variable. See

[D] label for more information on labels.

An untruncated description of the specified Holt–Winters filter is saved in the characteristic named
tssmooth for the new variable. See [P] char for more information on characteristics.

Given the series, xt; the smoothing parameters, α and β; and the starting values, a0 and b0, the
updating equations are

at = αxt + (1− α) (at−1 + bt−1)

bt = β (at − at−1) + (1− β) bt−1

By default, the initial values are found by fitting a linear regression with a time trend. The time
variable in this regression is normalized to equal one in the first period included in the sample. By
default, one-half of the data is used in this regression, but this sample can be changed using samp0().
a0 is then set to the estimate of the constant, and b0 is set to the estimate of the coefficient on the
time trend. Specifying the diff option sets b0 to the mean of D.x and a0 to x1 − b0. s0() can also
be used to specify the initial values directly.

Sometimes, one or both of the optimal parameters may lie on the boundary of [0, 1]. To keep the
estimates inside [0, 1], tssmooth hwinters parameterizes the objective function in terms of their
inverse logits, that is, in terms of exp(α)/{1 + exp(α)} and exp(β)/{1 + exp(β)}. When one of
these parameters is actually on the boundary, this can complicate the optimization. For this reason,
tssmooth hwinters optimizes a penalized sum-of-squared forecast errors. Let x̂t(α̃, β̃) be the
forecast for the series xt, given the choices of α̃ and β̃. Then the in-sample penalized sum-of-squared
prediction errors is

P =

T∑
t=1

[
{xt − x̂t(α̃, β̃)}2 + I|f(α̃)|>12)

(|f(α̃)| − 12)2 + I|f(β̃)|>12)
(|f(β̃)| − 12)2

]
where f(x) = ln {x(1− x)}. The penalty term is zero unless one of the parameters is close to the
boundary. When one of the parameters is close to the boundary, the penalty term will help to obtain
convergence.

Acknowledgment
We thank Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor

of the Stata Journal and author of Speaking Stata Graphics for his helpful comments.

References
Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.

Bowerman, B. L., R. T. O’Connell, and A. B. Koehler. 2005. Forecasting, Time Series, and Regression: An Applied
Approach. 4th ed. Pacific Grove, CA: Brooks/Cole.

Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.

. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/

676 tssmooth hwinters — Holt–Winters nonseasonal smoothing

Gardner, E. S., Jr. 1985. Exponential smoothing: The state of the art. Journal of Forecasting 4: 1–28.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting 20: 5–10.

Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New
York: McGraw–Hill.

Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tssmooth ma — Moving-average filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

tssmooth ma creates a new series in which each observation is an average of nearby observations
in the original series. The moving average may be calculated with uniform or user-specified weights.
Missing periods are excluded from calculations.

Quick start
Create ma1 using a second-order moving average of y1 with tsset data

tssmooth ma ma1 = y1, window(2)

Also include the current observation in the average
tssmooth ma ma1 = y1, window(2 1)

Also include 4 forward terms in the average
tssmooth ma ma1 = y1, window(2 1 4)

Create ma2 using a moving average of y2 with weight 2 for the first lag of y2, 3 for its current value,
5 for its first forward value, and 4 for its second forward value

tssmooth ma ma2 = y2, weights(2 <3> 5 4)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Moving-average filter

677

678 tssmooth ma — Moving-average filter

Syntax
Moving average with uniform weights

tssmooth ma
[

type
]

newvar = exp
[

if
] [

in
]
, window(#l

[
#c
[
#f
]]
)
[
replace

]
Moving average with specified weights

tssmooth ma
[

type
]

newvar = exp
[

if
] [

in
]
, weights(

[
numlistl

]
<#c>

[
numlistf

]
)[

replace
]

You must tsset your data before using tssmooth ma; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options
window(#l

[
#c
[
#f
]]

) describes the span of the uniformly weighted moving average.

#l specifies the number of lagged terms to be included, 0 ≤ #l ≤ one-half the number of
observations in the sample.

#c is optional and specifies whether to include the current observation in the filter. A 0 indicates
exclusion and 1, inclusion. The current observation is excluded by default.

#f is optional and specifies the number of forward terms to be included, 0 ≤ #f ≤ one-half the
number of observations in the sample.

weights(
[
numlistl

]
<#c>

[
numlistf

]
) is required for the weighted moving average and describes

the span of the moving average, as well as the weights to be applied to each term in the average.
The middle term literally is surrounded by < and >, so you might type weights(1/2 <3> 2/1).

numlistl is optional and specifies the weights to be applied to the lagged terms when computing
the moving average.

#c is required and specifies the weight to be applied to the current term.

numlistf is optional and specifies the weights to be applied to the forward terms when computing
the moving average.

The number of elements in each numlist is limited to one-half the number of observations in the
sample.

replace replaces newvar if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

tssmooth ma — Moving-average filter 679

Overview

Moving averages are simple linear filters of the form

x̂t =

∑f
i=−l wixt+i∑f
i=−l wi

where
x̂t is the moving average

xt is the variable or expression to be smoothed

wi are the weights being applied to the terms in the filter

l is the longest lag in the span of the filter

f is the longest lead in the span of the filter

Moving averages are used primarily to reduce noise in time-series data. Using moving averages to
isolate signals is problematic, however, because the moving averages themselves are serially correlated,
even when the underlying data series is not. Still, Chatfield (2004) discusses moving-average filters
and provides several specific moving-average filters for extracting certain trends.

Example 1: A symmetric moving-average filter with uniform weights

Suppose that we have a time series of sales data, and we want to separate the data into two
components: signal and noise. To eliminate the noise, we apply a moving-average filter. In this
example, we use a symmetric moving average with a span of 5. This means that we will average the
first two lagged values, the current value, and the first two forward terms of the series, with each
term in the average receiving a weight of 1.

. use http://www.stata-press.com/data/r14/sales1

. tsset
time variable: t, 1 to 50

delta: 1 unit

. tssmooth ma sm1 = sales, window(2 1 2)
The smoother applied was

(1/5)*[x(t-2) + x(t-1) + 1*x(t) + x(t+1) + x(t+2)]; x(t)= sales

We would like to smooth our series so that there is no autocorrelation in the noise. Below we
compute the noise as the difference between the smoothed series and the series itself. Then we use
ac (see [TS] corrgram) to check for autocorrelation in the noise.

680 tssmooth ma — Moving-average filter

. generate noise = sales-sm1

. ac noise

−
0

.4
0

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
A

u
to

c
o

rr
e

la
ti
o

n
s
 o

f
n

o
is

e

0 5 10 15 20 25
Lag

Bartlett’s formula for MA(q) 95% confidence bands

Example 2: A symmetric moving-average filter with nonuniform weights

In the previous example, there is some evidence of negative second-order autocorrelation, possibly
due to the uniform weighting or the length of the filter. We are going to specify a shorter filter in
which the weights decline as the observations get farther away from the current observation.

The weighted moving-average filter requires that we supply the weights to apply to each element
with the weights() option. In specifying the weights, we implicitly specify the span of the filter.

Below we use the filter

x̂t = (1/9)(1xt−2 + 2xt−1 + 3xt + 2xt+1 + 1xt+2)

In what follows, 1/2 does not mean one-half, it means the numlist 1 2:

. tssmooth ma sm2 = sales, weights(1/2 <3> 2/1)
The smoother applied was

(1/9)*[1*x(t-2) + 2*x(t-1) + 3*x(t) + 2*x(t+1) + 1*x(t+2)]; x(t)= sales

. generate noise2 = sales-sm2

We compute the noise and use ac to check for autocorrelation.

tssmooth ma — Moving-average filter 681

. ac noise2

−
0

.4
0

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
A

u
to

c
o

rr
e

la
ti
o

n
s
 o

f
n

o
is

e
2

0 5 10 15 20 25
Lag

Bartlett’s formula for MA(q) 95% confidence bands

The graph shows no significant evidence of autocorrelation in the noise from the second filter.

Technical note
tssmooth ma gives any missing observations a coefficient of zero in both the uniformly weighted

and weighted moving-average filters. This simply means that missing values or missing periods are
excluded from the moving average.

Sample restrictions, via if and in, cause the expression smoothed by tssmooth ma to be missing
for the excluded observations. Thus sample restrictions have the same effect as missing values in a
variable that is filtered in the expression. Also, gaps in the data that are longer than the span of the
filter will generate missing values in the filtered series.

Because the first l observations and the last f observations will be outside the span of the filter,
those observations will be set to missing in the moving-average series.

Video example

Time series, part 6: Moving-average smoothers using tssmooth

http://www.youtube.com/watch?v=KRhroFkSviw

682 tssmooth ma — Moving-average filter

Stored results
tssmooth ma stores the following in r():

Scalars
r(N) number of observations
r(w0) weight on the current observation
r(wlead#) weight on lead #, if leads are specified
r(wlag#) weight on lag #, if lags are specified

Macros
r(method) smoothing method
r(exp) expression specified
r(timevar) time variable specified in tsset
r(panelvar) panel variable specified in tsset

Methods and formulas
The formula for moving averages is the same as previously given.

A truncated description of the specified moving-average filter labels the new variable. See [D] label
for more information on labels.

An untruncated description of the specified moving-average filter is saved in the characteristic
tssmooth for the new variable. See [P] char for more information on characteristics.

Reference
Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tssmooth nl — Nonlinear filter

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

tssmooth nl uses nonlinear smoothers to identify the underlying trend in a series.

Quick start
Create nly as a running median smoother of y of span 5 using tsset data

tssmooth nl nly=y, smoother(3)

As above, but use a Hanning linear smoother
tssmooth nl nly=y, smoother(H)

As above, but smooth over y and then over the part of y that is not smooth and add the smooth
components of the two steps

tssmooth nl nly=y, smoother(H, twice)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Nonlinear filter

683

684 tssmooth nl — Nonlinear filter

Syntax

tssmooth nl
[

type
]

newvar = exp
[

if
] [

in
]
, smoother(smoother

[
, twice

]
)[

replace
]

where smoother is specified as Sm
[

Sm
[
. . .
]]

and Sm is one of{
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

}[
R
]

3
[
R
]
S
[
S | R

][
S | R

]
. . .

E

H

The numbers specified in smoother represent the span of a running median smoother. For example,
a number 3 specifies that each value be replaced by the median of the point and the two adjacent
data values. The letter H indicates that a Hanning linear smoother, which is a span-3 smoother with
binomial weights, be applied.

The letters E, S, and R are three refinements that can be combined with the running median and
Hanning smoothers. First, the end points of a smooth can be given special treatment. This is specified
by the E operator. Second, smoothing by 3, the span-3 running median, tends to produce flat-topped
hills and valleys. The splitting operator, S, “splits” these repeated values, applies the end-point operator
to them, and then “rejoins” the series. Third, it is sometimes useful to repeat an odd-span median
smoother or the splitting operator until the smooth no longer changes. Following a digit or an S with
an R specifies this type of repetition.

Finally, the twice operator specifies that after smoothing, the smoother be reapplied to the resulting
rough, and any recovered signal be added back to the original smooth.

Letters may be specified in lowercase, if preferred. Examples of smoother
[
, twice

]
include

3RSSH 3RSSH,twice 4253H 4253H,twice 43RSR2H,twice
3rssh 3rssh,twice 4253h 4253h,twice 43rsr2h,twice

You must tsset your data before using tssmooth nl; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

smoother(smoother
[
, twice

]
) is required; it specifies the nonlinear smoother to be used.

replace replaces newvar if it already exists.

Remarks and examples
tssmooth nl works as a front end to smooth. See [R] smooth for details.

tssmooth nl — Nonlinear filter 685

Stored results
tssmooth nl stores the following in r():

Scalars
r(N) number of observations

Macros
r(method) nl
r(smoother) specified smoother
r(timevar) time variable specified in tsset
r(panelvar) panel variable specified in tsset

Methods and formulas
The methods are documented in [R] smooth.

A truncated description of the specified nonlinear filter labels the new variable. See [D] label for
more information on labels.

An untruncated description of the specified nonlinear filter is saved in the characteristic tssmooth
for the new variable. See [P] char for more information on characteristics.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

Title

tssmooth shwinters — Holt–Winters seasonal smoothing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
tssmooth shwinters performs the seasonal Holt–Winters method on a user-specified expression,

which is usually just a variable name, and generates a new variable containing the forecasted series.

Quick start
Create smooth using Holt–Winters seasonal smoothing over y with tsset data

tssmooth shwinters smooth=y

As above, but forecast 10 periods out of sample
tssmooth shwinters smooth=y, forecast(10)

As above, but use 111 and 112 as the initial values for the recursion
tssmooth shwinters smooth=y, forecast(10) s0(111 112)

As above but use 0.5, 0.3, and 0.7 as the smoothing parameters
tssmooth shwinters smooth=y, forecast(10) s0(111 112) ///

parms(.5 .3 .7)

As above, but normalize seasonal values
tssmooth shwinters smooth=y, forecast(10) s0(111 112) ///

parms(.5 .3 .7) normalize

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Holt-Winters seasonal smoothing

686

tssmooth shwinters — Holt–Winters seasonal smoothing 687

Syntax

tssmooth shwinters
[

type
]

newvar = exp
[

if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α #β #γ) use #α, #β , and #γ as smoothing parameters
samp0(#) use # observations to obtain initial values for recursion
s0(#cons #lt) use #cons and #lt as initial values for recursion
forecast(#) use # periods for the out-of-sample forecast
period(#) use # for period of the seasonality
additive use additive seasonal Holt–Winters method

Options

sn0 0(varname) use initial seasonal values in varname
sn0 v(newvar) store estimated initial values for seasonal terms in newvar
snt v(newvar) store final year’s estimated seasonal terms in newvar
normalize normalize seasonal values
altstarts use alternative method for computing the starting values

Maximization

maximize options control the maximization process; seldom used
from(#α #β #γ) use #α, #β , and #γ as starting values for the parameters

You must tsset your data before using tssmooth shwinters; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α #β #γ), 0 ≤ #α ≤ 1, 0 ≤ #β ≤ 1, and 0 ≤ #γ ≤ 1, specifies the parameters. If
parms() is not specified, the values are chosen by an iterative process to minimize the in-sample
sum-of-squared prediction errors.

If you experience difficulty converging (many iterations and “not concave” messages), try using
from() to provide better starting values.

samp0(#) and s0(#cons #lt) have to do with how the initial values #cons and #lt for the recursion
are obtained.

s0(#cons #lt) specifies the initial values to be used.

samp0(#) specifies that the initial values be obtained using the first # observations of the sample.
This calculation is described under Methods and formulas and depends on whether the altstart
and additive options are also specified.

If neither option is specified, the first half of the sample is used to obtain initial values.

forecast(#) specifies the number of periods for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0), which is equivalent to not performing an out-of-sample forecast.

688 tssmooth shwinters — Holt–Winters seasonal smoothing

period(#) specifies the period of the seasonality. If period() is not specified, the seasonality is
obtained from the tsset options daily, weekly, . . . , yearly; see [TS] tsset. If you did not
specify one of those options when you tsset the data, you must specify the period() option.
For instance, if your data are quarterly and you did not specify tsset’s quarterly option, you
must now specify period(4).

By default, seasonal values are calculated, but you may specify the initial seasonal values to be
used via the sn0 0(varname) option. The first period() observations of varname are to contain
the initial seasonal values.

additive uses the additive seasonal Holt–Winters method instead of the default multiplicative
seasonal Holt–Winters method.

� � �
Options �

sn0 0(varname) specifies the initial seasonal values to use. varname must contain a complete year’s
worth of seasonal values, beginning with the first observation in the estimation sample. For example,
if you have monthly data, the first 12 observations of varname must contain nonmissing data.
sn0 0() cannot be used with sn0 v().

sn0 v(newvar) stores in newvar the initial seasonal values after they have been estimated. sn0 v()
cannot be used with sn0 0().

snt v(newvar) stores in newvar the seasonal values for the final year’s worth of data.

normalize specifies that the seasonal values be normalized. In the multiplicative model, they are
normalized to sum to one. In the additive model, the seasonal values are normalized to sum to
zero.

altstarts uses an alternative method to compute the starting values for the constant, the linear,
and the seasonal terms. The default and the alternative methods are described in Methods and
formulas. altstarts may not be specified with s0().

� � �
Maximization �

maximize options controls the process for solving for the optimal α, β, and γ when the parms()
option is not specified.

maximize options: nodifficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

from(#α #β #γ), 0 < #α < 1, 0 < #β < 1, and 0 < #γ < 1, specifies starting values from which
the optimal values of α, β, and γ will be obtained. If from() is not specified, from(.5 .5 .5)
is used.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Holt–Winters seasonal multiplicative method
Holt–Winters seasonal additive method

tssmooth shwinters — Holt–Winters seasonal smoothing 689

Introduction

The seasonal Holt–Winters methods forecast univariate series that have a seasonal component.
If the amplitude of the seasonal component grows with the series, the Holt–Winters multiplicative
method should be used. If the amplitude of the seasonal component is not growing with the series, the
Holt–Winters additive method should be used. Abraham and Ledolter (1983), Bowerman, O’Connell,
and Koehler (2005), and Montgomery, Johnson, and Gardiner (1990) provide good introductions to the
Holt–Winters methods in recursive univariate forecasting methods. Chatfield (2001, 2004) provides
introductions in the broader context of modern time-series analysis.

Like the other recursive methods in tssmooth, tssmooth shwinters uses the information stored
by tsset to detect panel data. When applied to panel data, each series is smoothed separately, and
the starting values are computed separately for each panel. If the smoothing parameters are chosen
to minimize the in-sample sum-of-squared forecast errors, the optimization is performed separately
on each panel.

When there are missing values at the beginning of the series, the sample begins with the first
nonmissing observation. Missing values after the first nonmissing observation are filled in with
forecasted values.

Holt–Winters seasonal multiplicative method

This method forecasts seasonal time series in which the amplitude of the seasonal component
grows with the series. Chatfield (2001) notes that there are some nonlinear state-space models whose
optimal prediction equations correspond to the multiplicative Holt–Winters method. This procedure
is best applied to data that could be described by

xt+j = (µt + βj)St+j + εt+j

where xt is the series, µt is the time-varying mean at time t, β is a parameter, St is the seasonal
component at time t, and εt is an idiosyncratic error. See Methods and formulas for the updating
equations.

Example 1: Forecasting from the multiplicative model

We have quarterly data on turkey sales by a new producer in the 1990s. The data have a strong
seasonal component and an upward trend. We use the multiplicative Holt–Winters method to forecast
sales for the year 2000. Because we have already tsset our data to the quarterly format, we do not
need to specify the period() option.

690 tssmooth shwinters — Holt–Winters seasonal smoothing

. use http://www.stata-press.com/data/r14/turksales

. tssmooth shwinters shw1 = sales, forecast(4)
computing optimal weights

Iteration 0: penalized RSS = -189.34609 (not concave)
Iteration 1: penalized RSS = -108.68038
Iteration 2: penalized RSS = -106.99574
Iteration 3: penalized RSS = -106.16725
Iteration 4: penalized RSS = -106.14094
Iteration 5: penalized RSS = -106.14093
Iteration 6: penalized RSS = -106.14093

Optimal weights:
alpha = 0.1310
beta = 0.1428

gamma = 0.2999
penalized sum-of-squared residuals = 106.1409

sum-of-squared residuals = 106.1409
root mean squared error = 1.628964

The graph below describes the fit and the forecast that was obtained.

. line sales shw1 t, title("Multiplicative Holt-Winters forecast")
> xtitle(Time) ytitle(Sales)

9
5

1
0

0
1

0
5

1
1

0
1

1
5

S
a

le
s

1990q1 1992q1 1994q1 1996q1 1998q1 2000q1
Time

sales shw parms(0.131 0.143 0.300) = sales

Multiplicative Holt−Winters forecast

Holt–Winters seasonal additive method
This method is similar to the previous one, but the seasonal effect is assumed to be additive rather

than multiplicative. This method forecasts series that can be described by the equation

xt+j = (µt + βj) + St+j + εt+j

See Methods and formulas for the updating equations.

tssmooth shwinters — Holt–Winters seasonal smoothing 691

Example 2: Forecasting from the additive model

In this example, we fit the data from the previous example to the additive model to forecast sales
in the coming year. We use the snt v() option to save the last year’s seasonal terms in the new
variable seas.

. tssmooth shwinters shwa = sales, forecast(4) snt_v(seas) normalize additive
computing optimal weights

Iteration 0: penalized RSS = -190.90242 (not concave)
Iteration 1: penalized RSS = -108.8357
Iteration 2: penalized RSS = -108.25359
Iteration 3: penalized RSS = -107.68187
Iteration 4: penalized RSS = -107.66444
Iteration 5: penalized RSS = -107.66442
Iteration 6: penalized RSS = -107.66442

Optimal weights:
alpha = 0.1219
beta = 0.1580

gamma = 0.3340
penalized sum-of-squared residuals = 107.6644

sum-of-squared residuals = 107.6644
root mean squared error = 1.640613

The output reveals that the multiplicative model has a better in-sample fit, and the graph below
shows that the forecast from the multiplicative model is higher than that of the additive model.

. line shw1 shwa t if t>=tq(2000q1), title("Multiplicative and additive"
> "Holt-Winters forecasts") xtitle("Time") ytitle("Sales") legend(cols(1))

1
0

8
1

0
9

1
1

0
1

1
1

1
1

2
1

1
3

S
a

le
s

2000q1 2000q2 2000q3 2000q4 2001q1
Time

shw parms(0.131 0.143 0.300) = sales

shw−add parms(0.122 0.158 0.334) = sales

Multiplicative and additive
Holt−Winters forecasts

To check whether the estimated seasonal components are intuitively sound, we list the last year’s
seasonal components.

. list t seas if seas < .

t seas

37. 1999q1 -2.7533393
38. 1999q2 -.91752573
39. 1999q3 1.8082417
40. 1999q4 1.8626233

692 tssmooth shwinters — Holt–Winters seasonal smoothing

The output indicates that the signs of the estimated seasonal components agree with our intuition.

Stored results
tssmooth shwinters stores the following in r():
Scalars

r(N) number of observations r(N pre) number of seasons used
r(alpha) α smoothing parameter in calculating starting values
r(beta) β smoothing parameter r(s2 0) initial value for linear term
r(gamma) γ smoothing parameter r(s1 0) initial value for constant term
r(prss) penalized sum-of-squared errors r(linear) final value of linear term
r(rss) sum-of-squared errors r(constant) final value of constant term
r(rmse) root mean squared error r(period) period, if filter is seasonal

Macros
r(method) shwinters, additive or r(exp) expression specified

shwinters, multiplicative r(timevar) time variable specified in tsset
r(normalize) normalize, if specified r(panelvar) panel variable specified in tsset

Methods and formulas
A truncated description of the specified seasonal Holt–Winters filter labels the new variable. See

[D] label for more information on labels.

An untruncated description of the specified seasonal Holt–Winters filter is saved in the characteristic
named tssmooth for the new variable. See [P] char for more information on characteristics.

When the parms() option is not specified, the smoothing parameters are chosen to minimize the
in-sample sum of penalized squared-forecast errors. Sometimes, one or more of the three optimal
parameters lies on the boundary [0, 1]. To keep the estimates inside [0, 1], tssmooth shwinters
parameterizes the objective function in terms of their inverse logits, that is, exp(α)/{1 + exp(α)},
exp(β)/{1 + exp(β)}, and exp(γ)/{1 + exp(γ)}. When one of these parameters is actually on the
boundary, this can complicate the optimization. For this reason, tssmooth shwinters optimizes a
penalized sum-of-squared forecast errors. Let x̂t(α̃, β̃, γ̃) be the forecast for the series xt given the
choices of α̃, β̃, and γ̃. Then the in-sample penalized sum-of-squared prediction errors is

P =

T∑
t=1

[
{xt − x̂t(α̃, β̃, γ̃)}2 + I|f(α̃)|>12)

(|f(α̃)| − 12)2 + I|f(β̃)|>12)
(|f(β̃)| − 12)2

+I|f(γ̃)|>12)
(|f(γ̃)| − 12)2

]
where f(x) = ln

(
x

1−x

)
. The penalty term is zero unless one of the parameters is close to the

boundary. When one of the parameters is close to the boundary, the penalty term will help to obtain
convergence.

Holt–Winters seasonal multiplicative procedure

As with the other recursive methods in tssmooth, there are three aspects to implementing the
Holt–Winters seasonal multiplicative procedure: the forecasting equation, the initial values, and the
updating equations. Unlike in the other methods, the data are now assumed to be seasonal with period
L.

tssmooth shwinters — Holt–Winters seasonal smoothing 693

Given the estimates a(t), b(t), and s(t+ τ −L), a τ step-ahead point forecast of xt, denoted by
ŷt+τ , is

ŷt+τ = {a(t) + b(t)τ} s(t+ τ − L)

Given the smoothing parameters α, β, and γ, the updating equations are

a(t) = α
xt

s(t− L)
+ (1− α) {a(t− 1) + b(t− 1)}

b(t) = β {a(t)− a(t− 1)}+ (1− β) b(t− 1)

and

s(t) = γ

{
xt
a(t)

}
+ (1− γ)s(t− L)

To restrict the seasonal terms to sum to 1 over each year, specify the normalize option.

The updating equations require the L+ 2 initial values a(0), b(0), s(1−L), s(2−L), . . . , s(0).
Two methods calculate the initial values with the first m years, each of which contains L seasons.
By default, m is set to the number of seasons in half the sample.

The initial value of the trend component, b(0), can be estimated by

b(0) =
xm − x1

(m− 1)L

where xm is the average level of xt in year m and x1 is the average level of xt in the first year.

The initial value for the linear term, a(0), is then calculated as

a(0) = x1 −
L

2
b(0)

To calculate the initial values for the seasons 1, 2, . . . , L, we first calculate the deviation-adjusted
values,

S(t) =
xt

xi −
{

(L+1)
2 − j

}
b(0)

where i is the year that corresponds to time t, j is the season that corresponds to time t, and xi is
the average level of xt in year i.

Next, for each season l = 1, 2, . . . , L, we define sl as the average St over the years. That is,

sl =
1

m

m−1∑
k=0

Sl+kL for l = 1, 2, . . . , L

Then the initial seasonal estimates are

s0l = sl

(
L∑L
l=1 sl

)
for l = 1, 2, . . . , L

and these values are used to fill in s(1− L), . . . , s(0).

694 tssmooth shwinters — Holt–Winters seasonal smoothing

If the altstarts option is specified, the starting values are computed based on a regression with
seasonal indicator variables. Specifically, the series xt is regressed on a time variable normalized
to equal one in the first period in the sample and on a constant. Then b(0) is set to the estimated
coefficient on the time variable, and a(0) is set to the estimated constant term. To calculate the
seasonal starting values, xt is regressed on a set of L seasonal dummy variables. The lth seasonal
starting value is set to (1

µ)β̂l, where µ is the mean of xt and β̂l is the estimated coefficient on
the lth seasonal dummy variable. The sample used in both regressions and the mean computation is
restricted to include the first samp0() years. By default, samp0() includes half the data.

Technical note
If there are missing values in the first few years, a small value of m can cause the starting value

methods for seasonal term to fail. Here you should either specify a larger value of m by using
samp0() or directly specify the seasonal starting values by using the snt0 0() option.

Holt–Winters seasonal additive procedure

This procedure is similar to the previous one, except that the data are assumed to be described by

xt = (β0 + β1t) + st + εt

As in the multiplicative case, there are three smoothing parameters, α, β, and γ, which can either
be set or chosen to minimize the in-sample sum-of-squared forecast errors.

The updating equations are

a(t) = α {xt − s(t− L)}+ (1− α) {a(t− 1) + b(t− 1)}

b(t) = β {a(t)− a(t− 1)}+ (1− β)b(t− 1)

and
s(t) = γ {xt − a(t)}+ (1− γ)s(t− L)

To restrict the seasonal terms to sum to 0 over each year, specify the normalize option.

A τ -step-ahead forecast, denoted by ŷt+τ , is given by

x̂t+τ = a(t) + b(t)τ + s(t+ τ − L)

As in the multiplicative case, there are two methods for setting the initial values.

The default method is to obtain the initial values for a(0), b(0), s(1 − L), . . . , s(0) from the
regression

xt = a(0) + b(0)t+ βs,1−LD1 + βs,2−LD2 + · · ·+ βs,0DL + et

where the D1, . . . , DL are dummy variables with

Di =

{
1 if t corresponds to season i
0 otherwise

}

tssmooth shwinters — Holt–Winters seasonal smoothing 695

When altstarts is specified, an alternative method is used that regresses the xt series on a time
variable that has been normalized to equal one in the first period in the sample and on a constant
term. b(0) is set to the estimated coefficient on the time variable, and a(0) is set to the estimated
constant term. Then the demeaned series x̃t = xt − µ is created, where µ is the mean of the xt.
The x̃t are regressed on L seasonal dummy variables. The lth seasonal starting value is then set to
βl, where βl is the estimated coefficient on the lth seasonal dummy variable. The sample in both the
regression and the mean calculation is restricted to include the first samp0 years, where, by default,
samp0() includes half the data.

Acknowledgment
We thank Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor

of the Stata Journal and author of Speaking Stata Graphics for his helpful comments.

References
Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.

Bowerman, B. L., R. T. O’Connell, and A. B. Koehler. 2005. Forecasting, Time Series, and Regression: An Applied
Approach. 4th ed. Pacific Grove, CA: Brooks/Cole.

Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.

. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.

Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting 20: 5–10.

Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New
York: McGraw–Hill.

Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.

Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/

Title

ucm — Unobserved-components model

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

Unobserved-components models (UCMs) decompose a time series into trend, seasonal, cyclical,
and idiosyncratic components and allow for exogenous variables. ucm estimates the parameters of
UCMs by maximum likelihood.

All the components are optional. The trend component may be first-order deterministic or it may
be first-order or second-order stochastic. The seasonal component is stochastic; the seasonal effects
at each time period sum to a zero-mean finite-variance random variable. The cyclical component is
modeled by the stochastic-cycle model derived by Harvey (1989).

Quick start
Random-walk model for y using tsset data

ucm y

Add a cyclical component of order 2
ucm y, cycle(2)

Add a seasonal component arising every 3 periods
ucm y, cycle(2) seasonal(3)

Random-walk model for y with a drift component and a cyclical component of order 1
ucm y, model(rwdrift) cycle(1)

Smooth-trend model for y with cyclical and seasonal components of order 2
ucm y, model(strend) cycle(2) seasonal(2)

Menu
Statistics > Time series > Unobserved-components model

696

ucm — Unobserved-components model 697

Syntax
ucm depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

model(model) specify trend and idiosyncratic components
seasonal(#) include a seasonal component with a period of # time units
cycle(#

[
, frequency(#f)

]
) include a cycle component of order # and optionally set initial

frequency to #f , 0 < #f < π; cycle() may be specified up to
three times

constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

model Description

rwalk random-walk model; the default
none no trend or idiosyncratic component
ntrend no trend component but include idiosyncratic component
dconstant deterministic constant with idiosyncratic component
llevel local-level model
dtrend deterministic-trend model with idiosyncratic component
lldtrend local-level model with deterministic trend
rwdrift random-walk-with-drift model
lltrend local-linear-trend model
strend smooth-trend model
rtrend random-trend model

You must tsset your data before using ucm; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

698 ucm — Unobserved-components model

Options

� � �
Model �

model(model) specifies the trend and idiosyncratic components. The default is model(rwalk). The
available models are listed in Syntax and discussed in detail in Models for the trend and idiosyncratic
components under Remarks and examples below.

seasonal(#) adds a stochastic-seasonal component to the model. # is the period of the season, that
is, the number of time-series observations required for the period to complete.

cycle(#) adds a stochastic-cycle component of order # to the model. The order # must be 1, 2, or
3. Multiple cycles are added by repeating the cycle(#) option with up to three cycles allowed.

cycle(#, frequency(#f)) specifies #f as the initial value for the central-frequency parameter
in the stochastic-cycle component of order #. #f must be in the interval (0, π).

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes ucm to use the observed information matrix estimator.

vce(robust) causes ucm to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] maximize for all options except from(), and
see below for information on from().

from(matname) specifies initial values for the maximization process. from(b0) causes ucm to
begin the maximization algorithm with the values in b0. b0 must be a row vector; the number
of columns must equal the number of parameters in the model; and the values in b0 must be
in the same order as the parameters in e(b).

If you model fails to converge, try using the difficult option. Also see the technical note below
example 5.

The following option is available with ucm but is not shown in the dialog box:

coeflegend; see [R] estimation options.

ucm — Unobserved-components model 699

Remarks and examples
Remarks are presented under the following headings:

An introduction to UCMs
A random-walk model example
Frequency-domain concepts used in the stochastic-cycle model
Another random-walk model example
Comparing UCM and ARIMA
A local-level model example
Comparing UCM and ARIMA, revisited
Models for the trend and idiosyncratic components
Seasonal component

An introduction to UCMs

UCMs decompose a time series into trend, seasonal, cyclical, and idiosyncratic components and
allow for exogenous variables. Formally, UCMs can be written as

yt = τt + γt + ψt + βxt + εt (1)

where yt is the dependent variable, τt is the trend component, γt is the seasonal component, ψt is
the cyclical component, β is a vector of fixed parameters, xt is a vector of exogenous variables, and
εt is the idiosyncratic component.

By placing restrictions on τt and εt, Harvey (1989) derived a series of models for the trend and the
idiosyncratic components. These models are briefly described in Syntax and are further discussed in
Models for the trend and idiosyncratic components. To these models, Harvey (1989) added models for
the seasonal and cyclical components, and he also allowed for the presence of exogenous variables.

It is rare that a UCM contains all the allowed components. For instance, the seasonal component
is rarely needed when modeling deseasonalized data.

Harvey (1989) and Durbin and Koopman (2012) show that UCMs can be written as state-space
models that allow the parameters of a UCM to be estimated by maximum likelihood. In fact, ucm
uses sspace (see [TS] sspace) to perform the estimation calculations; see Methods and formulas for
details.

After estimating the parameters, predict can produce in-sample predictions or out-of-sample
forecasts; see [TS] ucm postestimation. After estimating the parameters of a UCM that contains
a cyclical component, estat period converts the estimated central frequency to an estimated
central period and psdensity estimates the spectral density implied by the model; see [TS] ucm
postestimation and the examples below.

We illustrate the basic approach of analyzing data with UCMs, and then we discuss the details of
the different trend models in Models for the trend and idiosyncratic components.

Although the methods implemented in ucm have been widely applied by economists, they are general
time-series techniques and may be of interest to researchers from other disciplines. In example 8, we
analyze monthly data on the reported cases of mumps in New York City.

700 ucm — Unobserved-components model

A random-walk model example

Example 1

We begin by plotting monthly data on the U.S. civilian unemployment rate.

. use http://www.stata-press.com/data/r14/unrate

. tsline unrate, name(unrate)
2

4
6

8
1

0
C

iv
ili

a
n

 U
n

e
m

p
lo

y
m

e
n

t
R

a
te

1950m1 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1
Month

This series looks like it might be well approximated by a random-walk model. Formally, a
random-walk model is given by

yt = µt

µt = µt−1 + ηt

ucm — Unobserved-components model 701

The random-walk is so frequently applied, at least as a starting model, that it is the default model
for ucm. In the output below, we fit the random-walk model to the unemployment data.

. ucm unrate
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 84.272992
Iteration 1: log likelihood = 84.394942
Iteration 2: log likelihood = 84.400923
Iteration 3: log likelihood = 84.401282
Iteration 4: log likelihood = 84.401305
(switching technique to nr)
Iteration 5: log likelihood = 84.401306
Refining estimates:
Iteration 0: log likelihood = 84.401306
Iteration 1: log likelihood = 84.401307

Unobserved-components model
Components: random walk

Sample: 1948m1 - 2011m1 Number of obs = 757
Log likelihood = 84.401307

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

var(level) .0467196 .002403 19.44 0.000 .0420098 .0514294

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output indicates that the model is nonstationary, as all random-walk models are.

We consider a richer model in the next example.

Example 2

We suspect that there should be a stationary cyclical component that produces serially correlated
shocks around the random-walk trend. Harvey (1989) derived a stochastic-cycle model for these
stationary cyclical components.

The stochastic-cycle model has three parameters: the frequency at which the random components
are centered, a damping factor that parameterizes the dispersion of the random components around
the central frequency, and the variance of the stochastic-cycle process that acts as a scale factor.

702 ucm — Unobserved-components model

Fitting this model to unemployment data yields

. ucm unrate, cycle(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 84.273579
Iteration 1: log likelihood = 87.852115
Iteration 2: log likelihood = 88.253422
Iteration 3: log likelihood = 89.191311
Iteration 4: log likelihood = 94.675898
(switching technique to nr)
Iteration 5: log likelihood = 98.394691 (not concave)
Iteration 6: log likelihood = 98.983093
Iteration 7: log likelihood = 99.983635
Iteration 8: log likelihood = 104.8309
Iteration 9: log likelihood = 114.27142
Iteration 10: log likelihood = 116.4741
Iteration 11: log likelihood = 118.45816
Iteration 12: log likelihood = 118.88056
Iteration 13: log likelihood = 118.88421
Iteration 14: log likelihood = 118.88421
Refining estimates:
Iteration 0: log likelihood = 118.88421
Iteration 1: log likelihood = 118.88421

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 1948m1 - 2011m1 Number of obs = 757
Wald chi2(2) = 26650.81

Log likelihood = 118.88421 Prob > chi2 = 0.0000

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency .0933466 .0103609 9.01 0.000 .0730397 .1136535
damping .9820003 .0061121 160.66 0.000 .9700207 .9939798

var(level) .0143786 .0051392 2.80 0.003 .004306 .0244511
var(cycle1) .0270339 .0054343 4.97 0.000 .0163829 .0376848

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The estimated central frequency for the cyclical component is small, implying that the cyclical
component is centered on low-frequency components. The high-damping factor indicates that all the
components from this cyclical component are close to the estimated central frequency. The estimated
variance of the stochastic-cycle process is small but significant.

We use estat period to convert the estimate of the central frequency to an estimated central
period.

. estat period

cycle1 Coef. Std. Err. [95% Conf. Interval]

period 67.31029 7.471004 52.6674 81.95319
frequency .0933466 .0103609 .0730397 .1136535

damping .9820003 .0061121 .9700207 .9939798

Note: Cycle time unit is monthly.

ucm — Unobserved-components model 703

Because we have monthly data, the estimated central period of 67.31 implies that the cyclical
component is composed of random components that occur around a central periodicity of about 5.61
years. This estimate falls within the conventional Burns and Mitchell (1946) definition of business-cycle
shocks occurring between 1.5 and 8 years.

We can convert the estimated parameters of the cyclical component to an estimated spectral
density of the cyclical component, as described by Harvey (1989). The spectral density of the cyclical
component describes the relative importance of the random components at different frequencies; see
Frequency-domain concepts used in the stochastic-cycle model for details. We use psdensity (see
[TS] psdensity) to obtain the spectral density of the cyclical component implied by the estimated
parameters, and we use twoway line (see [G-2] graph twoway line) to plot the estimated spectral
density.

. psdensity sdensity omega

. line sdensity omega

0
2

4
6

8
U

C
M

 c
y
c
le

 1
 s

p
e

c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

The estimated spectral density shows that the cyclical component is composed of random components
that are tightly distributed at the low-frequency peak.

Frequency-domain concepts used in the stochastic-cycle model

The parameters of the stochastic-cycle model are easiest to interpret in the frequency domain. We
now provide a review of the useful concepts from the frequency domain. Crucial to understanding the
stochastic-cycle model is the frequency-domain concept that a stationary process can be decomposed
into random components that occur at the frequencies in the interval [0, π].

We need some concepts from the frequency-domain approach to interpret the parameters in the
stochastic-cycle model of the cyclical component. Here we provide a simple, intuitive explanation.
More technical presentations can be found in Priestley (1981), Harvey (1989, 1993), Hamilton (1994),
Fuller (1996), and Wei (2006).

As with much time-series analysis, the basic results are for covariance-stationary processes with
additional results handling some nonstationary cases. We present some useful results for covariance-
stationary processes. These results provide what we need to interpret the stochastic-cycle model for
the stationary cyclical component.

704 ucm — Unobserved-components model

The autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its
variance and dependence structure. In the frequency-domain approach to time-series analysis, the
spectral density describes the importance of the random components that occur at frequency ω relative
to the components that occur at other frequencies.

The frequency-domain approach focuses on the relative contributions of random components that
occur at the frequencies [0, π].

The spectral density can be written as a weighted average of the autocorrelations of yt. Like
autocorrelations, the spectral density is normalized by γ0, the variance of yt. Multiplying the spectral
density by γ0 yields the power-spectrum of yt.

In an independent and identically distributed (i.i.d.) process, the components at all frequencies are
equally important, so the spectral density is a flat line.

In common parlance, we speak of high-frequency noise making a series look more jagged and of
low-frequency components causing smoother plots. More formally, we say that a process composed
primarily of high-frequency components will have fewer runs above or below the mean than an i.i.d.
process and that a process composed primarily of low-frequency components will have more runs
above or below the mean than an i.i.d. process.

To further formalize these ideas, consider the first-order autoregressive (AR(1)) process given by

yt = φyt−1 + εt

where εt is a zero-mean, covariance-stationary process with finite variance σ2, and |φ| < 1 so that
yt is covariance stationary. The first-order autocorrelation of this AR(1) process is φ.

Below are plots of simulated data when φ is set to 0, −0.8, and 0.8. When φ = 0, the data are i.i.d.
When φ = −0.8, the value today is strongly negatively correlated with the value yesterday, so this case
should be a prototypical high-frequency noise example. When φ = 0.8, the value today is strongly
positively correlated with the value yesterday, so this case should be a prototypical low-frequency
shock example.

−
2

−
1

0
1

2
φ
=

0
−

2
−

1
0

1
2

3
φ
=

−
0

.8
−

3
−

2
−

1
0

1
2

φ
=

0
.8

y

Time

The plots above confirm our conjectures. The plot when φ = −0.8 contains fewer runs above or
below the mean, and it is more jagged than the i.i.d. plot. The plot when φ = 0.8 contains more runs
above or below the mean, and it is smoother than the i.i.d. plot.

ucm — Unobserved-components model 705

Below we plot the spectral densities for the AR(1) model with φ = 0, φ = −0.8, and φ = 0.8.

0
5

1
0

1
5

2
0

2
5

S
p

e
c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

φ=0 φ=0.8 φ=−0.8

The high-frequency components are much more important to the AR(1) process with φ = −0.8 than
to the i.i.d. process with φ = 0. The low-frequency components are much more important to the
AR(1) process with φ = 0.8 than to the i.i.d. process.

Technical note

Autoregressive moving-average (ARMA) models parameterize the autocorrelation in a time series
by allowing today’s value to be a weighted average of past values and a weighted average of past i.i.d.
shocks; see Hamilton (1994), Wei (2006), and [TS] arima for introductions and a Stata implementation.
The intuitive ARMA parameterization has many nice features, including that one can easily rewrite
the ARMA model as a weighted average of past i.i.d. shocks to trace how a shock feeds through the
system.

Although it is easy to obtain the spectral density of an ARMA process, the parameters themselves
provide limited information about the underlying spectral density.

In contrast, the parameters of the stochastic-cycle parameterization of autocorrelation in a time series
directly provide information about the underlying spectral density. The parameter ω0 is the central
frequency at which the random components are clustered. If ω0 is small, then the model is centered
on low-frequency components. If ω0 is close to π, then the model is centered on high-frequency
components. The parameter ρ is the damping factor that indicates how tightly clustered the random
components are at the central frequency ω0. If ρ is close to 0, there is no clustering of the random
components. If ρ is close to 1, the random components are tightly distributed at the central frequency
ω0.

In the graph below, we draw the spectral densities implied by stochastic-cycle models with
four sets of parameters: ω0 = π/4, ρ = 0.8; ω0 = π/4, ρ = 0.9; ω0 = 4π/5, ρ = 0.8; and
ω0 = 4π/5, ρ = 0.9. The graph below illustrates that ω0 is the central frequency at which the other
important random components are distributed. It also illustrates that the damping parameter ρ controls
the dispersion of the important components at the central frequency.

706 ucm — Unobserved-components model

ω0 =
π
⁄4

ρ = 0.9

ω0 =
4π

⁄5

ρ = 0.9

ω0 =
π
⁄4

ρ = 0.8

ω0 =
4π

⁄5

ρ = 0.8

0
1

0
2

0
3

0
4

0
5

0

π/4 π/2 3π/4 π

Another random-walk model example

Example 3

Now let’s reconsider example 2. Although we might be happy with how our model has identified
a stationary cyclical component that we could interpret in business-cycle terms, we suspect that there
should also be a high-frequency cyclical component. It is difficult to estimate the parameters of a UCM
with two or more stochastic-cycle models. Providing starting values for the central frequencies can be
a crucial help to the optimization procedure. Below we estimate a UCM with two cyclical components.
We use the frequency() suboption to provide starting values for the central frequencies; we specified
the values below because we suspect one model will pick up the low-frequency components and the
other will pick up the high-frequency components. We specified the low-frequency model to be order
2 to make it less peaked for any given damping factor. (Trimbur [2006] provides a nice introduction
and some formal results for higher-order stochastic-cycle models.)

. ucm unrate, cycle(1, frequency(2.9)) cycle(2, frequency(.09))
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = 115.98563
Iteration 1: log likelihood = 125.04043
Iteration 2: log likelihood = 127.69387
Iteration 3: log likelihood = 134.50864
Iteration 4: log likelihood = 136.91353
(switching technique to nr)
Iteration 5: log likelihood = 138.5091
Iteration 6: log likelihood = 146.09273
Iteration 7: log likelihood = 146.28132
Iteration 8: log likelihood = 146.28326
Iteration 9: log likelihood = 146.28326
Refining estimates:
Iteration 0: log likelihood = 146.28326
Iteration 1: log likelihood = 146.28326

ucm — Unobserved-components model 707

Unobserved-components model
Components: random walk, 2 cycles of order 1 2

Sample: 1948m1 - 2011m1 Number of obs = 757
Wald chi2(4) = 7681.33

Log likelihood = 146.28326 Prob > chi2 = 0.0000

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

cycle1
frequency 2.882382 .0668017 43.15 0.000 2.751453 3.013311

damping .7004295 .1251571 5.60 0.000 .4551261 .9457329

cycle2
frequency .0667929 .0206849 3.23 0.001 .0262513 .1073346

damping .9074708 .0142273 63.78 0.000 .8795858 .9353559

var(level) .0207704 .0039669 5.24 0.000 .0129953 .0285454
var(cycle1) .0027886 .0014363 1.94 0.026 0 .0056037
var(cycle2) .002714 .0010281 2.64 0.004 .0006991 .004729

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output provides some support for the existence of a second, high-frequency cycle. The high-
frequency components are centered at 2.88, whereas the low-frequency components are centered at
0.067. That the estimated damping factor is 0.70 for the high-frequency cycle whereas the estimated
damping factor for the low-frequency cycle is 0.91 indicates that the high-frequency components are
more diffusely distributed at 2.88 than the low-frequency components are at 0.067.

We obtain and plot the estimated spectral densities to get another look at these results.

. psdensity sdensity2a omega2a

. psdensity sdensity2b omega2b, cycle(2)

. line sdensity2a sdensity2b omega2a, legend(col(1))

0
1

2
3

4

0 1 2 3
Frequency

UCM cycle 1 spectral density

UCM cycle 2 spectral density

The estimated spectral densities indicate that we have found two distinct cyclical components.

708 ucm — Unobserved-components model

It does not matter whether we specify omega2a or omega2b to be the x-axis variable, because
they are equal to each other.

Technical note
That the estimated spectral densities in the previous example do not overlap is important for

parameter identification. Although the parameters are identified in large-sample theory, we have found
it difficult to estimate the parameters of two cyclical components when the spectral densities overlap.
When the spectral densities of two cyclical components overlap, the parameters may not be well
identified and the optimization procedure may not converge.

Comparing UCM and ARIMA

Example 4

This example provides some insight for readers familiar with autoregressive integrated moving-
average (ARIMA) models but not with UCMs. If you are not familiar with ARIMA models, you may
wish to skip this example. See [TS] arima for an introduction to ARIMA models in Stata.

UCMs provide an alternative to ARIMA models implemented in [TS] arima. Neither set of models
is nested within the other, but there are some cases in which instructive comparisons can be made.

The random-walk model corresponds to an ARIMA model that is first-order integrated and has
an i.i.d. error term. In other words, the random-walk UCM and the ARIMA(0,1,0) are asymptotically
equivalent. Thus

ucm unrate

and

arima unrate, arima(0,1,0) noconstant

produce asymptotically equivalent results.

The stochastic-cycle model for the stationary cyclical component is an alternative functional form
for stationary processes to stationary autoregressive moving-average (ARMA) models. Which model
is preferred depends on the application and which parameters a researchers wants to interpret. Both
the functional forms and the parameter interpretations differ between the stochastic-cycle model and
the ARMA model. See Trimbur (2006, eq. 25) for some formal comparisons of the two models.

That both models can be used to estimate the stationary cyclical components for the random-walk
model implies that we can compare the results in this case by comparing their estimated spectral
densities. Below we estimate the parameters of an ARIMA(2,1,1) model and plot the estimated spectral
density of the stationary component.

ucm — Unobserved-components model 709

. arima unrate, noconstant arima(2,1,1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 129.8801
Iteration 1: log likelihood = 134.61953
Iteration 2: log likelihood = 137.04909
Iteration 3: log likelihood = 137.71386
Iteration 4: log likelihood = 138.25255
(switching optimization to BFGS)
Iteration 5: log likelihood = 138.51924
Iteration 6: log likelihood = 138.81638
Iteration 7: log likelihood = 138.83615
Iteration 8: log likelihood = 138.8364
Iteration 9: log likelihood = 138.83642
Iteration 10: log likelihood = 138.83642

ARIMA regression

Sample: 1948m2 - 2011m1 Number of obs = 756
Wald chi2(3) = 683.34

Log likelihood = 138.8364 Prob > chi2 = 0.0000

OPG
D.unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. .5398016 .0586304 9.21 0.000 .4248882 .6547151
L2. .2468148 .0359396 6.87 0.000 .1763744 .3172551

ma
L1. -.5146506 .0632838 -8.13 0.000 -.6386845 -.3906167

/sigma .2013332 .0032644 61.68 0.000 .1949351 .2077313

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. psdensity sdensity_arma omega_arma

. line sdensity_arma omega_arma

0
.2

.4
.6

.8
A

R
M

A

s
p

e
c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

The estimated spectral density from the ARIMA(2,1,1) has a similar shape to the plot obtained by
combining the two spectral densities estimated from the stochastic-cycle model in example 3. For
this particular application, the estimated central frequencies of the two cyclical components from the

710 ucm — Unobserved-components model

stochastic-cycle model provide information about the business-cycle component and the high-frequency
component that is not easily obtained from the ARIMA(2,1,1) model. On the other hand, it is easier
to work out the impulse–response function for the ARMA model than for the stochastic-cycle model,
implying that the ARMA model is easier to use when tracing the effect of a shock feeding through
the system.

A local-level model example

We now consider the weekly series of initial claims for unemployment insurance in the United
States, which is plotted below.

Example 5

. use http://www.stata-press.com/data/r14/icsa1, clear

. tsline icsa

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

C
h

a
n

g
e

 i
n

 i
n

it
ia

l
c
la

im
s

01jan1970 01jan1980 01jan1990 01jan2000 01jan2010
Date

This series looks like it was generated by a random walk with extra noise, so we want to use a
random-walk model that includes an additional random term. This structure causes the model to be
occasionally known as the random-walk-plus-noise model, but it is more commonly known as the
local-level model in the UCM literature.

The local-level model models the trend as a random walk and models the idiosyncratic components
as independent and identically distributed components. Formally, the local-level model specifies the
observed time-series yt, for t = 1, . . . , T , as

yt = µt + εt

µt = µt−1 + ηt

where εt ∼ i.i.d. N(0, σ2
ε) and ηt ∼ i.i.d. N(0, σ2

η) and are mutually independent.

ucm — Unobserved-components model 711

We fit the local-level model in the output below:

. ucm icsa, model(llevel)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -9954.8223
Iteration 1: log likelihood = -9917.406
Iteration 2: log likelihood = -9905.6679
Iteration 3: log likelihood = -9897.7588
Iteration 4: log likelihood = -9894.2015
(switching technique to nr)
Iteration 5: log likelihood = -9893.4337
Iteration 6: log likelihood = -9893.2469
Iteration 7: log likelihood = -9893.2469
Refining estimates:
Iteration 0: log likelihood = -9893.2469
Iteration 1: log likelihood = -9893.2469

Unobserved-components model
Components: local level

Sample: 07jan1967 - 19feb2011 Number of obs = 2,303
Log likelihood = -9893.2469

OIM
icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

var(level) 116.558 8.806587 13.24 0.000 99.29745 133.8186
var(icsa) 124.2715 7.615506 16.32 0.000 109.3454 139.1976

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

The output indicates that both components are statistically significant.

Technical note
The estimation procedure will not always converge when estimating the parameters of the local-level

model. If the series does not vary enough in the random level, modeled by the random walk, and in
the stationary shocks around the random level, the estimation procedure will not converge because it
will be unable to set the variance of one of the two components to 0.

Take another look at the graphs of unrate and icsa. The extra noise around the random level
that can be seen in the graph of icsa allows us to estimate both variances.

A closely related point is that it is difficult to estimate the parameters of a local-level model with
a stochastic-cycle component because the series must have enough variation to identify the variance
of the random-walk component, the variance of the idiosyncratic term, and the parameters of the
stochastic-cycle component. In some cases, series that look like candidates for the local-level model
are best modeled as random-walk models with stochastic-cycle components.

In fact, convergence can be a problem for most of the models in ucm. Convergence problems
occur most often when there is insufficient variation to estimate the variances of the components in
the model. When there is insufficient variation to estimate the variances of the components in the
model, the optimization routine will fail to converge as it attempts to set the variance equal to 0.
This usually shows up in the iteration log when the log likelihood gets stuck at a particular value and
the message (not concave) or (backed up) is displayed repeatedly. When this happens, use the

712 ucm — Unobserved-components model

iterate() option to limit the number of iterations, look to see which of the variances is being driven
to 0, and drop that component from the model. (This technique is a method to obtain convergence
to interpretable estimates, not a model-selection method.)

Example 6

We might suspect that there is some serial correlation in the idiosyncratic shock. Alternatively,
we could include a cyclical component to model the stationary time-dependence in the series. In the
example below, we add a stochastic-cycle model for the stationary cyclical process, but we drop
the idiosyncratic term and use a random-walk model instead of the local-level model. We change
the model because it is difficult to estimate the variance of the idiosyncratic term along with the
parameters of a stationary cyclical component.

. ucm icsa, model(rwalk) cycle(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -10055.453
Iteration 1: log likelihood = -10047.163
Iteration 2: log likelihood = -10047.146 (backed up)
Iteration 3: log likelihood = -10047.146 (backed up)
Iteration 4: log likelihood = -10047.145 (backed up)
(switching technique to nr)
Iteration 5: log likelihood = -10047.142 (not concave)
Iteration 6: log likelihood = -9889.8038
Iteration 7: log likelihood = -9883.967
Iteration 8: log likelihood = -9883.3818 (not concave)
Iteration 9: log likelihood = -9883.3817 (not concave)
Iteration 10: log likelihood = -9883.3815 (not concave)
Iteration 11: log likelihood = -9883.3789 (not concave)
Iteration 12: log likelihood = -9883.376 (not concave)
Iteration 13: log likelihood = -9883.3684 (not concave)
Iteration 14: log likelihood = -9882.0687 (not concave)
Iteration 15: log likelihood = -9881.6615
Iteration 16: log likelihood = -9881.4451
Iteration 17: log likelihood = -9881.4441
Iteration 18: log likelihood = -9881.4441
Refining estimates:
Iteration 0: log likelihood = -9881.4441
Iteration 1: log likelihood = -9881.4441

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 07jan1967 - 19feb2011 Number of obs = 2,303
Wald chi2(2) = 23.04

Log likelihood = -9881.4441 Prob > chi2 = 0.0000

OIM
icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency 1.469633 .3855657 3.81 0.000 .7139385 2.225328
damping .1644576 .0349537 4.71 0.000 .0959495 .2329656

var(level) 97.90982 8.320047 11.77 0.000 81.60282 114.2168
var(cycle1) 149.7323 9.980798 15.00 0.000 130.1703 169.2943

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

ucm — Unobserved-components model 713

Although the output indicates that the model fits well, the small estimate of the damping parameter
indicates that the random components will be widely distributed at the central frequency. To get a
better idea of the dispersion of the components, we look at the estimated spectral density of the
stationary cyclical component.

. psdensity sdensity3 omega3

. line sdensity3 omega3

.1
4

5
.1

5
.1

5
5

.1
6

.1
6

5
.1

7
U

C
M

 c
y
c
le

 1
 s

p
e

c
tr

a
l
d

e
n

s
it
y

0 1 2 3
Frequency

The graph shows that the random components that make up the cyclical component are diffusely
distributed at a central frequency.

Comparing UCM and ARIMA, revisited

Example 7

Including lags of the dependent variable is an alternative method for modeling serially correlated
errors. The estimated coefficients on the lags of the dependent variable estimate the coefficients in an
autoregressive model for the stationary cyclical component; see Harvey (1989, 47–48) for a discussion.
Including lags of the dependent variable should be viewed as an alternative to the stochastic-cycle
model for the stationary cyclical component. In this example, we use the large-sample equivalence of
the random-walk model with pth order autoregressive errors and an ARIMA(p, 1, 0) to illustrate this
point.

714 ucm — Unobserved-components model

In the output below, we include 2 lags of the dependent variable in the random-walk UCM.

. ucm icsa L(1/2).icsa, model(rwalk)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -10026.649
Iteration 1: log likelihood = -9947.9671
Iteration 2: log likelihood = -9896.4778
Iteration 3: log likelihood = -9890.8199
Iteration 4: log likelihood = -9890.3202
(switching technique to nr)
Iteration 5: log likelihood = -9890.1546
Iteration 6: log likelihood = -9889.561
Iteration 7: log likelihood = -9889.5608
Refining estimates:
Iteration 0: log likelihood = -9889.5608
Iteration 1: log likelihood = -9889.5608

Unobserved-components model
Components: random walk

Sample: 21jan1967 - 19feb2011 Number of obs = 2,301
Wald chi2(2) = 271.88

Log likelihood = -9889.5608 Prob > chi2 = 0.0000

OIM
icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

icsa
L1. -.3250633 .0205148 -15.85 0.000 -.3652715 -.2848551
L2. -.1794686 .0205246 -8.74 0.000 -.2196961 -.1392411

var(level) 317.6474 9.36691 33.91 0.000 299.2886 336.0062

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

Now we use arima to estimate the parameters of an asymptotically equivalent ARIMA(2,1,0) model.
(We specify the technique(nr) option so that arima will compute the observed information matrix
standard errors that ucm computes.) We use nlcom to compute a point estimate and a standard error
for the variance, which is directly comparable to the one produced by ucm.

ucm — Unobserved-components model 715

. arima icsa, noconstant arima(2,1,0) technique(nr)

Iteration 0: log likelihood = -9896.4584
Iteration 1: log likelihood = -9896.458

ARIMA regression

Sample: 14jan1967 - 19feb2011 Number of obs = 2302
Wald chi2(2) = 271.95

Log likelihood = -9896.458 Prob > chi2 = 0.0000

OIM
D.icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

ARMA
ar

L1. -.3249383 .0205036 -15.85 0.000 -.3651246 -.284752
L2. -.1793353 .0205088 -8.74 0.000 -.2195317 -.1391388

/sigma 17.81606 .2625695 67.85 0.000 17.30143 18.33068

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. nlcom _b[sigma:_cons]^2

_nl_1: _b[sigma:_cons]^2

D.icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 317.4119 9.355904 33.93 0.000 299.0746 335.7491

It is no accident that the parameter estimates and the standard errors from the two estimators
are so close. As the sample size grows the differences in the parameter estimates and the estimated
standard errors will go to 0, because the two estimators are equivalent in large samples.

Models for the trend and idiosyncratic components

A general model that allows for fixed or stochastic trends in τt is given by

τt = τt−1 + βt−1 + ηt (2)

βt = βt−1 + ξt (3)

Following Harvey (1989), we define 11 flexible models for yt that specify both τt and εt in (1).
These models place restrictions on the general model specified in (2) and (3) and on εt in (1). In
other words, these models jointly specify τt and εt.

To any of these models, a cyclical component, a seasonal component, or exogenous variables may
be added.

716 ucm — Unobserved-components model

Table 1. Models for the trend and idiosyncratic components

Model name Syntax option Model

No trend or idiosyncratic component model(none)

No trend model(ntrend) yt=εt

Deterministic constant model(dconstant) yt=µ+ εt
µ=µ

Local level model(llevel) yt=µt + εt
µt=µt−1 + ηt

Random walk model(rwalk) yt=µt
µt=µt−1 + ηt

Deterministic trend model(dtrend) yt=µt + εt
µt=µt−1 + β
β=β

Local level with model(lldtrend) yt=µt + εt
deterministic trend µt=µt−1 + β + ηt

β=β

Random walk with drift model(rwdrift) yt=µt
µt=µt−1 + β + ηt
β=β

Local linear trend model(lltrend) yt=µt + εt
µt=µt−1 + βt−1 + ηt
βt=βt−1 + ξt

Smooth trend model(strend) yt=µt + εt
µt=µt−1 + βt−1

βt=βt−1 + ξt

Random trend model(rtrend) yt=µt
µt=µt−1 + βt−1

βt=βt−1 + ξt

The majority of the models available in ucm are designed for nonstationary time series. The
deterministic-trend model incorporates a first-order deterministic time-trend in the model. The local-
level, random-walk, local-level-with-deterministic-trend, and random-walk-with-drift models are for
modeling series with first-order stochastic trends. A series with a dth-order stochastic trend must be
differenced d times to be stationary. The local-linear-trend, smooth-trend, and random-trend models
are for modeling series with second-order stochastic trends.

The no-trend-or-idiosyncratic-component model is useful for using ucm to model stationary series
with cyclical components or seasonal components and perhaps exogenous variables. The no-trend and
the deterministic-constant models are useful for using ucm to model stationary series with seasonal
components or exogenous variables.

ucm — Unobserved-components model 717

Seasonal component

A seasonal component models cyclical behavior in a time series that occurs at known seasonal
periodicities. A seasonal component is modeled in the time domain; the period of the cycle is specified
as the number of time periods required for the cycle to complete.

Example 8

Let’s begin by considering a series that displays a seasonal effect. Below we plot a monthly series
containing the number of new cases of mumps in New York City between January 1928 and December
1972. (See Hipel and McLeod [1994] for the source and further discussion of this dataset.)

. use http://www.stata-press.com/data/r14/mumps, clear

. tsline mumps

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

n
u

m
b

e
r

o
f

m
u

m
p

s
 c

a
s
e

s
 r

e
p

o
rt

e
d

 i
n

 N
Y

C

1930m1 1940m1 1950m1 1960m1 1970m1
Month

The graph reveals recurring spikes at regular intervals, which we suspect to be seasonal effects. The
series may or may not be stationary; the graph evidence is not definitive.

Deterministic seasonal effects are a standard method of incorporating seasonality into a model. In a
model with a constant term, the s deterministic seasonal effects are modeled as s parameters subject to
the constraint that they sum to zero; formally, γt + γt−1 + · · ·+ γt−(s−1) = 0. A stochastic-seasonal
model is a more flexible alternative that allows the seasonal effects at time t to sum to ζt, a zero-mean,
finite-variance, i.i.d. random variable; formally, γt + γt−1 + · · ·+ γt−(s−1) = ζt.

In the output below, we model the seasonal effects by a stochastic-seasonal model, we allow for
the series to follow a random walk, and we include a stationary cyclical component.

718 ucm — Unobserved-components model

. ucm mumps, seasonal(12) cycle(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -3270.1579
Iteration 1: log likelihood = -3257.7346
Iteration 2: log likelihood = -3257.1819
Iteration 3: log likelihood = -3249.857
Iteration 4: log likelihood = -3249.5035
(switching technique to nr)
Iteration 5: log likelihood = -3248.9152
Iteration 6: log likelihood = -3248.724
Iteration 7: log likelihood = -3248.7138
Iteration 8: log likelihood = -3248.7138
Refining estimates:
Iteration 0: log likelihood = -3248.7138
Iteration 1: log likelihood = -3248.7138

Unobserved-components model
Components: random walk, seasonal(12), order 1 cycle

Sample: 1928m1 - 1972m6 Number of obs = 534
Wald chi2(2) = 2141.69

Log likelihood = -3248.7138 Prob > chi2 = 0.0000

OIM
mumps Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency .3863607 .0282037 13.70 0.000 .3310824 .4416389
damping .8405622 .0197933 42.47 0.000 .8017681 .8793563

var(level) 221.2131 140.5179 1.57 0.058 0 496.6231
var(seasonal) 4.151639 4.383442 0.95 0.172 0 12.74303

var(cycle1) 12228.17 813.8394 15.03 0.000 10633.08 13823.27

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output indicates that the trend and seasonal variances may not be necessary. When the variance of
the seasonal component is zero, the seasonal component becomes deterministic. Below we estimate the
parameters of a model that includes deterministic seasonal effects and a stationary cyclical component.

. ucm mumps ibn.month, model(none) cycle(1)
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -3934.0178
Iteration 1: log likelihood = -3615.0098
Iteration 2: log likelihood = -3502.5223
Iteration 3: log likelihood = -3407.9644
Iteration 4: log likelihood = -3368.2264
(switching technique to nr)
Iteration 5: log likelihood = -3352.1077
Iteration 6: log likelihood = -3284.5218
Iteration 7: log likelihood = -3283.0588
Iteration 8: log likelihood = -3283.0284
Iteration 9: log likelihood = -3283.0284
Refining estimates:
Iteration 0: log likelihood = -3283.0284
Iteration 1: log likelihood = -3283.0284

ucm — Unobserved-components model 719

Unobserved-components model
Components: order 1 cycle

Sample: 1928m1 - 1972m6 Number of obs = 534
Wald chi2(14) = 3404.29

Log likelihood = -3283.0284 Prob > chi2 = 0.0000

OIM
mumps Coef. Std. Err. z P>|z| [95% Conf. Interval]

cycle1
frequency .3272753 .0262922 12.45 0.000 .2757436 .3788071

damping .844874 .0184994 45.67 0.000 .8086157 .8811322

mumps
month

1 480.5095 32.67128 14.71 0.000 416.475 544.544
2 561.9174 32.66999 17.20 0.000 497.8854 625.9494
3 832.8666 32.67696 25.49 0.000 768.8209 896.9122
4 894.0747 32.64568 27.39 0.000 830.0904 958.0591
5 869.6568 32.56282 26.71 0.000 805.8348 933.4787
6 770.1562 32.48587 23.71 0.000 706.4851 833.8274
7 433.839 32.50165 13.35 0.000 370.1369 497.541
8 218.2394 32.56712 6.70 0.000 154.409 282.0698
9 140.686 32.64138 4.31 0.000 76.7101 204.662

10 148.5876 32.69067 4.55 0.000 84.51508 212.6602
11 215.0958 32.70311 6.58 0.000 150.9989 279.1927
12 330.2232 32.68906 10.10 0.000 266.1538 394.2926

var(cycle1) 13031.53 798.2719 16.32 0.000 11466.95 14596.11

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The output indicates that each of these components is statistically significant.

Technical note
In a stochastic model for the seasonal component, the seasonal effects sum to the random variable

ζt ∼ i.i.d. N(0, σ2
ζ):

γt = −
s−1∑
j=1

γt−j + ζt

Stored results
Because ucm is estimated using sspace, most of the sspace stored results appear after ucm. Not

all of these results are relevant for ucm; programmers wishing to treat ucm results as sspace results
should see Stored results of [TS] sspace. See Methods and formulas for the state-space representation
of UCMs, and see [TS] sspace for more documentation that relates to all the stored results.

720 ucm — Unobserved-components model

ucm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k cycles) number of stochastic cycles
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise
e(rank) rank of VCE
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) ucm
e(cmdline) command as typed
e(depvar) unoperated names of dependent variables in observation equations
e(covariates) list of covariates
e(indeps) independent variables
e(tvar) variable denoting time within groups
e(eqnames) names of equations
e(model) type of model
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(initial values) type of initial values
e(technique) maximization technique
e(tech steps) iterations taken in maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) parameter vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

ucm — Unobserved-components model 721

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
State-space formulation
Cyclical component extensions

Introduction

The general form of UCMs can be expressed as

yt = τt + γt + ψt + xtβ+ εt

where τt is the trend, γt is the seasonal component, ψt is the cycle, β is the regression coefficients
for regressors xt, and εt is the idiosyncratic error with variance σ2

ε .

We can decompose the trend as

τt = µt

µt = µt−1 + αt−1 + ηt

αt = αt−1 + ξt

where µt is the local level, αt is the local slope, and ηt and ξt are i.i.d. normal errors with mean 0
and variance σ2

η and σ2
ξ , respectively.

Next consider the seasonal component, γt, with a period of s time units. Ignoring a seasonal
disturbance term, the seasonal effects will sum to zero,

∑s−1
j=0 γt−j = 0. Adding a normal error term,

ωt, with mean 0 and variance σ2
ω , we express the seasonal component as

γt = −
s−1∑
j=1

γt−j + ωt

Finally, the cyclical component, ψt, is a function of the frequency λ, in radians, and a unit-less
scaling variable ρ, termed the damping effect, 0 < ρ < 1. We require two equations to express the
cycle:

ψt = ψt−1ρ cosλ+ ψ̃t−1ρ sinλ+ κt

ψ̃t = −ψt−1ρ sinλ+ ψ̃t−1ρ cosλ+ κ̃t

where the κt and κ̃t disturbances are normally distributed with mean 0 and variance σ2
κ.

The disturbance terms εt, ηt, ξt, ωt, κt, and κ̃t are independent.

State-space formulation

ucm is an easy-to-use implementation of the state-space command sspace, with special modifi-
cations, where the local linear trend components, seasonal components, and cyclical components are
states of the state-space model. The state-space model can be expressed in matrix form as

yt = Dzt + Fxt + εt

zt = Azt−1 + Cζt

722 ucm — Unobserved-components model

where yt, t = 1, . . . , T , are the observations and zt are the unobserved states. The number of states,
m, depends on the model specified. The k × 1 vector xt contains the exogenous variables specified
as indepvars, and the 1 × k vector F contains the regression coefficients to be estimated. εt is the
observation equation disturbance, and the m0 × 1 vector ζt contains the state equation disturbances,
where m0 ≤ m. Finally, C is a m ×m0 matrix of zeros and ones. These recursive equations are
evaluated using the diffuse Kalman filter of De Jong (1991).

Below we give the state-space matrix structures for a local linear trend with a stochastic seasonal
component, with a period of 4 time units, and an order-2 cycle. The state vector, zt, and its transition
matrix, A, have the structure

A =

1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 −1 −1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 ρ cosλ ρ sinλ 1 0
0 0 0 0 0 −ρ sinλ ρ cosλ 0 1
0 0 0 0 0 0 0 ρ cosλ ρ sinλ
0 0 0 0 0 0 0 −ρ sinλ ρ cosλ

zt =

µt
αt
γt
γt−1

γt−2

ψt,1
ψ̃t,1
ψt,2
ψ̃t,2

C =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

ζt =

ηt
ξt
ωt
κt
κ̃t

D = (1 0 1 0 0 1 0 0 0)

Cyclical component extensions

Recall that the stochastic cyclical model is given by

ψt = ρ(ψt−1 cosλc + ψ∗t−1 sinλc) + κt,1

ψ∗t = ρ(−ψt−1 sinλc + ψ∗t−1 cosλc) + κt,2

where κt,j ∼ i.i.d. N(0, σ2
κ) and 0 < ρ < 1 is a damping effect. The cycle is variance-stationary

when ρ < 1 because Var(ψt) = σ2
κ/(1−ρ). We will express a UCM with a cyclical component added

to a trend as
yt = µt + ψt + εt

where µt can be any of the trend parameterizations discussed earlier.

ucm — Unobserved-components model 723

Higher-order cycles, k = 2 or k = 3, are defined as

ψt,j = ρ(ψt−1,j cosλc + ψ∗t−1,j sinλc) + ψt−1,j+1

ψ∗t,j = ρ(−ψt−1,j sinλc + ψ∗t−1,j cosλc) + ψ∗t−1,j+1

for j < k, and
ψt,k = ρ(ψt−1,k cosλc + ψ∗t−1,k sinλc) + κt,1

ψ∗t,k = ρ(−ψt−1,k sinλc + ψ∗t−1,k cosλc) + κt,2

Harvey and Trimbur (2003) discuss the properties of this model and its state-space formulation.

� �
Andrew Charles Harvey (1947–) is a British econometrician. After receiving degrees in economics
and statistics from the University of York and the London School of Economics and working
for a period in Kenya, he has worked as a teacher and researcher at the University of Kent,
the London School of Economics, and now the University of Cambridge. Harvey’s interests are
centered on time series, especially state-space models, signal extraction, volatility, and changes
in quantiles.� �

References
Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic

Research.

De Jong, P. 1991. The diffuse Kalman filter. Annals of Statistics 19: 1073–1083.

Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford: Oxford
University Press.

Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1993. Time Series Models. 2nd ed. Cambridge, MA: MIT Press.

Harvey, A. C., and T. M. Trimbur. 2003. General model-based filters for extracting cycles and trends in economic
time series. The Review of Economics and Statistics 85: 244–255.

Hipel, K. W., and A. I. McLeod. 1994. Time Series Modelling of Water Resources and Environmental Systems.
Amsterdam: Elsevier.

Priestley, M. B. 1981. Spectral Analysis and Time Series. London: Academic Press.

Trimbur, T. M. 2006. Properties of higher order stochastic cycles. Journal of Time Series Analysis 27: 1–17.

Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

724 ucm — Unobserved-components model

Also see
[TS] ucm postestimation — Postestimation tools for ucm

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[TS] tsfilter — Filter a time-series, keeping only selected periodicities

[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

ucm postestimation — Postestimation tools for ucm

Postestimation commands predict estat Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after ucm:

Command Description

estat period display cycle periods in time units
psdensity estimate the spectral density

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

725

726 ucm postestimation — Postestimation tools for ucm

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, trend components,
seasonal components, cyclical components, and standardized and unstandardized residuals. The root
mean squared error is available for all predictions. All predictions are also available as static one-step-
ahead predictions or as dynamic multistep predictions, and you can control when dynamic predictions
begin.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear prediction using exogenous variables
trend trend component
seasonal seasonal component
cycle cyclical component
residuals residuals
rstandard standardized residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

rmse(stub* | newvarlist) put estimated root mean squared errors of predicted statistics in the new
variable

dynamic(time constant) begin dynamic forecast at specified time

Advanced

smethod(method) method for predicting unobserved components

method Description

onestep predict using past information
smooth predict using all sample information
filter predict using past and contemporaneous information

ucm postestimation — Postestimation tools for ucm 727

Options for predict

� � �
Main �

xb, trend, seasonal, cycle, residuals, and rstandard specify the statistic to be predicted.

xb, the default, calculates the linear predictions using the exogenous variables. xb may not be
used with the smethod(filter) option.

trend estimates the unobserved trend component.

seasonal estimates the unobserved seasonal component.

cycle estimates the unobserved cyclical component.

residuals calculates the residuals in the equation for the dependent variable. residuals may
not be specified with dynamic().

rstandard calculates the standardized residuals, which are the residuals normalized to have unit
variances. rstandard may not be specified with the smethod(filter), smethod(smooth),
or dynamic() option.

� � �
Options �

rmse(stub* | newvarlist) puts the root mean squared errors of the predicted statistic into the specified
new variable. Multiple variables are only required for predicting cycles of a model that has more
than one cycle. The root mean squared errors measure the variances due to the disturbances but
do not account for estimation error. The stub* syntax is for models with multiple cycles, where
you provide the prefix and predict will add a numeric suffix for each predicted cycle.

dynamic(time constant) specifies when predict should start producing dynamic forecasts. The
specified time constant must be in the scale of the time variable specified in tsset, and the
time constant must be inside a sample for which observations on the dependent variable are
available. For example, dynamic(tq(2008q4)) causes dynamic predictions to begin in the fourth
quarter of 2008, assuming that your time variable is quarterly; see [D] datetime. If the model
contains exogenous variables, they must be present for the whole predicted sample. dynamic()
may not be specified with the rstandard, residuals, or smethod(smooth) option.

� � �
Advanced �

smethod(method) specifies the method for predicting the unobserved components. smethod() causes
different amounts of information on the dependent variable to be used in predicting the components
at each time period.

smethod(onestep), the default, causes predict to estimate the components at each time period
using previous information on the dependent variable. The Kalman filter is performed on
previous periods, but only the one-step predictions are made for the current period.

smethod(smooth) causes predict to estimate the components at each time period using all
the sample data by the Kalman smoother. smethod(smooth) may not be specified with the
rstandard option.

smethod(filter) causes predict to estimate the components at each time period using previous
and contemporaneous data by the Kalman filter. The Kalman filter is performed on previous
periods and the current period. smethod(filter) may not be specified with the xb option.

728 ucm postestimation — Postestimation tools for ucm

estat

Description for estat

estat period transforms an estimated central frequency to an estimated period after ucm.

Menu for estat
Statistics > Postestimation

Syntax for estat

estat period
[
, options

]
options Description

Main

level(#) set confidence level; default is level(95)

cformat(% fmt) numeric format

Options for estat period

� � �
Options �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

cformat(% fmt) sets the display format for the table numeric values. The default is cformat(%9.0g).

Remarks and examples
We assume that you have already read [TS] ucm. In this entry, we illustrate some features of

predict after using ucm to estimate the parameters of an unobserved-components model.

All predictions after ucm depend on the unobserved components, which are estimated recursively
using a Kalman filter. Changing the sample can alter the state estimates, which can change all other
predictions.

ucm postestimation — Postestimation tools for ucm 729

Example 1

We begin by modeling monthly data on the median duration of employment spells in the United
States. We include a stochastic-seasonal component because the data have not been seasonally adjusted.

. use http://www.stata-press.com/data/r14/uduration2
(BLS data, not seasonally adjusted)

. ucm duration, seasonal(12) cycle(1) difficult
searching for initial values
(setting technique to bhhh)
Iteration 0: log likelihood = -409.79557
Iteration 1: log likelihood = -403.3831
Iteration 2: log likelihood = -403.37373 (backed up)
Iteration 3: log likelihood = -403.36901 (backed up)
Iteration 4: log likelihood = -403.36663 (backed up)
(switching technique to nr)
Iteration 5: log likelihood = -403.36656 (backed up)
Iteration 6: log likelihood = -397.87756 (not concave)
Iteration 7: log likelihood = -396.47272 (not concave)
Iteration 8: log likelihood = -394.50895
Iteration 9: log likelihood = -392.9516 (not concave)
Iteration 10: log likelihood = -389.38063 (not concave)
Iteration 11: log likelihood = -388.59491
Iteration 12: log likelihood = -388.30078
Iteration 13: log likelihood = -388.25766
Iteration 14: log likelihood = -388.25675
Iteration 15: log likelihood = -388.25675
Refining estimates:
Iteration 0: log likelihood = -388.25675
Iteration 1: log likelihood = -388.25675

Unobserved-components model
Components: random walk, seasonal(12), order 1 cycle

Sample: 1967m7 - 2008m12 Number of obs = 498
Wald chi2(2) = 7.17

Log likelihood = -388.25675 Prob > chi2 = 0.0277

OIM
duration Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency 1.641531 .7250323 2.26 0.024 .2204938 3.062568
damping .2671232 .1050168 2.54 0.011 .0612939 .4729524

var(level) .1262922 .0221428 5.70 0.000 .0828932 .1696912
var(seasonal) .0017289 .0009647 1.79 0.037 0 .0036196

var(cycle1) .0641496 .0211839 3.03 0.001 .0226299 .1056693

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

730 ucm postestimation — Postestimation tools for ucm

Below we predict the trend and the seasonal components to get a look at the model fit.

. predict strend, trend

. predict season, seasonal

. tsline duration strend, name(trend) nodraw legend(rows(1))

. tsline season, name(season) yline(0,lwidth(vthin)) nodraw

. graph combine trend season, rows(2)

4
6

8
1
0

1
2

1
4

1970m1 1980m1 1990m1 2000m1 2010m1
Month

median duration of unemployment trend, onestep

−
2

−
1

0
1

2
s
e
a
s
o
n
a
l,
 o

n
e
s
te

p

1970m1 1980m1 1990m1 2000m1 2010m1
Month

The trend tracks the data well. That the seasonal component appears to change over time indicates
that the stochastic-seasonal component might fit better than a deterministic-seasonal component.

ucm postestimation — Postestimation tools for ucm 731

Example 2

In this example, we use the model to forecast the median unemployment duration. We use the root
mean squared error of the prediction to compute a confidence interval of our dynamic predictions.
Recall that the root mean squared error accounts for variances due to the disturbances but not due to
the estimation error.

. tsappend, add(12)

. predict duration_f, dynamic(tm(2009m1)) rmse(rmse)

. scalar z = invnormal(0.95)

. generate lbound = duration_f - z*rmse if tm>=tm(2008m12)
(497 missing values generated)

. generate ubound = duration_f + z*rmse if tm>=tm(2008m12)
(497 missing values generated)

. label variable lbound "90% forecast interval"

. twoway (tsline duration duration_f if tm>=tm(2006m1))
> (tsrline lbound ubound if tm>=tm(2008m12)),
> ysize(2) xtitle("") legend(cols(1))

6
8

1
0

1
2

1
4

2006m1 2007m1 2008m1 2009m1 2010m1

median duration of unemployment

xb prediction, duration, dynamic(tm(2009m1))

90% forecast interval/ubound

The model forecasts a large temporary increase in the median duration of unemployment.

Methods and formulas
For details on the ucm postestimation methods, see [TS] sspace postestimation.

See [TS] psdensity for the methods used to estimate the spectral density.

Also see
[TS] ucm — Unobserved-components model

[TS] psdensity — Parametric spectral density estimation after arima, arfima, and ucm

[TS] sspace postestimation — Postestimation tools for sspace

[U] 20 Estimation and postestimation commands

Title

var intro — Introduction to vector autoregressive models

Description Remarks and examples References Also see

Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference

on vector autoregressive (VAR) models and structural vector autoregressive (SVAR) models. The suite
includes several commands for estimating and interpreting impulse–response functions (IRFs), dynamic-
multiplier functions, and forecast-error variance decompositions (FEVDs). The table below describes
the available commands.

Fitting a VAR or SVAR
var [TS] var Fit vector autoregressive models
svar [TS] var svar Fit structural vector autoregressive models
varbasic [TS] varbasic Fit a simple VAR and graph IRFs or FEVDs

Model diagnostics and inference
varstable [TS] varstable Check the stability condition of VAR or SVAR estimates
varsoc [TS] varsoc Obtain lag-order selection statistics for VARs

and VECMs
varwle [TS] varwle Obtain Wald lag-exclusion statistics after var or

svar
vargranger [TS] vargranger Perform pairwise Granger causality tests after var

or svar
varlmar [TS] varlmar Perform LM test for residual autocorrelation

after var or svar
varnorm [TS] varnorm Test for normally distributed disturbances after

var or svar

Forecasting after fitting a VAR or SVAR
fcast compute [TS] fcast compute Compute dynamic forecasts after var, svar, or vec
fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs, dynamic-multiplier functions, and FEVDs
irf [TS] irf Create and analyze IRFs, dynamic-multiplier functions,

and FEVDs

This entry provides an overview of vector autoregressions and structural vector autoregressions.
More rigorous treatments can be found in Hamilton (1994), Lütkepohl (2005), and Amisano and
Giannini (1997). Stock and Watson (2001) provide an excellent nonmathematical treatment of vector
autoregressions and their role in macroeconomics. Becketti (2013) provides an excellent introduction
to VAR analysis with an emphasis on how it is done in practice.

732

var intro — Introduction to vector autoregressive models 733

Remarks and examples
Remarks are presented under the following headings:

Introduction to VARs
Introduction to SVARs
Short-run SVAR models
Long-run restrictions
IRFs and FEVDs

Introduction to VARs

A VAR is a model in which K variables are specified as linear functions of p of their own lags,
p lags of the other K − 1 variables, and possibly additional exogenous variables. Algebraically, a
p-order VAR model, written VAR(p), with exogenous variables xt is given by

yt = v +A1yt−1 + · · ·+Apyt−p+B0xt+B1xt−1 + · · ·+Bsxt−s+ut t ∈ {−∞,∞} (1)

where

yt = (y1t, . . . , yKt)
′ is a K × 1 random vector,

A1 through Ap are K ×K matrices of parameters,
xt is an M × 1 vector of exogenous variables,
B0 through Bs are K ×M matrices of coefficients,
v is a K × 1 vector of parameters, and
ut is assumed to be white noise; that is,

E(ut) = 0,
E(utu

′
t) = Σ, and

E(utu
′
s) = 0 for t 6= s

There are K2 × p + K × (M(s + 1) + 1) parameters in the equation for yt, and there are
{K × (K + 1)}/2 parameters in the covariance matrix Σ. One way to reduce the number of parameters
is to specify an incomplete VAR, in which some of the A or B matrices are set to zero. Another way
is to specify linear constraints on some of the coefficients in the VAR.

A VAR can be viewed as the reduced form of a system of dynamic simultaneous equations. Consider
the system

W0yt = a + W1yt−1 + · · ·+ Wpyt−p + W̃1xt + W̃2xt−2 + · · ·+ W̃sxt−s + et (2)

where a is a K × 1 vector of parameters, each Wi, i = 0, . . . , p, is a K ×K matrix of parameters,
and et is a K × 1 disturbance vector. In the traditional dynamic simultaneous equations approach,
sufficient restrictions are placed on the Wi to obtain identification. Assuming that W0 is nonsingular,
(2) can be rewritten as

yt =W−1
0 a + W−1

0 W1yt−1 + · · ·+ W−1
0 Wpyt−p

+ W−1
0 W̃1xt + W−1

0 W̃2xt−2 + · · ·+ W−1
0 W̃sxt−s + W−1

0 et
(3)

which is a VAR with

v = W−1
0 a

Ai = W−1
0 Wi

Bi = W−1
0 W̃i

ut = W−1
0 et

734 var intro — Introduction to vector autoregressive models

The cross-equation error variance–covariance matrix Σ contains all the information about contem-
poraneous correlations in a VAR and may be the VAR’s greatest strength and its greatest weakness.
Because no questionable a priori assumptions are imposed, fitting a VAR allows the dataset to speak
for itself. However, without imposing some restrictions on the structure of Σ, we cannot make a
causal interpretation of the results.

If we make additional technical assumptions, we can derive another representation of the VAR in
(1). If the VAR is stable (see [TS] varstable), we can rewrite yt as

yt = µ+

∞∑
i=0

Dixt−i +

∞∑
i=0

Φiut−i (4)

where µ is the K × 1 time-invariant mean of the process and Di and Φi are K ×M and K ×K
matrices of parameters, respectively. Equation (4) states that the process by which the variables in
yt fluctuate about their time-invariant means, µ, is completely determined by the parameters in
Di and Φi and the (infinite) past history of the exogenous variables xt and the independent and
identically distributed (i.i.d.) shocks or innovations, ut−1,ut−2, Equation (4) is known as the
vector moving-average representation of the VAR. The Di are the dynamic-multiplier functions, or
transfer functions. The moving-average coefficients Φi are also known as the simple IRFs at horizon
i. The precise relationships between the VAR parameters and the Di and Φi are derived in Methods
and formulas of [TS] irf create.

The joint distribution of yt is determined by the distributions of xt and ut and the parameters
v, Bi, and Ai. Estimating the parameters in a VAR requires that the variables in yt and xt be
covariance stationary, meaning that their first two moments exist and are time invariant. If the yt are
not covariance stationary, but their first differences are, a vector error-correction model (VECM) can
be used. See [TS] vec intro and [TS] vec for more information about those models.

If the ut form a zero mean, i.i.d. vector process, and yt and xt are covariance stationary and are
not correlated with the ut, consistent and efficient estimates of the Bi, the Ai, and v are obtained
via seemingly unrelated regression, yielding estimators that are asymptotically normally distributed.
When the equations for the variables yt have the same set of regressors, equation-by-equation OLS
estimates are the conditional maximum likelihood estimates.

Much of the interest in VAR models is focused on the forecasts, IRFs, dynamic-multiplier functions,
and the FEVDs, all of which are functions of the estimated parameters. Estimating these functions is
straightforward, but their asymptotic standard errors are usually obtained by assuming that ut forms
a zero mean, i.i.d. Gaussian (normal) vector process. Also, some of the specification tests for VARs
have been derived using the likelihood-ratio principle and the stronger Gaussian assumption.

In the absence of contemporaneous exogenous variables, the disturbance variance–covariance
matrix contains all the information about contemporaneous correlations among the variables. VARs
are sometimes classified into three types by how they account for this contemporaneous correlation.
(See Stock and Watson [2001] for one derivation of this taxonomy.) A reduced-form VAR, aside
from estimating the variance–covariance matrix of the disturbance, does not try to account for
contemporaneous correlations. In a recursive VAR, the K variables are assumed to form a recursive
dynamic structural equation model in which the first variable is a function of lagged variables, the
second is a function of contemporaneous values of the first variable and lagged values, and so on.
In a structural VAR, the theory you are working with places restrictions on the contemporaneous
correlations that are not necessarily recursive.

Stata has two commands for fitting reduced-form VARs: var and varbasic. var allows for
constraints to be imposed on the coefficients. varbasic allows you to fit a simple VAR quickly
without constraints and graph the IRFs.

var intro — Introduction to vector autoregressive models 735

Because fitting a VAR of the correct order can be important, varsoc offers several methods for
choosing the lag order p of the VAR to fit. After fitting a VAR, and before proceeding with inference,
interpretation, or forecasting, checking that the VAR fits the data is important. varlmar can be used
to check for autocorrelation in the disturbances. varwle performs Wald tests to determine whether
certain lags can be excluded. varnorm tests the null hypothesis that the disturbances are normally
distributed. varstable checks the eigenvalue condition for stability, which is needed to interpret the
IRFs and IRFs.

Introduction to SVARs

As discussed in [TS] irf create, a problem with VAR analysis is that, because Σ is not restricted
to be a diagonal matrix, an increase in an innovation to one variable provides information about the
innovations to other variables. This implies that no causal interpretation of the simple IRFs is possible:
there is no way to determine whether the shock to the first variable caused the shock in the second
variable or vice versa.

However, suppose that we had a matrix P such that Σ = PP′. We can then show that the variables
in P−1ut have zero mean and that E{P−1ut(P

−1ut)
′} = IK . We could rewrite (4) as

yt = µ+

∞∑
s=0

ΦsPP−1ut−s

= µ+

∞∑
s=0

ΘsP
−1ut−s

= µ+

∞∑
s=0

Θswt−s (5)

where Θs = ΦsP and wt = P−1ut. If we had such a P, the wk would be mutually orthogonal,
and the Θs would allow the causal interpretation that we seek.

SVAR models provide a framework for estimation of and inference about a broad class of P
matrices. As described in [TS] irf create, the estimated P matrices can then be used to estimate
structural IRFs and structural FEVDs. There are two types of SVAR models. Short-run SVAR models
identify a P matrix by placing restrictions on the contemporaneous correlations between the variables.
Long-run SVAR models, on the other hand, do so by placing restrictions on the long-term accumulated
effects of the innovations.

Short-run SVAR models

A short-run SVAR model without exogenous variables can be written as

A(IK −A1L−A2L
2 − · · · −ApL

p)yt = Aεt = Bet (6)

where L is the lag operator; A, B, and A1, . . . ,Ap are K × K matrices of parameters; εt is a
K × 1 vector of innovations with εt ∼ N(0,Σ) and E[εtε

′
s] = 0K for all s 6= t; and et is a K × 1

vector of orthogonalized disturbances; that is, et ∼ N(0, IK) and E[ete
′
s] = 0K for all s 6= t.

These transformations of the innovations allow us to analyze the dynamics of the system in terms
of a change to an element of et. In a short-run SVAR model, we obtain identification by placing
restrictions on A and B, which are assumed to be nonsingular.

736 var intro — Introduction to vector autoregressive models

Equation (6) implies that Psr = A−1B, where Psr is the P matrix identified by a particular
short-run SVAR model. The latter equality in (6) implies that

Aεtε
′
tA
′ = Bete

′
tB
′

Taking the expectation of both sides yields

Σ = PsrP
′
sr

Assuming that the underlying VAR is stable (see [TS] varstable for a discussion of stability), we
can invert the autoregressive representation of the model in (6) to an infinite-order, moving-average
representation of the form

yt = µ+

∞∑
s=0

Θsr
s et−s (7)

whereby yt is expressed in terms of the mutually orthogonal, unit-variance structural innovations et.
The Θsr

s contain the structural IRFs at horizon s.

In a short-run SVAR model, the A and B matrices model all the information about contemporaneous
correlations. The B matrix also scales the innovations ut to have unit variance. This allows the
structural IRFs constructed from (7) to be interpreted as the effect on variable i of a one-time unit
increase in the structural innovation to variable j after s periods.

Psr identifies the structural IRFs by defining a transformation of Σ, and Psr is identified by
the restrictions placed on the parameters in A and B. Because there are only K(K + 1)/2 free
parameters in Σ, only K(K + 1)/2 parameters may be estimated in an identified Psr. Because there
are 2K2 total parameters in A and B, the order condition for identification requires that at least
2K2−K(K + 1)/2 restrictions be placed on those parameters. Just as in the simultaneous-equations
framework, this order condition is necessary but not sufficient. Amisano and Giannini (1997) derive
a method to check that an SVAR model is locally identified near some specified values for A and B.

Before moving on to models with long-run constraints, consider these limitations. We cannot place
constraints on the elements of A in terms of the elements of B, or vice versa. This limitation is
imposed by the form of the check for identification derived by Amisano and Giannini (1997). As
noted in Methods and formulas of [TS] var svar, this test requires separate constraint matrices for
the parameters in A and B. Also, we cannot mix short-run and long-run constraints.

Long-run restrictions

A general short-run SVAR has the form

A(IK −A1L−A2L
2 − · · · −ApL

p)yt = Bet

To simplify the notation, let Ā = (IK −A1L−A2L
2− · · · −ApL

p). The model is assumed to be
stable (see [TS] varstable), so Ā−1, the matrix of estimated long-run effects of the reduced-form VAR
shocks, is well defined. Constraining A to be an identity matrix allows us to rewrite this equation as

yt = Ā−1Bet

which implies that Σ = BB′. Thus C = Ā−1B is the matrix of long-run responses to the
orthogonalized shocks, and

yt = Cet

var intro — Introduction to vector autoregressive models 737

In long-run models, the constraints are placed on the elements of C, and the free parameters are
estimated. These constraints are often exclusion restrictions. For instance, constraining C[1, 2] to be
zero can be interpreted as setting the long-run response of variable 1 to the structural shocks driving
variable 2 to be zero.

Stata’s svar command estimates the parameters of structural VARs. See [TS] var svar for more
information and examples.

IRFs and FEVDs
IRFs describe how the K endogenous variables react over time to a one-time shock to one of the

K disturbances. Because the disturbances may be contemporaneously correlated, these functions do
not explain how variable i reacts to a one-time increase in the innovation to variable j after s periods,
holding everything else constant. To explain this, we must start with orthogonalized innovations so
that the assumption to hold everything else constant is reasonable. Recursive VARs use a Cholesky
decomposition to orthogonalize the disturbances and thereby obtain structurally interpretable IRFs.
Structural VARs use theory to impose sufficient restrictions, which need not be recursive, to decompose
the contemporaneous correlations into orthogonal components.

FEVDs are another tool for interpreting how the orthogonalized innovations affect the K variables
over time. The FEVD from j to i gives the fraction of the s-step forecast-error variance of variable i
that can be attributed to the jth orthogonalized innovation.

Dynamic–multiplier functions describe how the endogenous variables react over time to a unit
change in an exogenous variable. This is a different experiment from that in IRFs and FEVDs because
dynamic-multiplier functions consider a change in an exogenous variable instead of a shock to an
endogenous variable.

irf create estimates IRFs, Cholesky orthogonalized IRFs, dynamic-multiplier functions, and
structural IRFs and their standard errors. It also estimates Cholesky and structural FEVDs. The irf
graph, irf cgraph, irf ograph, irf table, and irf ctable commands graph and tabulate these
estimates. Stata also has several other commands to manage IRF and FEVD results. See [TS] irf for a
description of these commands.

fcast compute computes dynamic forecasts and their standard errors from VARs. fcast graph
graphs the forecasts that are generated using fcast compute.

VARs allow researchers to investigate whether one variable is useful in predicting another variable.
A variable x is said to Granger-cause a variable y if, given the past values of y, past values of x are
useful for predicting y. The Stata command vargranger performs Wald tests to investigate Granger
causality between the variables in a VAR.

References
Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Stock, J. H., and M. W. Watson. 2001. Vector autoregressions. Journal of Economic Perspectives 15: 101–115.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/imtsa.html

738 var intro — Introduction to vector autoregressive models

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

[TS] vec — Vector error-correction models

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

Title

var — Vector autoregressive models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
var fits a multivariate time-series regression of each dependent variable on lags of itself and on

lags of all the other dependent variables. var also fits a variant of vector autoregressive (VAR) models
known as the VARX model, which also includes exogenous variables. See [TS] var intro for a list of
commands that are used in conjunction with var.

Quick start
Vector autoregressive model for dependent variables y1, y2, and y3 and their first and second lags

using tsset data
var y1 y2 y3

As above, but include second and third lags instead of first and second
var y1 y2 y3, lags(2 3)

Add exogenous variables x1 and x2

var y1 y2 y3, lags(2 3) exog(x1 x2)

As above, but make a small-sample degrees-of-freedom adjustment
var y1 y2 y3, lags(2 3) exog(x1 x2) dfk

Menu
Statistics > Multivariate time series > Vector autoregression (VAR)

739

740 var — Vector autoregressive models

Syntax
var depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
lags(numlist) use lags numlist in the VAR
exog(varlist) use exogenous variables varlist

Model 2

constraints(numlist) apply specified linear constraints
nolog suppress SURE iteration log
iterate(#) set maximum number of iterations for SURE; default is

iterate(1600)

tolerance(#) set convergence tolerance of SURE
noisure use one-step SURE
dfk make small-sample degrees-of-freedom adjustment
small report small-sample t and F statistics
nobigf do not compute parameter vector for coefficients implicitly

set to zero

Reporting

level(#) set confidence level; default is level(95)

lutstats report Lütkepohl lag-order selection statistics
nocnsreport do not display constraints
display options control columns and column formats, row spacing, and line width

coeflegend display legend instead of statistics

You must tsset your data before using var; see [TS] tsset.
depvarlist and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

lags(numlist) specifies the lags to be included in the model. The default is lags(1 2). This option
takes a numlist and not simply an integer for the maximum lag. For example, lags(2) would
include only the second lag in the model, whereas lags(1/2) would include both the first and
second lags in the model. See [U] 11.1.8 numlist and [U] 11.4.4 Time-series varlists for more
discussion of numlists and lags.

exog(varlist) specifies a list of exogenous variables to be included in the VAR.

var — Vector autoregressive models 741

� � �
Model 2 �

constraints(numlist); see [R] estimation options.

nolog suppresses the log from the iterated seemingly unrelated regression algorithm. By default, the
iteration log is displayed when the coefficients are estimated through iterated seemingly unrelated
regression. When the constraints() option is not specified, the estimates are obtained via OLS,
and nolog has no effect. For this reason, nolog can be specified only when constraints() is
specified. Similarly, nolog cannot be combined with noisure.

iterate(#) specifies an integer that sets the maximum number of iterations when the estimates
are obtained through iterated seemingly unrelated regression. By default, the limit is 1,600. When
constraints() is not specified, the estimates are obtained using OLS, and iterate() has no
effect. For this reason, iterate() can be specified only when constraints() is specified.
Similarly, iterate() cannot be combined with noisure.

tolerance(#) specifies a number greater than zero and less than 1 for the convergence tolerance of
the iterated seemingly unrelated regression algorithm. By default, the tolerance is 1e-6. When the
constraints() option is not specified, the estimates are obtained using OLS, and tolerance()
has no effect. For this reason, tolerance() can be specified only when constraints() is
specified. Similarly, tolerance() cannot be combined with noisure.

noisure specifies that the estimates in the presence of constraints be obtained through one-step
seemingly unrelated regression. By default, var obtains estimates in the presence of constraints
through iterated seemingly unrelated regression. When constraints() is not specified, the
estimates are obtained using OLS, and noisure has no effect. For this reason, noisure can be
specified only when constraints() is specified.

dfk specifies that a small-sample degrees-of-freedom adjustment be used when estimating Σ, the error
variance–covariance matrix. Specifically, 1/(T −m) is used instead of the large-sample divisor
1/T , where m is the average number of parameters in the functional form for yt over the K
equations.

small causes var to report small-sample t and F statistics instead of the large-sample normal and
chi-squared statistics.

nobigf requests that var not save the estimated parameter vector that incorporates coefficients that
have been implicitly constrained to be zero, such as when some lags have been omitted from a
model. e(bf) is used for computing asymptotic standard errors in the postestimation commands
irf create and fcast compute; see [TS] irf create and [TS] fcast compute. Therefore, specifying
nobigf implies that the asymptotic standard errors will not be available from irf create and
fcast compute. See Fitting models with some lags excluded.

� � �
Reporting �

level(#); see [R] estimation options.

lutstats specifies that the Lütkepohl (2005) versions of the lag-order selection statistics be reported.
See Methods and formulas in [TS] varsoc for a discussion of these statistics.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] estimation options.

The following option is available with var but is not shown in the dialog box:

coeflegend; see [R] estimation options.

742 var — Vector autoregressive models

Remarks and examples
Remarks are presented under the following headings:

Introduction
Fitting models with some lags excluded
Fitting models with exogenous variables
Fitting models with constraints on the coefficients

Introduction

A VAR is a model in which K variables are specified as linear functions of p of their own lags, p
lags of the other K − 1 variables, and possibly exogenous variables. A VAR with p lags is usually
denoted a VAR(p). For more information, see [TS] var intro.

Example 1: VAR model

To illustrate the basic usage of var, we replicate the example in Lütkepohl (2005, 77–78). The
data consists of three variables: the first difference of the natural log of investment, dln inv; the
first difference of the natural log of income, dln inc; and the first difference of the natural log of
consumption, dln consump. The dataset contains data through the fourth quarter of 1982, though
Lütkepohl uses only the observations through the fourth quarter of 1978.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset
time variable: qtr, 1960q1 to 1982q4

delta: 1 quarter

var — Vector autoregressive models 743

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lutstats dfk

Vector autoregression

Sample: 1960q4 - 1978q4 Number of obs = 73
Log likelihood = 606.307 (lutstats) AIC = -24.63163
FPE = 2.18e-11 HQIC = -24.40656
Det(Sigma_ml) = 1.23e-11 SBIC = -24.06686

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 7 .046148 0.1286 9.736909 0.1362
dln_inc 7 .011719 0.1142 8.508289 0.2032
dln_consump 7 .009445 0.2513 22.15096 0.0011

Coef. Std. Err. z P>|z| [95% Conf. Interval]

dln_inv
dln_inv

L1. -.3196318 .1254564 -2.55 0.011 -.5655218 -.0737419
L2. -.1605508 .1249066 -1.29 0.199 -.4053633 .0842616

dln_inc
L1. .1459851 .5456664 0.27 0.789 -.9235013 1.215472
L2. .1146009 .5345709 0.21 0.830 -.9331388 1.162341

dln_consump
L1. .9612288 .6643086 1.45 0.148 -.3407922 2.26325
L2. .9344001 .6650949 1.40 0.160 -.369162 2.237962

_cons -.0167221 .0172264 -0.97 0.332 -.0504852 .0170409

dln_inc
dln_inv

L1. .0439309 .0318592 1.38 0.168 -.018512 .1063739
L2. .0500302 .0317196 1.58 0.115 -.0121391 .1121995

dln_inc
L1. -.1527311 .1385702 -1.10 0.270 -.4243237 .1188615
L2. .0191634 .1357525 0.14 0.888 -.2469067 .2852334

dln_consump
L1. .2884992 .168699 1.71 0.087 -.0421448 .6191431
L2. -.0102 .1688987 -0.06 0.952 -.3412354 .3208353

_cons .0157672 .0043746 3.60 0.000 .0071932 .0243412

dln_consump
dln_inv

L1. -.002423 .0256763 -0.09 0.925 -.0527476 .0479016
L2. .0338806 .0255638 1.33 0.185 -.0162235 .0839847

dln_inc
L1. .2248134 .1116778 2.01 0.044 .005929 .4436978
L2. .3549135 .1094069 3.24 0.001 .1404798 .5693471

dln_consump
L1. -.2639695 .1359595 -1.94 0.052 -.5304451 .0025062
L2. -.0222264 .1361204 -0.16 0.870 -.2890175 .2445646

_cons .0129258 .0035256 3.67 0.000 .0060157 .0198358

744 var — Vector autoregressive models

The output has two parts: a header and the standard Stata output table for the coefficients, standard
errors, and confidence intervals. The header contains summary statistics for each equation in the VAR
and statistics used in selecting the lag order of the VAR. Although there are standard formulas for all
the lag-order statistics, Lütkepohl (2005) gives different versions of the three information criteria that
drop the constant term from the likelihood. To obtain the Lütkepohl (2005) versions, we specified
the lutstats option. The formulas for the standard and Lütkepohl versions of these statistics are
given in Methods and formulas of [TS] varsoc.

The dfk option specifies that the small-sample divisor 1/(T −m) be used in estimating Σ instead
of the maximum likelihood (ML) divisor 1/T , where m is the average number of parameters included
in each of the K equations. All the lag-order statistics are computed using the ML estimator of Σ.
Thus, specifying dfk will not change the computed lag-order statistics, but it will change the estimated
variance–covariance matrix. Also, when dfk is specified, a dfk-adjusted log likelihood is computed
and stored in e(ll dfk).

The lag() option takes a numlist of lags. To specify a model that includes the first and second
lags, type

. var y1 y2 y3, lags(1/2)

not

. var y1 y2 y3, lags(2)

because the latter specification would fit a model that included only the second lag.

Fitting models with some lags excluded

To fit a model that has only a fourth lag, that is,

yt = v + A4yt−4 + ut

you would specify the lags(4) option. Doing so is equivalent to fitting the more general model

yt = v + A1yt−1 + A2yt−2 + A3yt−3 + A4yt−4 + ut

with A1, A2, and A3 constrained to be 0. When you fit a model with some lags excluded, var
estimates the coefficients included in the specification (A4 here) and stores these estimates in e(b).
To obtain the asymptotic standard errors for impulse–response functions and other postestimation
statistics, Stata needs the complete set of parameter estimates, including those that are constrained
to be zero; var stores them in e(bf). Because you can specify models for which the full set of
parameter estimates exceeds Stata’s limit on the size of matrices, the nobigf option specifies that var
not compute and store e(bf). This means that the asymptotic standard errors of the postestimation
functions cannot be obtained, although bootstrap standard errors are still available. Building e(bf)
can be time consuming, so if you do not need this full matrix, and speed is an issue, use nobigf.

var — Vector autoregressive models 745

Fitting models with exogenous variables

Example 2: VAR model with exogenous variables

We use the exog() option to include exogenous variables in a VAR.

. var dln_inc dln_consump if qtr<=tq(1978q4), dfk exog(dln_inv)

Vector autoregression

Sample: 1960q4 - 1978q4 Number of obs = 73
Log likelihood = 478.5663 AIC = -12.78264
FPE = 9.64e-09 HQIC = -12.63259
Det(Sigma_ml) = 6.93e-09 SBIC = -12.40612

Equation Parms RMSE R-sq chi2 P>chi2

dln_inc 6 .011917 0.0702 5.059587 0.4087
dln_consump 6 .009197 0.2794 25.97262 0.0001

Coef. Std. Err. z P>|z| [95% Conf. Interval]

dln_inc
dln_inc

L1. -.1343345 .1391074 -0.97 0.334 -.4069801 .1383111
L2. .0120331 .1380346 0.09 0.931 -.2585097 .2825759

dln_consump
L1. .3235342 .1652769 1.96 0.050 -.0004027 .647471
L2. .0754177 .1648624 0.46 0.647 -.2477066 .398542

dln_inv .0151546 .0302319 0.50 0.616 -.0440987 .074408
_cons .0145136 .0043815 3.31 0.001 .0059259 .0231012

dln_consump
dln_inc

L1. .2425719 .1073561 2.26 0.024 .0321578 .452986
L2. .3487949 .1065281 3.27 0.001 .1400036 .5575862

dln_consump
L1. -.3119629 .1275524 -2.45 0.014 -.5619611 -.0619648
L2. -.0128502 .1272325 -0.10 0.920 -.2622213 .2365209

dln_inv .0503616 .0233314 2.16 0.031 .0046329 .0960904
_cons .0131013 .0033814 3.87 0.000 .0064738 .0197288

All the postestimation commands for analyzing VARs work when exogenous variables are included
in a model, but the asymptotic standard errors for the h-step-ahead forecasts are not available.

Fitting models with constraints on the coefficients

var permits model specifications that include constraints on the coefficient, though var does not
allow for constraints on Σ. See [TS] var intro and [TS] var svar for ways to constrain Σ.

746 var — Vector autoregressive models

Example 3: VAR model with constraints

In the first example, we fit a full VAR(2) to a three-equation model. The coefficients in the equation
for dln inv were jointly insignificant, as were the coefficients in the equation for dln inc; and
many individual coefficients were not significantly different from zero. In this example, we constrain
the coefficient on L2.dln inc in the equation for dln inv and the coefficient on L2.dln consump
in the equation for dln inc to be zero.

. constraint 1 [dln_inv]L2.dln_inc = 0

. constraint 2 [dln_inc]L2.dln_consump = 0

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lutstats dfk
> constraints(1 2)
Estimating VAR coefficients

Iteration 1: tolerance = .00737681
Iteration 2: tolerance = 3.998e-06
Iteration 3: tolerance = 2.730e-09

Vector autoregression

Sample: 1960q4 - 1978q4 Number of obs = 73
Log likelihood = 606.2804 (lutstats) AIC = -31.69254
FPE = 1.77e-14 HQIC = -31.46747
Det(Sigma_ml) = 1.05e-14 SBIC = -31.12777

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 6 .043895 0.1280 9.842338 0.0798
dln_inc 6 .011143 0.1141 8.584446 0.1268
dln_consump 7 .008981 0.2512 22.86958 0.0008

(1) [dln_inv]L2.dln_inc = 0
(2) [dln_inc]L2.dln_consump = 0

var — Vector autoregressive models 747

Coef. Std. Err. z P>|z| [95% Conf. Interval]

dln_inv
dln_inv

L1. -.320713 .1247512 -2.57 0.010 -.5652208 -.0762051
L2. -.1607084 .124261 -1.29 0.196 -.4042555 .0828386

dln_inc
L1. .1195448 .5295669 0.23 0.821 -.9183873 1.157477
L2. 5.66e-19 9.33e-18 0.06 0.952 -1.77e-17 1.89e-17

dln_consump
L1. 1.009281 .623501 1.62 0.106 -.2127586 2.231321
L2. 1.008079 .5713486 1.76 0.078 -.1117438 2.127902

_cons -.0162102 .016893 -0.96 0.337 -.0493199 .0168995

dln_inc
dln_inv

L1. .0435712 .0309078 1.41 0.159 -.017007 .1041495
L2. .0496788 .0306455 1.62 0.105 -.0103852 .1097428

dln_inc
L1. -.1555119 .1315854 -1.18 0.237 -.4134146 .1023908
L2. .0122353 .1165811 0.10 0.916 -.2162595 .2407301

dln_consump
L1. .29286 .1568345 1.87 0.062 -.01453 .6002501
L2. -1.53e-18 1.89e-17 -0.08 0.935 -3.85e-17 3.55e-17

_cons .015689 .003819 4.11 0.000 .0082039 .0231741

dln_consump
dln_inv

L1. -.0026229 .0253538 -0.10 0.918 -.0523154 .0470696
L2. .0337245 .0252113 1.34 0.181 -.0156888 .0831378

dln_inc
L1. .2224798 .1094349 2.03 0.042 .0079912 .4369683
L2. .3469758 .1006026 3.45 0.001 .1497984 .5441532

dln_consump
L1. -.2600227 .1321622 -1.97 0.049 -.519056 -.0009895
L2. -.0146825 .1117618 -0.13 0.895 -.2337315 .2043666

_cons .0129149 .003376 3.83 0.000 .0062981 .0195317

None of the free parameter estimates changed by much. Whereas the coefficients in the equation
dln inv are now significant at the 10% level, the coefficients in the equation for dln inc remain
jointly insignificant.

748 var — Vector autoregressive models

Stored results
var stores the following in e():

Scalars
e(N) number of observations
e(N gaps) number of gaps in sample
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(df eq) average number of parameters in an equation
e(df m) model degrees of freedom
e(df r) residual degrees of freedom (small only)
e(ll) log likelihood
e(ll dfk) dfk adjusted log likelihood (dfk only)
e(obs #) number of observations on equation #
e(k #) number of parameters in equation #
e(df m#) model degrees of freedom for equation #
e(df r#) residual degrees of freedom for equation # (small only)
e(r2 #) R-squared for equation #
e(ll #) log likelihood for equation #
e(chi2 #) x2 for equation #
e(F #) F statistic for equation # (small only)
e(rmse #) root mean squared error for equation #
e(aic) Akaike information criterion
e(hqic) Hannan–Quinn information criterion
e(sbic) Schwarz–Bayesian information criterion
e(fpe) final prediction error
e(mlag) highest lag in VAR
e(tmin) first time period in sample
e(tmax) maximum time
e(detsig) determinant of e(Sigma)

e(detsig ml) determinant of Σ̂ml
e(rank) rank of e(V)

var — Vector autoregressive models 749

Macros
e(cmd) var
e(cmdline) command as typed
e(depvar) names of dependent variables
e(endog) names of endogenous variables, if specified
e(exog) names of exogenous variables, and their lags, if specified
e(exogvars) names of exogenous variables, if specified
e(eqnames) names of equations
e(lags) lags in model
e(exlags) lags of exogenous variables in model, if specified
e(title) title in estimation output
e(nocons) nocons, if noconstant is specified
e(constraints) constraints, if specified
e(cnslist var) list of specified constraints
e(small) small, if specified
e(lutstats) lutstats, if specified
e(timevar) time variable specified in tsset
e(tsfmt) format for the current time variable
e(dfk) dfk, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators
e(bf) constrained coefficient vector
e(exlagsm) matrix mapping lags to exogenous variables
e(G) Gamma matrix; see Methods and formulas

Functions
e(sample) marks estimation sample

Methods and formulas
When there are no constraints placed on the coefficients, the VAR(p) is a seemingly unrelated regres-

sion model with the same explanatory variables in each equation. As discussed in Lütkepohl (2005) and
Greene (2008, 696), performing linear regression on each equation produces the maximum likelihood
estimates of the coefficients. The estimated coefficients can then be used to calculate the residuals,
which in turn are used to estimate the cross-equation error variance–covariance matrix Σ.

Per Lütkepohl (2005), we write the VAR(p) with exogenous variables as

yt = AYt−1 + B0xt + ut (5)

where

yt is the K × 1 vector of endogenous variables,

A is a K ×Kp matrix of coefficients,

B0 is a K ×M matrix of coefficients,

750 var — Vector autoregressive models

xt is the M × 1 vector of exogenous variables,

ut is the K × 1 vector of white noise innovations, and

Yt is the Kp× 1 matrix given by Yt =

 yt
...

yt−p+1

Although (5) is easier to read, the formulas are much easier to manipulate if it is instead written

as

Y = BZ + U

where

Y= (y1, . . . ,yT) Y is K × T
B= (A,B0) B is K × (Kp+M)

Z =

(
Y0 . . . ,YT−1

x1 . . . ,xT

)
Z is (Kp+M)× T

U= (u1, . . . ,uT) U is K × T

Intercept terms in the model are included in xt. If there are no exogenous variables and no intercept
terms in the model, xt is empty.

The coefficients are estimated by iterated seemingly unrelated regression. Because the estimation
is actually performed by reg3, the methods are documented in [R] reg3. See [P] makecns for more
on estimation with constraints.

Let Û be the matrix of residuals that are obtained via Y−B̂Z, where B̂ is the matrix of estimated
coefficients. Then the estimator of Σ is

Σ̂ =
1

T̃
Û′Û

By default, the maximum likelihood divisor of T̃ = T is used. When dfk is specified, a small-sample
degrees-of-freedom adjustment is used; then, T̃ = T−m wherem is the average number of parameters
per equation in the functional form for yt over the K equations.

small specifies that Wald tests after var be assumed to have F or t distributions instead of
chi-squared or standard normal distributions. The standard errors from each equation are computed
using the degrees of freedom for the equation.

The “gamma” matrix stored in e(G) referred to in Stored results is the (Kp + 1) × (Kp + 1)
matrix given by

1

T

T∑
t=1

(1,Y′t)(1,Y
′
t)
′

The formulas for the lag-order selection criteria and the log likelihood are discussed in [TS] varsoc.

var — Vector autoregressive models 751

Acknowledgment
We thank Christopher F. Baum of the Department of Economics at Boston College and author of

the Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to
Stata Programming for his helpful comments.

References
Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the

Social Science. New York: Cambridge University Press.

Greene, W. H. 2008. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Prentice Hall.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Stock, J. H., and M. W. Watson. 2001. Vector autoregressions. Journal of Economic Perspectives 15: 101–115.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

Also see
[TS] var postestimation — Postestimation tools for var

[TS] tsset — Declare data to be time-series data

[TS] dfactor — Dynamic-factor models

[TS] forecast — Econometric model forecasting

[TS] mgarch — Multivariate GARCH models

[TS] sspace — State-space models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] vec — Vector error-correction models

[U] 20 Estimation and postestimation commands
[TS] var intro — Introduction to vector autoregressive models

http://www.stata-press.com/books/imeus.html
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/isp.html
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/ea.html
http://www.stata.com/bookstore/imtsa.html

Title

var postestimation — Postestimation tools for var

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after var:

Command Description

fcast compute obtain dynamic forecasts
fcast graph graph dynamic forecasts obtained from fcast compute

irf create and analyze IRFs and FEVDs
vargranger Granger causality tests
varlmar LM test for autocorrelation in residuals
varnorm test for normally distributed residuals
varsoc lag-order selection criteria
varstable check stability condition of estimates
varwle Wald lag-exclusion statistics

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

752

var postestimation — Postestimation tools for var 753

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic equation(eqno | eqname)
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction for the specified equation.

stdp calculates the standard error of the linear prediction for the specified equation.

residuals calculates the residuals.

equation(eqno | eqname) specifies the equation to which you are referring.

equation() is filled in with one eqno or eqname for options xb, stdp, and residuals. For
example, equation(#1) would mean that the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equation by its name;
thus, equation(income) would refer to the equation named income and equation(hours), to
the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] predict.

754 var postestimation — Postestimation tools for var

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
stdp not allowed with margins

residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Model selection and inference
Forecasting

Model selection and inference

See the following sections for information on model selection and inference after var.

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
[TS] vargranger — Perform pairwise Granger causality tests after var or svar
[TS] varlmar — Perform LM test for residual autocorrelation after var or svar
[TS] varnorm — Test for normally distributed disturbances after var or svar
[TS] varsoc — Obtain lag-order selection statistics for VARs and VECMs
[TS] varstable — Check the stability condition of VAR or SVAR estimates
[TS] varwle — Obtain Wald lag-exclusion statistics after var or svar

var postestimation — Postestimation tools for var 755

Forecasting

Two types of forecasts are available after you fit a VAR(p): a one-step-ahead forecast and a dynamic
h-step-ahead forecast.

The one-step-ahead forecast produces a prediction of the value of an endogenous variable in the
current period by using the estimated coefficients, the past values of the endogenous variables, and any
exogenous variables. If you include contemporaneous values of exogenous variables in your model,
you must have observations on the exogenous variables that are contemporaneous with the period
in which the prediction is being made to compute the prediction. In Stata terms, these one-step-
ahead predictions are just the standard linear predictions available after any estimation command.
Thus predict, xb eq(eqno | eqname) produces one-step-ahead forecasts for the specified equation.
predict, stdp eq(eqno | eqname) produces the standard error of the linear prediction for the
specified equation. The standard error of the forecast includes an estimate of the variability due to
innovations, whereas the standard error of the linear prediction does not.

The dynamic h-step-ahead forecast begins by using the estimated coefficients, the lagged values of
the endogenous variables, and any exogenous variables to predict one step ahead for each endogenous
variable. Then the one-step-ahead forecast produces two-step-ahead forecasts for each endogenous
variable. The process continues for h periods. Because each step uses the predictions of the previous
steps, these forecasts are known as dynamic forecasts. See the following sections for information on
obtaining forecasts after svar:

[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec
[TS] fcast graph — Graph forecasts after fcast compute

Methods and formulas

Formulas for predict

predict with the xb option provides the one-step-ahead forecast. If exogenous variables are
specified, the forecast is conditional on the exogenous xt variables. Specifying the residuals option
causes predict to calculate the errors of the one-step-ahead forecasts. Specifying the stdp option
causes predict to calculate the standard errors of the one-step-ahead forecasts.

Also see
[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

var svar — Structural vector autoregressive models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
svar fits a vector autoregressive model subject to short- or long-run constraints you place on

the resulting impulse–response functions (IRFs). Economic theory typically motivates the constraints,
allowing a causal interpretation of the IRFs to be made. See [TS] var intro for a list of commands
that are used in conjunction with svar.

Quick start
Structural VAR for y1, y2, and y3 using tsset data with short-run constraints on impulse responses

given by predefined matrices A and B

svar y1 y2 y3, aeq(A) beq(B)

Structural VAR for y1, y2, and y3 with long-run constraint on impulse responses given by the
predefined matrix C

svar y1 y2 y3, lreq(C)

Add exogenous variables x1 and x2

svar y1 y2 y3, lreq(C) exog(x1 x2)

As above, but include third and fourth lags of the dependent variables instead of first and second
svar y1 y2 y3, lreq(C) exog(x1 x2) lags(3 4)

Menu
Statistics > Multivariate time series > Structural vector autoregression (SVAR)

Syntax
Short-run constraints

svar depvarlist
[

if
] [

in
]
,
{
aconstraints(constraintsa) aeq(matrixaeq)

acns(matrixacns) bconstraints(constraintsb) beq(matrixbeq) bcns(matrixbcns)
}

[
short run options

]
Long-run constraints

svar depvarlist
[

if
] [

in
]
,
{
lrconstraints(constraintslr) lreq(matrixlreq)

lrcns(matrixlrcns)
} [

long run options
]
756

var svar — Structural vector autoregressive models 757

short run options Description

Model

noconstant suppress constant term
∗aconstraints(constraintsa) apply previously defined constraintsa to A
∗aeq(matrixaeq) define and apply to A equality constraint matrix matrixaeq
∗acns(matrixacns) define and apply to A cross-parameter constraint matrix

matrixacns
∗bconstraints(constraintsb) apply previously defined constraintsb to B
∗beq(matrixbeq) define and apply to B equality constraint matrix matrixbeq
∗bcns(matrixbcns) define and apply to B cross-parameter constraint matrixbcns

lags(numlist) use lags numlist in the underlying VAR

Model 2

exog(varlistexog) use exogenous variables varlist
varconstraints(constraintsv) apply constraintsv to underlying VAR
noislog suppress SURE iteration log
isiterate(#) set maximum number of iterations for SURE; default is

isiterate(1600)

istolerance(#) set convergence tolerance of SURE
noisure use one-step SURE
dfk make small-sample degrees-of-freedom adjustment
small report small-sample t and F statistics
noidencheck do not check for local identification
nobigf do not compute parameter vector for coefficients implicitly

set to zero

Reporting

level(#) set confidence level; default is level(95)

full show constrained parameters in table
var display underlying var output
lutstats report Lütkepohl lag-order selection statistics
nocnsreport do not display constraints
display options control columns and column formats

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
∗ aconstraints(constraintsa), aeq(matrixaeq), acns(matrixacns), bconstraints(constraintsb), beq(matrixbeq),

bcns(matrixbcns): at least one of these options must be specified.
coeflegend does not appear in the dialog box.

758 var svar — Structural vector autoregressive models

long run options Description

Model

noconstant suppress constant term
∗lrconstraints(constraintslr) apply previously defined constraintslr to C
∗lreq(matrixlreq) define and apply to C equality constraint matrix matrixlreq
∗lrcns(matrixlrcns) define and apply to C cross-parameter constraint matrix

matrixlrcns

lags(numlist) use lags numlist in the underlying VAR

Model 2

exog(varlistexog) use exogenous variables varlist
varconstraints(constraintsv) apply constraintsv to underlying VAR
noislog suppress SURE iteration log
isiterate(#) set maximum number of iterations for SURE; default is

isiterate(1600)

istolerance(#) set convergence tolerance of SURE
noisure use one-step SURE
dfk make small-sample degrees-of-freedom adjustment
small report small-sample t and F statistics
noidencheck do not check for local identification
nobigf do not compute parameter vector for coefficients implicitly

set to zero

Reporting

level(#) set confidence level; default is level(95)

full show constrained parameters in table
var display underlying var output
lutstats report Lütkepohl lag-order selection statistics
nocnsreport do not display constraints
display options control columns and column formats

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ lrconstraints(constraintslr), lreq(matrixlreq), lrcns(matrixlrcns): at least one of these options must be
specified.

coeflegend does not appear in the dialog box.

You must tsset your data before using svar; see [TS] tsset.
depvarlist and varlistexog may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

var svar — Structural vector autoregressive models 759

Options

� � �
Model �

noconstant; see [R] estimation options.

aconstraints(constraintsa), aeq(matrixaeq), acns(matrixacns)

bconstraints(constraintsb), beq(matrixbeq), bcns(matrixbcns)

These options specify the short-run constraints in an SVAR. To specify a short-run SVAR model,
you must specify at least one of these options. The first list of options specifies constraints on
the parameters of the A matrix; the second list specifies constraints on the parameters of the B
matrix (see Short-run SVAR models). If at least one option is selected from the first list and none
are selected from the second list, svar sets B to the identity matrix. Similarly, if at least one
option is selected from the second list and none are selected from the first list, svar sets A to
the identity matrix.

None of these options may be specified with any of the options that define long-run constraints.

aconstraints(constraintsa) specifies a numlist of previously defined Stata constraints to be
applied to A during estimation.

aeq(matrixaeq) specifies a matrix that defines a set of equality constraints. This matrix must be
square with dimension equal to the number of equations in the underlying VAR. The elements
of this matrix must be missing or real numbers. A missing value in the (i, j) element of this
matrix specifies that the (i, j) element of A is a free parameter. A real number in the (i, j)
element of this matrix constrains the (i, j) element of A to this real number. For example,

A =

[
1 0
. 1.5

]
specifies that A[1, 1] = 1, A[1, 2] = 0, A[2, 2] = 1.5, and A[2, 1] is a free parameter.

acns(matrixacns) specifies a matrix that defines a set of exclusion or cross-parameter equality
constraints on A. This matrix must be square with dimension equal to the number of equations
in the underlying VAR. Each element of this matrix must be missing, 0, or a positive integer.
A missing value in the (i, j) element of this matrix specifies that no constraint be placed on
this element of A. A zero in the (i, j) element of this matrix constrains the (i, j) element of
A to be zero. Any strictly positive integers must be in two or more elements of this matrix.
A strictly positive integer in the (i, j) element of this matrix constrains the (i, j) element of
A to be equal to all the other elements of A that correspond to elements in this matrix that
contain the same integer. For example, consider the matrix

A =

[
. 1
1 0

]
Specifying acns(A) in a two-equation SVAR constrains A[2, 1] = A[1, 2] and A[2, 2] = 0
while leaving A[1, 1] free.

bconstraints(constraintsb) specifies a numlist of previously defined Stata constraints to be
applied to B during estimation.

beq(matrixbeq) specifies a matrix that defines a set of equality constraints. This matrix must be
square with dimension equal to the number of equations in the underlying VAR. The elements
of this matrix must be either missing or real numbers. The syntax of implied constraints is
analogous to the one described in aeq(), except that it applies to B rather than to A.

760 var svar — Structural vector autoregressive models

bcns(matrixbcns) specifies a matrix that defines a set of exclusion or cross-parameter equality
constraints on B. This matrix must be square with dimension equal to the number of equations
in the underlying VAR. Each element of this matrix must be missing, 0, or a positive integer.
The format of the implied constraints is the same as the one described in the acns() option
above.

lrconstraints(constraintslr), lreq(matrixlreq), lrcns(matrixlrcns)

These options specify the long-run constraints in an SVAR. To specify a long-run SVAR model,
you must specify at least one of these options. The list of options specifies constraints on the
parameters of the long-run C matrix (see Long-run SVAR models for the definition of C). None
of these options may be specified with any of the options that define short-run constraints.

lrconstraints(constraintslr) specifies a numlist of previously defined Stata constraints to be
applied to C during estimation.

lreq(matrixlreq) specifies a matrix that defines a set of equality constraints on the elements of C.
This matrix must be square with dimension equal to the number of equations in the underlying
VAR. The elements of this matrix must be either missing or real numbers. The syntax of implied
constraints is analogous to the one described in option aeq(), except that it applies to C.

lrcns(matrixlrcns) specifies a matrix that defines a set of exclusion or cross-parameter equality
constraints on C. This matrix must be square with dimension equal to the number of equations
in the underlying VAR. Each element of this matrix must be missing, 0, or a positive integer.
The syntax of the implied constraints is the same as the one described for the acns() option
above.

lags(numlist) specifies the lags to be included in the underlying VAR model. The default is lags(1
2). This option takes a numlist and not simply an integer for the maximum lag. For instance,
lags(2) would include only the second lag in the model, whereas lags(1/2) would include
both the first and second lags in the model. See [U] 11.1.8 numlist and [U] 11.4.4 Time-series
varlists for further discussion of numlists and lags.

� � �
Model 2 �

exog(varlistexog) specifies a list of exogenous variables to be included in the underlying VAR.

varconstraints(constraintsv) specifies a list of constraints to be applied to the coefficients in
the underlying VAR. Because svar estimates multiple equations, the constraints must specify the
equation name for all but the first equation.

noislog prevents svar from displaying the iteration log from the iterated seemingly unrelated
regression algorithm. When the varconstraints() option is not specified, the VAR coefficients
are estimated via OLS, a noniterative procedure. As a result, noislog may be specified only with
varconstraints(). Similarly, noislog may not be combined with noisure.

isiterate(#) sets the maximum number of iterations for the iterated seemingly unrelated regression
algorithm. The default limit is 1,600. When the varconstraints() option is not specified, the
VAR coefficients are estimated via OLS, a noniterative procedure. As a result, isiterate() may
be specified only with varconstraints(). Similarly, isiterate() may not be combined with
noisure.

istolerance(#) specifies the convergence tolerance of the iterated seemingly unrelated regression
algorithm. The default tolerance is 1e-6. When the varconstraints() option is not specified,
the VAR coefficients are estimated via OLS, a noniterative procedure. As a result, istolerance()
may be specified only with varconstraints(). Similarly, istolerance() may not be combined
with noisure.

var svar — Structural vector autoregressive models 761

noisure specifies that the VAR coefficients be estimated via one-step seemingly unrelated regression
when varconstraints() is specified. By default, svar estimates the coefficients in the VAR
via iterated seemingly unrelated regression when varconstraints() is specified. When the
varconstraints() option is not specified, the VAR coefficient estimates are obtained via OLS, a
noniterative procedure. As a result, noisure may be specified only with varconstraints().

dfk specifies that a small-sample degrees-of-freedom adjustment be used when estimating Σ, the
covariance matrix of the VAR disturbances. Specifically, 1/(T −m) is used instead of the large-
sample divisor 1/T , where m is the average number of parameters in the functional form for yt
over the K equations.

small causes svar to calculate and report small-sample t and F statistics instead of the large-sample
normal and chi-squared statistics.

noidencheck requests that the Amisano and Giannini (1997) check for local identification not be
performed. This check is local to the starting values used. Because of this dependence on the
starting values, you may wish to suppress this check by specifying the noidencheck option.
However, be careful in specifying this option. Models that are not structurally identified can still
converge, thereby producing meaningless results that only appear to have meaning.

nobigf requests that svar not compute the estimated parameter vector that incorporates coefficients
that have been implicitly constrained to be zero, such as when some lags have been omitted from
a model. e(bf) is used for computing asymptotic standard errors in the postestimation commands
irf create and fcast compute. Therefore, specifying nobigf implies that the asymptotic
standard errors will not be available from irf create and fcast compute. See Fitting models
with some lags excluded in [TS] var.

� � �
Reporting �

level(#); see [R] estimation options.

full shows constrained parameters in table.

var specifies that the output from var also be displayed. By default, the underlying VAR is fit
quietly.

lutstats specifies that the Lütkepohl versions of the lag-order selection statistics be computed. See
Methods and formulas in [TS] varsoc for a discussion of these statistics.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), and sformat(% fmt); see
[R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with svar but is not shown in the dialog box:

coeflegend; see [R] estimation options.

762 var svar — Structural vector autoregressive models

Remarks and examples
Remarks are presented under the following headings:

Introduction
Short-run SVAR models
Long-run SVAR models

Introduction
This entry assumes that you have already read [TS] var intro and [TS] var; if not, please do. Here

we illustrate how to fit SVARs in Stata subject to short-run and long-run restrictions. For more detailed
information on SVARs, see Amisano and Giannini (1997) and Hamilton (1994). For good introductions
to VARs, see Lütkepohl (2005), Hamilton (1994), Stock and Watson (2001), and Becketti (2013).

Short-run SVAR models
A short-run SVAR model without exogenous variables can be written as

A(IK −A1L−A2L
2 − · · · −ApL

p)yt = Aεt = Bet

where L is the lag operator, A, B, and A1, . . . ,Ap are K × K matrices of parameters, εt is a
K × 1 vector of innovations with εt ∼ N(0,Σ) and E[εtε

′
s] = 0K for all s 6= t, and et is a K × 1

vector of orthogonalized disturbances; that is, et ∼ N(0, IK) and E[ete
′
s] = 0K for all s 6= t.

These transformations of the innovations allow us to analyze the dynamics of the system in terms
of a change to an element of et. In a short-run SVAR model, we obtain identification by placing
restrictions on A and B, which are assumed to be nonsingular.

Example 1: Short-run just-identified SVAR model

Following Sims (1980), the Cholesky decomposition is one method of identifying the impulse–
response functions in a VAR; thus, this method corresponds to an SVAR. There are several sets of
constraints on A and B that are easily manipulated back to the Cholesky decomposition, and the
following example illustrates this point.

One way to impose the Cholesky restrictions is to assume an SVAR model of the form

Ã(IK −A1 −A2L
2 − · · ·ApL

p)yt = B̃et

where Ã is a lower triangular matrix with ones on the diagonal and B̃ is a diagonal matrix. Because
the P matrix for this model is Psr = Ã−1B̃, its estimate, P̂sr, obtained by plugging in estimates
of Ã and B̃, should equal the Cholesky decomposition of Σ̂.

To illustrate, we use the German macroeconomic data discussed in Lütkepohl (2005) and used
in [TS] var. In this example, yt = (dln inv, dln inc, dln consump), where dln inv is the
first difference of the log of investment, dln inc is the first difference of the log of income, and
dln consump is the first difference of the log of consumption. Because the first difference of the
natural log of a variable can be treated as an approximation of the percentage change in that variable,
we will refer to these variables as percentage changes in inv, inc, and consump, respectively.

We will impose the Cholesky restrictions on this system by applying equality constraints with the
constraint matrices

A =

 1 0 0
. 1 0
. . 1

 and B =

 . 0 0
0 . 0
0 0 .

var svar — Structural vector autoregressive models 763

With these structural restrictions, we assume that the percentage change in inv is not contempo-
raneously affected by the percentage changes in either inc or consump. We also assume that the
percentage change of inc is affected by contemporaneous changes in inv but not consump. Finally,
we assume that percentage changes in consump are affected by contemporaneous changes in both
inv and inc.

The following commands fit an SVAR model with these constraints.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. matrix A = (1,0,0\.,1,0\.,.,1)

. matrix B = (.,0,0\0,.,0\0,0,.)

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), aeq(A) beq(B)
Estimating short-run parameters

(output omitted)
Structural vector autoregression

(1) [a_1_1]_cons = 1
(2) [a_1_2]_cons = 0
(3) [a_1_3]_cons = 0
(4) [a_2_2]_cons = 1
(5) [a_2_3]_cons = 0
(6) [a_3_3]_cons = 1
(7) [b_1_2]_cons = 0
(8) [b_1_3]_cons = 0
(9) [b_2_1]_cons = 0
(10) [b_2_3]_cons = 0
(11) [b_3_1]_cons = 0
(12) [b_3_2]_cons = 0

Sample: 1960q4 - 1978q4 Number of obs = 73
Exactly identified model Log likelihood = 606.307

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 (constrained)
/a_2_1 -.0336288 .0294605 -1.14 0.254 -.0913702 .0241126
/a_3_1 -.0435846 .0194408 -2.24 0.025 -.0816879 -.0054812
/a_1_2 0 (constrained)
/a_2_2 1 (constrained)
/a_3_2 -.424774 .0765548 -5.55 0.000 -.5748187 -.2747293
/a_1_3 0 (constrained)
/a_2_3 0 (constrained)
/a_3_3 1 (constrained)

/b_1_1 .0438796 .0036315 12.08 0.000 .036762 .0509972
/b_2_1 0 (constrained)
/b_3_1 0 (constrained)
/b_1_2 0 (constrained)
/b_2_2 .0110449 .0009141 12.08 0.000 .0092534 .0128365
/b_3_2 0 (constrained)
/b_1_3 0 (constrained)
/b_2_3 0 (constrained)
/b_3_3 .0072243 .0005979 12.08 0.000 .0060525 .0083962

The SVAR output has four parts: an iteration log, a display of the constraints imposed, a header with
sample and SVAR log-likelihood information, and a table displaying the estimates of the parameters
from the A and B matrices. From the output above, we can see that the equality constraint matrices
supplied to svar imposed the intended constraints and that the SVAR header informs us that the model
we fit is just identified. The estimates of a 2 1, a 3 1, and a 3 2 are all negative. Because the

764 var svar — Structural vector autoregressive models

off-diagonal elements of the A matrix contain the negative of the actual contemporaneous effects,
the estimated effects are positive, as expected.

The estimates Â and B̂ are stored in e(A) and e(B), respectively, allowing us to compute the
estimated Cholesky decomposition.

. matrix Aest = e(A)

. matrix Best = e(B)

. matrix chol_est = inv(Aest)*Best

. matrix list chol_est

chol_est[3,3]
dln_inv dln_inc dln_consump

dln_inv .04387957 0 0
dln_inc .00147562 .01104494 0

dln_consump .00253928 .0046916 .00722432

svar stores the estimated Σ from the underlying var in e(Sigma). The output below illustrates
the computation of the Cholesky decomposition of e(Sigma). It is the same as the output computed
from the SVAR estimates.

. matrix sig_var = e(Sigma)

. matrix chol_var = cholesky(sig_var)

. matrix list chol_var

chol_var[3,3]
dln_inv dln_inc dln_consump

dln_inv .04387957 0 0
dln_inc .00147562 .01104494 0

dln_consump .00253928 .0046916 .00722432

We might now wonder why we bother obtaining parameter estimates via nonlinear estimation if
we can obtain them simply by a transform of the estimates produced by var. When the model is just
identified, as in the previous example, the SVAR parameter estimates can be computed via a transform
of the VAR estimates. However, when the model is overidentified, such is not the case.

Example 2: Short-run overidentified SVAR model

The Cholesky decomposition example above fit a just-identified model. This example considers
an overidentified model. In example 1, the a 2 1 parameter was not significant, which is consistent
with a theory in which changes in our measure of investment affect only changes in income with a
lag. We can impose the restriction that a 2 1 is zero and then test this overidentifying restriction.
Our A and B matrices are now

A =

 1 0 0
0 1 0
. . 1

 and B =

 . 0 0
0 . 0
0 0 .

The output below contains the commands and results we obtained by fitting this model on the
Lütkepohl data.

. matrix B = (.,0,0\0,.,0\0,0,.)

. matrix A = (1,0,0\0,1,0\.,.,1)

var svar — Structural vector autoregressive models 765

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), aeq(A) beq(B)
Estimating short-run parameters

(output omitted)
Structural vector autoregression

(1) [a_1_1]_cons = 1
(2) [a_1_2]_cons = 0
(3) [a_1_3]_cons = 0
(4) [a_2_1]_cons = 0
(5) [a_2_2]_cons = 1
(6) [a_2_3]_cons = 0
(7) [a_3_3]_cons = 1
(8) [b_1_2]_cons = 0
(9) [b_1_3]_cons = 0
(10) [b_2_1]_cons = 0
(11) [b_2_3]_cons = 0
(12) [b_3_1]_cons = 0
(13) [b_3_2]_cons = 0

Sample: 1960q4 - 1978q4 Number of obs = 73
Overidentified model Log likelihood = 605.6613

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 (constrained)
/a_2_1 0 (constrained)
/a_3_1 -.0435911 .0192696 -2.26 0.024 -.0813589 -.0058233
/a_1_2 0 (constrained)
/a_2_2 1 (constrained)
/a_3_2 -.4247741 .0758806 -5.60 0.000 -.5734973 -.2760508
/a_1_3 0 (constrained)
/a_2_3 0 (constrained)
/a_3_3 1 (constrained)

/b_1_1 .0438796 .0036315 12.08 0.000 .036762 .0509972
/b_2_1 0 (constrained)
/b_3_1 0 (constrained)
/b_1_2 0 (constrained)
/b_2_2 .0111431 .0009222 12.08 0.000 .0093356 .0129506
/b_3_2 0 (constrained)
/b_1_3 0 (constrained)
/b_2_3 0 (constrained)
/b_3_3 .0072243 .0005979 12.08 0.000 .0060525 .0083962

LR test of identifying restrictions: chi2(1)= 1.292 Prob > chi2 = 0.256

The footer in this example reports a test of the overidentifying restriction. The null hypothesis of this
test is that any overidentifying restrictions are valid. In the case at hand, we cannot reject this null
hypothesis at any of the conventional levels.

Example 3: Short-run SVAR model with constraints

svar also allows us to place constraints on the parameters of the underlying VAR. We begin by
looking at the underlying VAR for the SVARs that we have used in the previous examples.

766 var svar — Structural vector autoregressive models

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Vector autoregression

Sample: 1960q4 - 1978q4 Number of obs = 73
Log likelihood = 606.307 AIC = -16.03581
FPE = 2.18e-11 HQIC = -15.77323
Det(Sigma_ml) = 1.23e-11 SBIC = -15.37691

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 7 .046148 0.1286 10.76961 0.0958
dln_inc 7 .011719 0.1142 9.410683 0.1518
dln_consump 7 .009445 0.2513 24.50031 0.0004

Coef. Std. Err. z P>|z| [95% Conf. Interval]

dln_inv
dln_inv

L1. -.3196318 .1192898 -2.68 0.007 -.5534355 -.0858282
L2. -.1605508 .118767 -1.35 0.176 -.39333 .0722283

dln_inc
L1. .1459851 .5188451 0.28 0.778 -.8709326 1.162903
L2. .1146009 .508295 0.23 0.822 -.881639 1.110841

dln_consump
L1. .9612288 .6316557 1.52 0.128 -.2767936 2.199251
L2. .9344001 .6324034 1.48 0.140 -.3050877 2.173888

_cons -.0167221 .0163796 -1.02 0.307 -.0488257 .0153814

dln_inc
dln_inv

L1. .0439309 .0302933 1.45 0.147 -.0154427 .1033046
L2. .0500302 .0301605 1.66 0.097 -.0090833 .1091437

dln_inc
L1. -.1527311 .131759 -1.16 0.246 -.4109741 .1055118
L2. .0191634 .1290799 0.15 0.882 -.2338285 .2721552

dln_consump
L1. .2884992 .1604069 1.80 0.072 -.0258926 .6028909
L2. -.0102 .1605968 -0.06 0.949 -.3249639 .3045639

_cons .0157672 .0041596 3.79 0.000 .0076146 .0239198

dln_consump
dln_inv

L1. -.002423 .0244142 -0.10 0.921 -.050274 .045428
L2. .0338806 .0243072 1.39 0.163 -.0137607 .0815219

dln_inc
L1. .2248134 .1061884 2.12 0.034 .0166879 .4329389
L2. .3549135 .1040292 3.41 0.001 .1510199 .558807

dln_consump
L1. -.2639695 .1292766 -2.04 0.041 -.517347 -.010592
L2. -.0222264 .1294296 -0.17 0.864 -.2759039 .231451

_cons .0129258 .0033523 3.86 0.000 .0063554 .0194962

var svar — Structural vector autoregressive models 767

The equation-level model tests reported in the header indicate that we cannot reject the null
hypotheses that all the coefficients in the first equation are zero, nor can we reject the null that all
the coefficients in the second equation are zero at the 5% significance level. We use a combination of
theory and the p-values from the output above to place some exclusion restrictions on the underlying
VAR(2). Specifically, in the equation for the percentage change of inv, we constrain the coefficients
on L2.dln inv, L.dln inc, L2.dln inc, and L2.dln consump to be zero. In the equation for
dln inc, we constrain the coefficients on L2.dln inv, L2.dln inc, and L2.dln consump to be
zero. Finally, in the equation for dln consump, we constrain L.dln inv and L2.dln consump to
be zero. We then refit the SVAR from the previous example.

. constraint 1 [dln_inv]L2.dln_inv = 0

. constraint 2 [dln_inv]L.dln_inc = 0

. constraint 3 [dln_inv]L2.dln_inc = 0

. constraint 4 [dln_inv]L2.dln_consump = 0

. constraint 5 [dln_inc]L2.dln_inv = 0

. constraint 6 [dln_inc]L2.dln_inc = 0

. constraint 7 [dln_inc]L2.dln_consump = 0

. constraint 8 [dln_consump]L.dln_inv = 0

. constraint 9 [dln_consump]L2.dln_consump = 0

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), aeq(A) beq(B)
> varconst(1/9) noislog

Estimating short-run parameters

(output omitted)
Structural vector autoregression

(1) [a_1_1]_cons = 1
(2) [a_1_2]_cons = 0
(3) [a_1_3]_cons = 0
(4) [a_2_1]_cons = 0
(5) [a_2_2]_cons = 1
(6) [a_2_3]_cons = 0
(7) [a_3_3]_cons = 1
(8) [b_1_2]_cons = 0
(9) [b_1_3]_cons = 0
(10) [b_2_1]_cons = 0
(11) [b_2_3]_cons = 0
(12) [b_3_1]_cons = 0
(13) [b_3_2]_cons = 0

768 var svar — Structural vector autoregressive models

Sample: 1960q4 - 1978q4 Number of obs = 73
Overidentified model Log likelihood = 601.8591

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 (constrained)
/a_2_1 0 (constrained)
/a_3_1 -.0418708 .0187579 -2.23 0.026 -.0786356 -.0051061
/a_1_2 0 (constrained)
/a_2_2 1 (constrained)
/a_3_2 -.4255808 .0745298 -5.71 0.000 -.5716565 -.2795051
/a_1_3 0 (constrained)
/a_2_3 0 (constrained)
/a_3_3 1 (constrained)

/b_1_1 .0451851 .0037395 12.08 0.000 .0378557 .0525145
/b_2_1 0 (constrained)
/b_3_1 0 (constrained)
/b_1_2 0 (constrained)
/b_2_2 .0113723 .0009412 12.08 0.000 .0095276 .013217
/b_3_2 0 (constrained)
/b_1_3 0 (constrained)
/b_2_3 0 (constrained)
/b_3_3 .0072417 .0005993 12.08 0.000 .006067 .0084164

LR test of identifying restrictions: chi2(1)= .8448 Prob > chi2 = 0.358

If we displayed the underlying VAR(2) results by using the var option, we would see that most of
the unconstrained coefficients are now significant at the 10% level and that none of the equation-level
model statistics fail to reject the null hypothesis at the 10% level. The svar output reveals that the
p-value of the overidentification test rose and that the coefficient on a 3 1 is still insignificant at the
1% level but not at the 5% level.

Before moving on to models with long-run constraints, consider these limitations. We cannot place
constraints on the elements of A in terms of the elements of B, or vice versa. This limitation is
imposed by the form of the check for identification derived by Amisano and Giannini (1997). As
noted in Methods and formulas, this test requires separate constraint matrices for the parameters in
A and B. Another limitation is that we cannot mix short-run and long-run constraints.

Long-run SVAR models

As discussed in [TS] var intro, a long-run SVAR has the form

yt = Cet

In long-run models, the constraints are placed on the elements of C, and the free parameters are
estimated. These constraints are often exclusion restrictions. For instance, constraining C[1, 2] to be
zero can be interpreted as setting the long-run response of variable 1 to the structural shocks driving
variable 2 to be zero.

Similar to the short-run model, the Plr matrix such that PlrP
′
lr = Σ identifies the structural

impulse–response functions. Plr = C is identified by the restrictions placed on the parameters in
C. There are K2 parameters in C, and the order condition for identification requires that there be
at least K2 −K(K + 1)/2 restrictions placed on those parameters. As in the short-run model, this
order condition is necessary but not sufficient, so the Amisano and Giannini (1997) check for local
identification is performed by default.

var svar — Structural vector autoregressive models 769

Example 4: Long-run SVAR model

Suppose that we have a theory in which unexpected changes to the money supply have no long-run
effects on changes in output and, similarly, that unexpected changes in output have no long-run effects
on changes in the money supply. The C matrix implied by this theory is

C =

[
. 0
0 .

]

. use http://www.stata-press.com/data/r14/m1gdp

. matrix lr = (.,0\0,.)

. svar d.ln_m1 d.ln_gdp, lreq(lr)
Estimating long-run parameters

(output omitted)
Structural vector autoregression

(1) [c_1_2]_cons = 0
(2) [c_2_1]_cons = 0

Sample: 1959q4 - 2002q2 Number of obs = 171
Overidentified model Log likelihood = 1151.614

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/c_1_1 .0301007 .0016277 18.49 0.000 .0269106 .0332909
/c_2_1 0 (constrained)
/c_1_2 0 (constrained)
/c_2_2 .0129691 .0007013 18.49 0.000 .0115946 .0143436

LR test of identifying restrictions: chi2(1)= .1368 Prob > chi2 = 0.712

We have assumed that the underlying VAR has 2 lags; four of the five selection-order criteria
computed by varsoc (see [TS] varsoc) recommended this choice. The test of the overidentifying
restrictions provides no indication that it is not valid.

770 var svar — Structural vector autoregressive models

Stored results
svar stores the following in e():

Scalars
e(N) number of observations
e(N cns) number of constraints
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(ll) log likelihood from svar
e(ll #) log likelihood for equation #
e(N gaps var) number of gaps in the sample
e(k var) number of coefficients in VAR
e(k eq var) number of equations in underlying VAR
e(k dv var) number of dependent variables in underlying VAR
e(df eq var) average number of parameters in an equation
e(df m var) model degrees of freedom
e(df r var) if small, residual degrees of freedom
e(obs # var) number of observations on equation #
e(k # var) number of coefficients in equation #
e(df m# var) model degrees of freedom for equation #
e(df r# var) residual degrees of freedom for equation # (small only)
e(r2 # var) R-squared for equation #
e(ll # var) log likelihood for equation # VAR
e(chi2 # var) χ2 statistic for equation #
e(F # var) F statistic for equation # (small only)
e(rmse # var) root mean squared error for equation #
e(mlag var) highest lag in VAR
e(tparms var) number of parameters in all equations
e(aic var) Akaike information criterion
e(hqic var) Hannan–Quinn information criterion
e(sbic var) Schwarz–Bayesian information criterion
e(fpe var) final prediction error
e(ll var) log likelihood from var
e(detsig var) determinant of e(Sigma)

e(detsig ml var) determinant of Σ̂ml
e(tmin) first time period in the sample
e(tmax) maximum time
e(chi2 oid) overidentification test
e(oid df) number of overidentifying restrictions
e(rank) rank of e(V)
e(ic ml) number of iterations
e(rc ml) return code from ml

var svar — Structural vector autoregressive models 771

Macros
e(cmd) svar
e(cmdline) command as typed
e(lrmodel) long-run model, if specified
e(lags var) lags in model
e(depvar var) names of dependent variables
e(endog var) names of endogenous variables
e(exog var) names of exogenous variables, if specified
e(nocons var) noconstant, if noconstant specified
e(cns lr) long-run constraints
e(cns a) cross-parameter equality constraints on A

e(cns b) cross-parameter equality constraints on B

e(dfk var) alternate divisor (dfk), if specified
e(eqnames var) names of equations
e(lutstats var) lutstats, if specified
e(constraints var) constraints var, if there are constraints on VAR
e(small) small, if specified
e(tsfmt) format of timevar
e(timevar) name of timevar
e(title) title in estimation output
e(properties) b V
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators
e(b var) coefficient vector of underlying VAR model
e(V var) VCE of underlying VAR model
e(bf var) full coefficient vector with zeros in dropped lags
e(G var) G matrix stored by var; see [TS] var Methods and formulas
e(aeq) aeq(matrix), if specified
e(acns) acns(matrix), if specified
e(beq) beq(matrix), if specified
e(bcns) bcns(matrix), if specified
e(lreq) lreq(matrix), if specified
e(lrcns) lrcns(matrix), if specified
e(Cns var) constraint matrix from var, if varconstraints() is specified
e(A) estimated A matrix, if a short-run model
e(B) estimated B matrix
e(C) estimated C matrix, if a long-run model
e(A1) estimated Ā matrix, if a long-run model

Functions
e(sample) marks estimation sample

Methods and formulas
The log-likelihood function for models with short-run constraints is

L(A,B) = −NK
2

ln(2π) +
N

2
ln(|W|2)− N

2
tr(W′WΣ̂)

where W = B−1A.

When there are long-run constraints, because C = Ā−1B and A = IK , W = B−1 = C−1Ā−1 =
(ĀC)−1. Substituting the last term for W in the short-run log likelihood produces the long-run log
likelihood

772 var svar — Structural vector autoregressive models

L(C) = −NK
2

ln(2π) +
N

2
ln(|W̃|2)− N

2
tr(W̃′W̃Σ̂)

where W̃ = (ĀC)−1.

For both the short-run and the long-run models, the maximization is performed by the scoring
method. See Harvey (1990) for a discussion of this method.

Based on results from Amisano and Giannini (1997), the score vector for the short-run model is

∂L(A,B)

∂[vec(A), vec(B)]
= N

[
{vec(W′−1)}′ − {vec(W)}′(Σ̂⊗ IK)

]
×[

(IK ⊗B−1),−(A′B′−1 ⊗B−1)
]

and the expected information matrix is

I [vec(A), vec(B)] = N

[
(W−1 ⊗B′−1)

−(IK ⊗B′−1)

]
(IK2 +⊕)

[
(W′−1 ⊗B−1),−(IK ⊗B−1)

]
where ⊕ is the commutation matrix defined in Magnus and Neudecker (1999, 46–48).

Using results from Amisano and Giannini (1997), we can derive the score vector and the expected
information matrix for the case with long-run restrictions. The score vector is

∂L(C)

∂vec(C)
= N

[
{vec(W′−1)}′ − {vec(W)}′(Σ̂⊗ IK)

] [
−(Ā′−1C′−1 ⊗C−1)

]
and the expected information matrix is

I [vec(C)] = N(IK ⊗C′−1)(IK2 +⊕)(IK ⊗C′−1)

Checking for identification

This section describes the methods used to check for identification of models with short-run or
long-run constraints. Both methods depend on the starting values. By default, svar uses starting
values constructed by taking a vector of appropriate dimension and applying the constraints. If there
are m parameters in the model, the jth element of the 1×m vector is 1 +m/100. svar also allows
the user to provide starting values.

For the short-run case, the model is identified if the matrix

V∗sr =

NK NK

NK NK

Ra(W′ ⊗B) 0K2

0K2 Ra(IK ⊗B)

has full column rank of 2K2, where NK = (1/2)(IK2 + ⊕), Ra is the constraint matrix for the
parameters in A (that is, Ravec(A) = ra), and Rb is the constraint matrix for the parameters in B
(that is, Rbvec(B) = rb).

var svar — Structural vector autoregressive models 773

For the long-run case, based on results from the C model in Amisano and Giannini (1997), the
model is identified if the matrix

V∗lr =

[
(I⊗C′−1)(2NK)(I⊗C−1)

Rc

]
has full column rank of K2, where Rc is the constraint matrix for the parameters in C; that is,
Rcvec(C) = rc.

The test of the overidentifying restrictions is computed as

LR = 2(LLvar − LLsvar)

where LR is the value of the test statistic against the null hypothesis that the overidentifying restrictions
are valid, LLvar is the log likelihood from the underlying VAR(p) model, and LLsvar is the log
likelihood from the SVAR model. The test statistic is asymptotically distributed as χ2(q), where q is the
number of overidentifying restrictions. Amisano and Giannini (1997, 38–39) emphasize that, because
this test of the validity of the overidentifying restrictions is an omnibus test, it can be interpreted as
a test of the null hypothesis that all the restrictions are valid.

Because constraints might not be independent either by construction or because of the data, the
number of restrictions is not necessarily equal to the number of constraints. The rank of e(V)
gives the number of parameters that were independently estimated after applying the constraints. The
maximum number of parameters that can be estimated in an identified short-run or long-run SVAR is
K(K + 1)/2. This implies that the number of overidentifying restrictions, q, is equal to K(K + 1)/2
minus the rank of e(V).

The number of overidentifying restrictions is also linked to the order condition for each model. In
a short-run SVAR model, there are 2K2 parameters. Because no more than K(K + 1)/2 parameters
may be estimated, the order condition for a short-run SVAR model is that at least 2K2−K(K + 1)/2
restrictions be placed on the model. Similarly, there are K2 parameters in long-run SVAR model.
Because no more than K(K + 1)/2 parameters may be estimated, the order condition for a long-run
SVAR model is that at least K2 −K(K + 1)/2 restrictions be placed on the model.

Acknowledgment
We thank Gianni Amisano of the Dipartimento di Scienze Economiche at the Università degli

Studi di Brescia for his helpful comments.

References
Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Christiano, L. J., M. Eichenbaum, and C. L. Evans. 1999. Monetary policy shocks: What have we learned and to
what end? In Handbook of Macroeconomics: Volume 1A, ed. J. B. Taylor and M. Woodford. New York: Elsevier.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1990. The Econometric Analysis of Time Series. 2nd ed. Cambridge, MA: MIT Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Magnus, J. R., and H. Neudecker. 1999. Matrix Differential Calculus with Applications in Statistics and Econometrics.
Rev. ed. New York: Wiley.

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/imtsa.html

774 var svar — Structural vector autoregressive models

Rothenberg, T. J. 1971. Identification in parametric models. Econometrica 39: 577–591.

Sims, C. A. 1980. Macroeconomics and reality. Econometrica 48: 1–48.

Stock, J. H., and M. W. Watson. 2001. Vector autoregressions. Journal of Economic Perspectives 15: 101–115.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

Also see
[TS] var svar postestimation — Postestimation tools for svar

[TS] tsset — Declare data to be time-series data

[TS] var — Vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] vec — Vector error-correction models

[U] 20 Estimation and postestimation commands
[TS] var intro — Introduction to vector autoregressive models

Title

var svar postestimation — Postestimation tools for svar

Postestimation commands predict Remarks and examples Also see

Postestimation commands
The following postestimation commands are of special interest after svar:

Command Description

fcast compute obtain dynamic forecasts
fcast graph graph dynamic forecasts obtained from fcast compute

irf create and analyze IRFs and FEVDs
vargranger Granger causality tests
varlmar LM test for autocorrelation in residuals
varnorm test for normally distributed residuals
varsoc lag-order selection criteria
varstable check stability condition of estimates
varwle Wald lag-exclusion statistics

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

775

776 var svar postestimation — Postestimation tools for svar

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic equation(eqno | eqname)
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction for the specified equation.

stdp calculates the standard error of the linear prediction for the specified equation.

residuals calculates the residuals.

equation(eqno | eqname) specifies the equation to which you are referring.

equation() is filled in with one eqno or eqname for options xb, stdp, and residuals. For
example, equation(#1) would mean that the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equation by its name;
thus, equation(income) would refer to the equation named income and equation(hours), to
the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

For more information on using predict after multiple-equation commands, see [R] predict.

Remarks and examples
Remarks are presented under the following headings:

Model selection and inference
Forecasting

var svar postestimation — Postestimation tools for svar 777

Model selection and inference

See the following sections for information on model selection and inference after var.

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
[TS] vargranger — Perform pairwise Granger causality tests after var or svar
[TS] varlmar — Perform LM test for residual autocorrelation after var or svar
[TS] varnorm — Test for normally distributed disturbances after var or svar
[TS] varsoc — Obtain lag-order selection statistics for VARs and VECMs
[TS] varstable — Check the stability condition of VAR or SVAR estimates
[TS] varwle — Obtain Wald lag-exclusion statistics after var or svar

Forecasting

See the following sections for information on obtaining forecasts after svar:

[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec
[TS] fcast graph — Graph forecasts after fcast compute

Also see
[TS] var svar — Structural vector autoregressive models

[U] 20 Estimation and postestimation commands

Title

varbasic — Fit a simple VAR and graph IRFs or FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

varbasic fits a basic vector autoregressive (VAR) model and graphs the impulse–response func-
tions (IRFs), the orthogonalized impulse–response functions (OIRFs), or the forecast-error variance
decompositions (FEVDs).

Quick start
Fit vector autoregressive model for dependent variables y1, y2, and y3 and their first and second lags

and graph orthogonalized impulse responses using tsset data
varbasic y1 y2 y3

As above, but include second and third lags instead of first and second lags
var y1 y2 y3, lags(2 3)

As above, but produce forecast-error variance decompositions instead of impulse responses
var y1 y2 y3, lags(2 3) fevd

As above, but set the forecast horizon for the forecast-error variance decompositions to be 12 periods
var y1 y2 y3, lags(2 3) fevd step(12)

Menu
Statistics > Multivariate time series > Basic VAR

Syntax

varbasic depvarlist
[

if
] [

in
] [

, options
]

options Description

Main

lags(numlist) use lags numlist in the model; default is lags(1 2)

irf produce matrix graph of IRFs
fevd produce matrix graph of FEVDs
nograph do not produce a graph
step(#) set forecast horizon # for estimating the OIRFs, IRFs, and FEVDs; default is step(8)

You must tsset your data before using varbasic; see [TS] tsset.
depvarlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

778

varbasic — Fit a simple VAR and graph IRFs or FEVDs 779

Options

� � �
Main �

lags(numlist) specifies the lags to be included in the model. The default is lags(1 2). This option
takes a numlist and not simply an integer for the maximum lag. For instance, lags(2) would
include only the second lag in the model, whereas lags(1/2) would include both the first and
second lags in the model. See [U] 11.1.8 numlist and [U] 11.4.4 Time-series varlists for more
discussion of numlists and lags.

irf causes varbasic to produce a matrix graph of the IRFs instead of a matrix graph of the OIRFs,
which is produced by default.

fevd causes varbasic to produce a matrix graph of the FEVDs instead of a matrix graph of the
OIRFs, which is produced by default.

nograph specifies that no graph be produced. The IRFs, OIRFs, and FEVDs are still estimated and
saved in the IRF file varbasic.irf.

step(#) specifies the forecast horizon for estimating the IRFs, OIRFs, and FEVDs. The default is eight
periods.

Remarks and examples
varbasic simplifies fitting simple VARs and graphing the IRFs, the OIRFs, or the FEVDs. See

[TS] var and [TS] var svar for fitting more advanced VAR models and structural vector autoregressive
(SVAR) models. All the postestimation commands discussed in [TS] var postestimation work after
varbasic.

This entry does not discuss the methods for fitting a VAR or the methods surrounding the IRFs,
OIRFs, and FEVDs. See [TS] var and [TS] irf create for more on these methods. This entry illustrates
how to use varbasic to easily obtain results. It also illustrates how varbasic serves as an entry
point to further analysis.

Example 1

We fit a three-variable VAR with two lags to the German macro data used by Lütkepohl (2005).
The three variables are the first difference of natural log of investment, dln inv; the first difference
of the natural log of income, dln inc; and the first difference of the natural log of consumption,
dln consump. In addition to fitting the VAR, we want to see the OIRFs. Below we use varbasic to
fit a VAR(2) model on the data from the second quarter of 1961 through the fourth quarter of 1978.
By default, varbasic produces graphs of the OIRFs.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

780 varbasic — Fit a simple VAR and graph IRFs or FEVDs

. varbasic dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Vector autoregression

Sample: 1960q4 - 1978q4 Number of obs = 73
Log likelihood = 606.307 AIC = -16.03581
FPE = 2.18e-11 HQIC = -15.77323
Det(Sigma_ml) = 1.23e-11 SBIC = -15.37691

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 7 .046148 0.1286 10.76961 0.0958
dln_inc 7 .011719 0.1142 9.410683 0.1518
dln_consump 7 .009445 0.2513 24.50031 0.0004

Coef. Std. Err. z P>|z| [95% Conf. Interval]

dln_inv
dln_inv

L1. -.3196318 .1192898 -2.68 0.007 -.5534355 -.0858282
L2. -.1605508 .118767 -1.35 0.176 -.39333 .0722283

dln_inc
L1. .1459851 .5188451 0.28 0.778 -.8709326 1.162903
L2. .1146009 .508295 0.23 0.822 -.881639 1.110841

dln_consump
L1. .9612288 .6316557 1.52 0.128 -.2767936 2.199251
L2. .9344001 .6324034 1.48 0.140 -.3050877 2.173888

_cons -.0167221 .0163796 -1.02 0.307 -.0488257 .0153814

dln_inc
dln_inv

L1. .0439309 .0302933 1.45 0.147 -.0154427 .1033046
L2. .0500302 .0301605 1.66 0.097 -.0090833 .1091437

dln_inc
L1. -.1527311 .131759 -1.16 0.246 -.4109741 .1055118
L2. .0191634 .1290799 0.15 0.882 -.2338285 .2721552

dln_consump
L1. .2884992 .1604069 1.80 0.072 -.0258926 .6028909
L2. -.0102 .1605968 -0.06 0.949 -.3249639 .3045639

_cons .0157672 .0041596 3.79 0.000 .0076146 .0239198

dln_consump
dln_inv

L1. -.002423 .0244142 -0.10 0.921 -.050274 .045428
L2. .0338806 .0243072 1.39 0.163 -.0137607 .0815219

dln_inc
L1. .2248134 .1061884 2.12 0.034 .0166879 .4329389
L2. .3549135 .1040292 3.41 0.001 .1510199 .558807

dln_consump
L1. -.2639695 .1292766 -2.04 0.041 -.517347 -.010592
L2. -.0222264 .1294296 -0.17 0.864 -.2759039 .231451

_cons .0129258 .0033523 3.86 0.000 .0063554 .0194962

varbasic — Fit a simple VAR and graph IRFs or FEVDs 781

−.02

0

.02

.04

.06

−.02

0

.02

.04

.06

−.02

0

.02

.04

.06

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

varbasic, dln_consump, dln_consump varbasic, dln_consump, dln_inc varbasic, dln_consump, dln_inv

varbasic, dln_inc, dln_consump varbasic, dln_inc, dln_inc varbasic, dln_inc, dln_inv

varbasic, dln_inv, dln_consump varbasic, dln_inv, dln_inc varbasic, dln_inv, dln_inv

95% CI orthogonalized irf

step

Graphs by irfname, impulse variable, and response variable

Because we are also interested in looking at the FEVDs, we can use irf graph to obtain the
graphs. Although the details are available in [TS] irf and [TS] irf graph, the command below produces
what we want after the call to varbasic.

. irf graph fevd, lstep(1)

0

.5

1

0

.5

1

0

.5

1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

varbasic, dln_consump, dln_consump varbasic, dln_consump, dln_inc varbasic, dln_consump, dln_inv

varbasic, dln_inc, dln_consump varbasic, dln_inc, dln_inc varbasic, dln_inc, dln_inv

varbasic, dln_inv, dln_consump varbasic, dln_inv, dln_inc varbasic, dln_inv, dln_inv

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Technical note
Stata stores the estimated IRFs, OIRFs, and FEVDs in a IRF file called varbasic.irf in the current

working directory. varbasic replaces any varbasic.irf that already exists. Finally, varbasic
makes varbasic.irf the active IRF file. This means that the graph and table commands irf graph,

782 varbasic — Fit a simple VAR and graph IRFs or FEVDs

irf cgraph, irf ograph, irf table, and irf ctable will all display results that correspond to
the VAR fit by varbasic.

Stored results
See Stored results in [TS] var.

Methods and formulas
varbasic uses var and irf graph to obtain its results. See [TS] var and [TS] irf graph for a

discussion of how those commands obtain their results.

References
Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] varbasic postestimation — Postestimation tools for varbasic

[TS] tsset — Declare data to be time-series data

[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[U] 20 Estimation and postestimation commands
[TS] var intro — Introduction to vector autoregressive models

http://www.stata.com/bookstore/imtsa.html

Title

varbasic postestimation — Postestimation tools for varbasic

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are of special interest after varbasic:

Command Description

fcast compute obtain dynamic forecasts
fcast graph graph dynamic forecasts obtained from fcast compute

irf create and analyze IRFs and FEVDs
vargranger Granger causality tests
varlmar LM test for autocorrelation in residuals
varnorm test for normally distributed residuals
varsoc lag-order selection criteria
varstable check stability condition of estimates
varwle Wald lag-exclusion statistics

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

783

784 varbasic postestimation — Postestimation tools for varbasic

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic equation(eqno | eqname)
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction for the specified equation.

stdp calculates the standard error of the linear prediction for the specified equation.

residuals calculates the residuals.

equation(eqno | eqname) specifies the equation to which you are referring.

equation() is filled in with one eqno or eqname for the xb, stdp, and residuals options.
For example, equation(#1) would mean that the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equation by its name;
thus, equation(income) would refer to the equation named income and equation(hours), to
the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] predict.

varbasic postestimation — Postestimation tools for varbasic 785

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
stdp not allowed with margins

residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

786 varbasic postestimation — Postestimation tools for varbasic

Remarks and examples

Example 1

All the postestimation commands discussed in [TS] var postestimation work after varbasic.
Suppose that we are interested in testing the hypothesis that there is no autocorrelation in the VAR
disturbances. Continuing example 1 from [TS] varbasic, we now use varlmar to test this hypothesis.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. varbasic dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
(output omitted)

. varlmar

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 5.5871 9 0.78043
2 6.3189 9 0.70763

H0: no autocorrelation at lag order

Because we cannot reject the null hypothesis of no autocorrelation in the residuals, this test does
not indicate any model misspecification.

Also see
[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[U] 20 Estimation and postestimation commands

Title

vargranger — Perform pairwise Granger causality tests after var or svar

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vargranger performs a set of Granger causality tests for each equation in a VAR, providing a
convenient alternative to test; see [R] test.

Quick start
Perform a Granger causality test after var or svar

vargranger

Perform a Granger causality test on vector autoregression estimation results stored as myest

vargranger, estimates(myest)

Menu
Statistics > Multivariate time series > VAR diagnostics and tests > Granger causality tests

787

788 vargranger — Perform pairwise Granger causality tests after var or svar

Syntax
vargranger

[
, estimates(estname) separator(#)

]
vargranger can be used only after var or svar; see [TS] var and [TS] var svar.

Options
estimates(estname) requests that vargranger use the previously obtained set of var or svar

estimates stored as estname. By default, vargranger uses the active results. See [R] estimates
for information on manipulating estimation results.

separator(#) specifies how often separator lines should be drawn between rows. By default, separator
lines appear every K lines, where K is the number of equations in the VAR under analysis. For
example, separator(1) would draw a line between each row, separator(2) between every
other row, and so on. separator(0) specifies that lines not appear in the table.

Remarks and examples
After fitting a VAR, we may want to know whether one variable “Granger-causes” another

(Granger 1969). A variable x is said to Granger-cause a variable y if, given the past values of y,
past values of x are useful for predicting y. A common method for testing Granger causality is to
regress y on its own lagged values and on lagged values of x and test the null hypothesis that the
estimated coefficients on the lagged values of x are jointly zero. Failure to reject the null hypothesis
is equivalent to failing to reject the hypothesis that x does not Granger-cause y.

For each equation and each endogenous variable that is not the dependent variable in that equation,
vargranger computes and reports Wald tests that the coefficients on all the lags of an endogenous
variable are jointly zero. For each equation in a VAR, vargranger tests the hypotheses that each of
the other endogenous variables does not Granger-cause the dependent variable in that equation.

Because it may be interesting to investigate these types of hypotheses by using the VAR that
underlies an SVAR, vargranger can also produce these tests by using the e() results from an svar.
When vargranger uses svar e() results, the hypotheses concern the underlying var estimates.

See [TS] var and [TS] var svar for information about fitting VARs and SVARs in Stata. See
Lütkepohl (2005), Hamilton (1994), and Amisano and Giannini (1997) for information about Granger
causality and on VARs and SVARs in general.

vargranger — Perform pairwise Granger causality tests after var or svar 789

Example 1: After var

Here we refit the model with German data described in [TS] var and then perform Granger causality
tests with vargranger.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk small

(output omitted)
. vargranger

Granger causality Wald tests

Equation Excluded F df df_r Prob > F

dln_inv dln_inc .04847 2 66 0.9527
dln_inv dln_consump 1.5004 2 66 0.2306
dln_inv ALL 1.5917 4 66 0.1869

dln_inc dln_inv 1.7683 2 66 0.1786
dln_inc dln_consump 1.7184 2 66 0.1873
dln_inc ALL 1.9466 4 66 0.1130

dln_consump dln_inv .97147 2 66 0.3839
dln_consump dln_inc 6.1465 2 66 0.0036
dln_consump ALL 3.7746 4 66 0.0080

Because the estimates() option was not specified, vargranger used the active e() results.
Consider the results of the three tests for the first equation. The first is a Wald test that the coefficients
on the two lags of dln inc that appear in the equation for dln inv are jointly zero. The null
hypothesis that dln inc does not Granger-cause dln inv cannot be rejected. Similarly, we cannot
reject the null hypothesis that the coefficients on the two lags of dln consump in the equation for
dln inv are jointly zero, so we cannot reject the hypothesis that dln consump does not Granger-
cause dln inv. The third test is with respect to the null hypothesis that the coefficients on the two
lags of all the other endogenous variables are jointly zero. Because this cannot be rejected, we cannot
reject the null hypothesis that dln inc and dln consump, jointly, do not Granger-cause dln inv.

Because we failed to reject most of these null hypotheses, we might be interested in imposing
some constraints on the coefficients. See [TS] var for more on fitting VAR models with constraints
on the coefficients.

790 vargranger — Perform pairwise Granger causality tests after var or svar

Example 2: Using test instead of vargranger

We could have used test to compute these Wald tests, but vargranger saves a great deal of
typing. Still, seeing how to use test to obtain the results reported by vargranger is useful.

. test [dln_inv]L.dln_inc [dln_inv]L2.dln_inc

(1) [dln_inv]L.dln_inc = 0
(2) [dln_inv]L2.dln_inc = 0

F(2, 66) = 0.05
Prob > F = 0.9527

. test [dln_inv]L.dln_consump [dln_inv]L2.dln_consump, accumulate

(1) [dln_inv]L.dln_inc = 0
(2) [dln_inv]L2.dln_inc = 0
(3) [dln_inv]L.dln_consump = 0
(4) [dln_inv]L2.dln_consump = 0

F(4, 66) = 1.59
Prob > F = 0.1869

. test [dln_inv]L.dln_inv [dln_inv]L2.dln_inv, accumulate

(1) [dln_inv]L.dln_inc = 0
(2) [dln_inv]L2.dln_inc = 0
(3) [dln_inv]L.dln_consump = 0
(4) [dln_inv]L2.dln_consump = 0
(5) [dln_inv]L.dln_inv = 0
(6) [dln_inv]L2.dln_inv = 0

F(6, 66) = 1.62
Prob > F = 0.1547

The first two calls to test show how vargranger obtains its results. The first test reproduces
the first test reported for the dln inv equation. The second test reproduces the ALL entry for the
first equation. The third test reproduces the standard F statistic for the dln inv equation, reported
in the header of the var output in the previous example. The standard F statistic also includes the
lags of the dependent variable, as well as any exogenous variables in the equation. This illustrates
that the test performed by vargranger of the null hypothesis that the coefficients on all the lags of
all the other endogenous variables are jointly zero for a particular equation; that is, the All test is
not the same as the standard F statistic for that equation.

vargranger — Perform pairwise Granger causality tests after var or svar 791

Example 3: After svar

When vargranger is run on svar estimates, the null hypotheses are with respect to the underlying
var estimates. We run vargranger after using svar to fit an SVAR that has the same underlying
VAR as our model in example 1.

. matrix A = (., 0,0 \ ., ., 0\ .,.,.)

. matrix B = I(3)

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk small aeq(A) beq(B)
(output omitted)

. vargranger

Granger causality Wald tests

Equation Excluded F df df_r Prob > F

dln_inv dln_inc .04847 2 66 0.9527
dln_inv dln_consump 1.5004 2 66 0.2306
dln_inv ALL 1.5917 4 66 0.1869

dln_inc dln_inv 1.7683 2 66 0.1786
dln_inc dln_consump 1.7184 2 66 0.1873
dln_inc ALL 1.9466 4 66 0.1130

dln_consump dln_inv .97147 2 66 0.3839
dln_consump dln_inc 6.1465 2 66 0.0036
dln_consump ALL 3.7746 4 66 0.0080

As we expected, the vargranger results are identical to those in the first example.

Stored results
vargranger stores the following in r():

Matrices
r(gstats) χ2, df, and p-values (if e(small)=="")
r(gstats) F , df, df r, and p-values (if e(small)!="")

Methods and formulas
vargranger uses test to obtain Wald statistics of the hypothesis that all coefficients on the

lags of variable x are jointly zero in the equation for variable y. vargranger uses the e() results
stored by var or svar to determine whether to calculate and report small-sample F statistics or
large-sample χ2 statistics.

� �
Clive William John Granger (1934–2009) was born in Swansea, Wales, and earned degrees at the
University of Nottingham in mathematics and statistics. Joining the staff there, he also worked
at Princeton on the spectral analysis of economic time series, before moving in 1973 to the
University of California, San Diego. He was awarded the 2003 Nobel Prize in Economics for
methods of analyzing economic time series with common trends (cointegration). He was knighted
in 2005, thus becoming Sir Clive Granger.� �

792 vargranger — Perform pairwise Granger causality tests after var or svar

References
Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.

Granger, C. W. J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica
37: 424–438.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Phillips, P. C. B. 1997. The ET Interview: Professor Clive Granger. Econometric Theory 13: 253–303.

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] var intro — Introduction to vector autoregressive models

http://www.stata.com/bookstore/imtsa.html

Title

varlmar — Perform LM test for residual autocorrelation after var or svar

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

varlmar implements a Lagrange multiplier (LM) test for autocorrelation in the residuals of VAR
models, which was presented in Johansen (1995).

Quick start
Test the null hypothesis of no autocorrelation for the first two lags of the residuals after var or svar

varlmar

As above, but test the first 5 lags
varlmar, mlag(5)

Perform test for the first two lags of the residuals of a vector autoregression using estimation results
stored in myest

varlmar, estimates(myest)

Menu
Statistics > Multivariate time series > VAR diagnostics and tests > LM test for residual autocorrelation

793

794 varlmar — Perform LM test for residual autocorrelation after var or svar

Syntax
varlmar

[
, options

]
options Description

mlag(#) use # for the maximum order of autocorrelation; default is mlag(2)

estimates(estname) use previously stored results estname; default is to use active results
separator(#) draw separator line after every # rows

varlmar can be used only after var or svar; see [TS] var and [TS] var svar.
You must tsset your data before using varlmar; see [TS] tsset.

Options
mlag(#) specifies the maximum order of autocorrelation to be tested. The integer specified in mlag()

must be greater than 0; the default is 2.

estimates(estname) requests that varlmar use the previously obtained set of var or svar estimates
stored as estname. By default, varlmar uses the active results. See [R] estimates for information
on manipulating estimation results.

separator(#) specifies how often separator lines should be drawn between rows. By default,
separator lines do not appear. For example, separator(1) would draw a line between each row,
separator(2) between every other row, and so on.

Remarks and examples
Most postestimation analyses of VAR models and SVAR models assume that the disturbances are

not autocorrelated. varlmar implements the LM test for autocorrelation in the residuals of a VAR
model discussed in Johansen (1995, 21–22). The test is performed at lags j = 1, . . . , mlag(). For
each j, the null hypothesis of the test is that there is no autocorrelation at lag j.

varlmar uses the estimation results stored by var or svar. By default, varlmar uses the active
estimation results. However, varlmar can use any previously stored var or svar estimation results
specified in the estimates() option.

varlmar — Perform LM test for residual autocorrelation after var or svar 795

Example 1: After var

Here we refit the model with German data described in [TS] var and then call varlmar.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk
(output omitted)

. varlmar, mlag(5)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 5.5871 9 0.78043
2 6.3189 9 0.70763
3 8.4022 9 0.49418
4 11.8742 9 0.22049
5 5.2914 9 0.80821

H0: no autocorrelation at lag order

Because we cannot reject the null hypothesis that there is no autocorrelation in the residuals for
any of the five orders tested, this test gives no hint of model misspecification. Although we fit the
VAR with the dfk option to be consistent with the example in [TS] var, varlmar always uses the ML
estimator of Σ. The results obtained from varlmar are the same whether or not dfk is specified.

Example 2: After svar

When varlmar is applied to estimation results produced by svar, the sequence of LM tests is
applied to the underlying VAR. See [TS] var svar for a description of how an SVAR model builds on
a VAR. In this example, we fit an SVAR that has an underlying VAR with two lags that is identical to
the one fit in the previous example.

. matrix A = (.,.,0\0,.,0\.,.,.)

. matrix B = I(3)

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk aeq(A) beq(B)
(output omitted)

. varlmar, mlag(5)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 5.5871 9 0.78043
2 6.3189 9 0.70763
3 8.4022 9 0.49418
4 11.8742 9 0.22049
5 5.2914 9 0.80821

H0: no autocorrelation at lag order

Because the underlying VAR(2) is the same as the previous example (we assure you that this is
true), the output from varlmar is also the same.

796 varlmar — Perform LM test for residual autocorrelation after var or svar

Stored results
varlmar stores the following in r():

Matrices
r(lm) χ2, df, and p-values

Methods and formulas
The formula for the LM test statistic at lag j is

LMs = (T − d− .5) ln

(
|Σ̂|
|Σ̃s|

)

where T is the number of observations in the VAR; d is explained below; Σ̂ is the maximum likelihood
estimate of Σ, the variance–covariance matrix of the disturbances from the VAR; and Σ̃s is the
maximum likelihood estimate of Σ from the following augmented VAR.

If there are K equations in the VAR, we can define et to be a K × 1 vector of residuals. After we
create the K new variables e1, e2, . . . , eK containing the residuals from the K equations, we can
augment the original VAR with lags of these K new variables. For each lag s, we form an augmented
regression in which the new residual variables are lagged s times. Per the method of Davidson and
MacKinnon (1993, 358), the missing values from these s lags are replaced with zeros. Σ̃s is the
maximum likelihood estimate of Σ from this augmented VAR, and d is the number of coefficients
estimated in the augmented VAR. See [TS] var for a discussion of the maximum likelihood estimate
of Σ in a VAR.

The asymptotic distribution of LMs is χ2 with K2 degrees of freedom.

References
Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University

Press.

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] var intro — Introduction to vector autoregressive models

http://www.stata.com/bookstore/eie.html

Title

varnorm — Test for normally distributed disturbances after var or svar

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

varnorm computes and reports a series of statistics against the null hypothesis that the disturbances
in a VAR are normally distributed. For each equation, and for all equations jointly, up to three statistics
may be computed: a skewness statistic, a kurtosis statistic, and the Jarque–Bera statistic. By default,
all three statistics are reported.

Quick start
Compute Jarque–Bera, skewness, and kurtosis statistics after var or svar to test the null hypothesis

that the residuals are normally distributed
varnorm

As above, but only report the Jarque–Bera statistic
varnorm, jbera

After svar, use the Cholesky decomposition of the estimated variance–covariance matrix to compute
the tests

varnorm, cholesky

Menu
Statistics > Multivariate time series > VAR diagnostics and tests > Test for normally distributed disturbances

797

798 varnorm — Test for normally distributed disturbances after var or svar

Syntax
varnorm

[
, options

]
options Description

jbera report Jarque–Bera statistic; default is to report all three statistics
skewness report skewness statistic; default is to report all three statistics
kurtosis report kurtosis statistic; default is to report all three statistics
estimates(estname) use previously stored results estname; default is to use active results
cholesky use Cholesky decomposition
separator(#) draw separator line after every # rows

varnorm can be used only after var or svar; see [TS] var and [TS] var svar.
You must tsset your data before using varnorm; see [TS] tsset.

Options
jbera requests that the Jarque–Bera statistic and any other explicitly requested statistic be reported.

By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

skewness requests that the skewness statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

kurtosis requests that the kurtosis statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

estimates(estname) specifies that varnorm use the previously obtained set of var or svar estimates
stored as estname. By default, varnorm uses the active results. See [R] estimates for information
on manipulating estimation results.

cholesky specifies that varnorm use the Cholesky decomposition of the estimated variance–covariance
matrix of the disturbances, Σ̂, to orthogonalize the residuals when varnorm is applied to svar
results. By default, when varnorm is applied to svar results, it uses the estimated structural
decomposition Â−1B̂ on Ĉ to orthogonalize the residuals. When applied to var e() results,
varnorm always uses the Cholesky decomposition of Σ̂. For this reason, the cholesky option
may not be specified when using var results.

separator(#) specifies how often separator lines should be drawn between rows. By default,
separator lines do not appear. For example, separator(1) would draw a line between each row,
separator(2) between every other row, and so on.

Remarks and examples
Some of the postestimation statistics for VAR and SVAR assume that the K disturbances have a

K-dimensional multivariate normal distribution. varnorm uses the estimation results produced by
var or svar to produce a series of statistics against the null hypothesis that the K disturbances in
the VAR are normally distributed.

Per the notation in Lütkepohl (2005), call the skewness statistic λ̂1, the kurtosis statistic λ̂2, and
the Jarque–Bera statistic λ̂3. The Jarque–Bera statistic is a combination of the other two statistics.
The single-equation results are from tests against the null hypothesis that the disturbance for that

varnorm — Test for normally distributed disturbances after var or svar 799

particular equation is normally distributed. The results for all the equations are from tests against
the null hypothesis that the K disturbances follow a K-dimensional multivariate normal distribution.
Failure to reject the null hypothesis indicates a lack of model misspecification.

Example 1: After var

We refit the model with German data described in [TS] var and then call varnorm.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk
(output omitted)

. varnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

dln_inv 2.821 2 0.24397
dln_inc 3.450 2 0.17817

dln_consump 1.566 2 0.45702
ALL 7.838 6 0.25025

Skewness test

Equation Skewness chi2 df Prob > chi2

dln_inv .11935 0.173 1 0.67718
dln_inc -.38316 1.786 1 0.18139

dln_consump -.31275 1.190 1 0.27532
ALL 3.150 3 0.36913

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

dln_inv 3.9331 2.648 1 0.10367
dln_inc 3.7396 1.664 1 0.19710

dln_consump 2.6484 0.376 1 0.53973
ALL 4.688 3 0.19613

dfk estimator used in computations

In this example, neither the single-equation Jarque–Bera statistics nor the joint Jarque–Bera statistic
come close to rejecting the null hypothesis.

The skewness and kurtosis results have similar structures.

The Jarque–Bera results use the sum of the skewness and kurtosis statistics. The skewness and
kurtosis results are based on the skewness and kurtosis coefficients, respectively. See Methods and
formulas.

Example 2: After svar

The test statistics are computed on the orthogonalized VAR residuals; see Methods and formulas.
When varnorm is applied to var results, varnorm uses a Cholesky decomposition of the estimated
variance–covariance matrix of the disturbances, Σ̂, to orthogonalize the residuals.

800 varnorm — Test for normally distributed disturbances after var or svar

By default, when varnorm is applied to svar estimation results, it uses the estimated structural
decomposition Â−1B̂ on Ĉ to orthogonalize the residuals of the underlying VAR. Alternatively, when
varnorm is applied to svar results and the cholesky option is specified, varnorm uses the Cholesky
decomposition of Σ̂ to orthogonalize the residuals of the underlying VAR.

We fit an SVAR that is based on an underlying VAR with two lags that is the same as the one
fit in the previous example. We impose a structural decomposition that is the same as the Cholesky
decomposition, as illustrated in [TS] var svar.

. matrix a = (.,0,0\.,.,0\.,.,.)

. matrix b = I(3)

. svar dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk aeq(a) beq(b)
(output omitted)

. varnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

dln_inv 2.821 2 0.24397
dln_inc 3.450 2 0.17817

dln_consump 1.566 2 0.45702
ALL 7.838 6 0.25025

Skewness test

Equation Skewness chi2 df Prob > chi2

dln_inv .11935 0.173 1 0.67718
dln_inc -.38316 1.786 1 0.18139

dln_consump -.31275 1.190 1 0.27532
ALL 3.150 3 0.36913

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

dln_inv 3.9331 2.648 1 0.10367
dln_inc 3.7396 1.664 1 0.19710

dln_consump 2.6484 0.376 1 0.53973
ALL 4.688 3 0.19613

dfk estimator used in computations

Because the estimated structural decomposition is the same as the Cholesky decomposition, the
varnorm results are the same as those from the previous example.

Technical note

The statistics computed by varnorm depend on Σ̂, the estimated variance–covariance matrix of
the disturbances. var uses the maximum likelihood estimator of this matrix by default, but the dfk
option produces an estimator that uses a small-sample correction. Thus specifying dfk in the call to
var or svar will affect the test results produced by varnorm.

varnorm — Test for normally distributed disturbances after var or svar 801

Stored results
varnorm stores the following in r():

Macros
r(dfk) dfk, if specified

Matrices
r(kurtosis) kurtosis test, df, and p-values
r(skewness) skewness test, df, and p-values
r(jb) Jarque–Bera test, df, and p-values

Methods and formulas
varnorm is based on the derivations found in Lütkepohl (2005, 174–181). Let ût be the K × 1

vector of residuals from the K equations in a previously fitted VAR or the residuals from the K
equations of the VAR underlying a previously fitted SVAR. Similarly, let Σ̂ be the estimated covariance
matrix of the disturbances. (Note that Σ̂ depends on whether the dfk option was specified.) The
skewness, kurtosis, and Jarque–Bera statistics must be computed using the orthogonalized residuals.

Because
Σ̂ = P̂P̂′

implies that
P̂−1Σ̂P̂−1′ = IK

premultiplying ût by P̂ is one way of performing the orthogonalization. When varnorm is applied
to var results, P̂ is defined to be the Cholesky decomposition of Σ̂. When varnorm is applied to
svar results, P̂ is set, by default, to the estimated structural decomposition; that is, P̂ = Â−1B̂,
where Â and B̂ are the svar estimates of the A and B matrices, or Ĉ, where Ĉ is the long-run
SVAR estimation of C. (See [TS] var svar for more on the origin and estimation of the A and B

matrices.) When varnorm is applied to svar results and the cholesky option is specified, P̂ is set
to the Cholesky decomposition of Σ̂.

Define ŵt to be the orthogonalized VAR residuals given by

ŵt = (ŵ1t, . . . , ŵKt)
′ = P̂−1ût

The K × 1 vectors of skewness and kurtosis coefficients are then computed using the orthogonalized
residuals by

b̂1 = (̂b11, . . . , b̂K1)′; b̂k1 =
1

T

T∑
i=1

ŵ3
kt

b̂2 = (̂b12, . . . , b̂K2)′; b̂k2 =
1

T

T∑
i=1

ŵ4
kt

Under the null hypothesis of multivariate Gaussian disturbances,

λ̂1 =
T b̂′1b̂1

6

d→ χ2(K)

802 varnorm — Test for normally distributed disturbances after var or svar

λ̂2 =
T (b̂2 − 3)′(b̂2 − 3)

24

d→ χ2(K)

and
λ̂3 = λ̂1 + λ̂2

d→ χ2(2K)

λ̂1 is the skewness statistic, λ̂2 is the kurtosis statistic, and λ̂3 is the Jarque–Bera statistic.

λ̂1, λ̂2, and λ̂3 are for tests of the null hypothesis that the K × 1 vector of disturbances follows
a multivariate normal distribution. The corresponding statistics against the null hypothesis that the
disturbances from the kth equation come from a univariate normal distribution are

λ̂1k =
T b̂ 2

k1

6

d→ χ2(1)

λ̂2k =
T (b̂ 2

k2 − 3)2

24

d→ χ2(1)

and
λ̂3k = λ̂1 + λ̂2

d→ χ2(2)

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Jarque, C. M., and A. K. Bera. 1987. A test for normality of observations and regression residuals. International
Statistical Review 2: 163–172.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] var intro — Introduction to vector autoregressive models

http://www.stata.com/bookstore/imtsa.html

Title

varsoc — Obtain lag-order selection statistics for VARs and VECMs

Description Quick start Menu Syntax
Preestimation options Postestimation option Remarks and examples Stored results
Methods and formulas References Also see

Description

varsoc reports the final prediction error (FPE), Akaike’s information criterion (AIC), Schwarz’s
Bayesian information criterion (SBIC), and the Hannan and Quinn information criterion (HQIC) lag-
order selection statistics for a series of vector autoregressions of order 1 through a requested maximum
lag. A sequence of likelihood-ratio test statistics for all the full VARs of order less than or equal to
the highest lag order is also reported.

varsoc can be used as a preestimation or a postestimation command. The preestimation version can
be used to select the lag order for a VAR or vector error-correction model (VECM). The postestimation
version obtains the information needed to compute the statistics from the previous model or specified
stored estimates.

Quick start
Compute AIC, SBIC, and HQIC, and final prediction error to aid in the lag-order selection before VAR

or VECM estimation of y1 and y2 using tsset data
varsoc y1 y2

As above, but set the maximum lag order to be tested to 7
varsoc y1 y2, maxlag(7)

As above, but use Lütkepohl’s version of the information criteria
varsoc y1 y2, maxlag(7) lutstats

Menu
Preestimation for VARs

Statistics > Multivariate time series > VAR diagnostics and tests > Lag-order selection statistics (preestimation)

Postestimation for VARs

Statistics > Multivariate time series > VAR diagnostics and tests > Lag-order selection statistics (postestimation)

Preestimation for VECMs

Statistics > Multivariate time series > VEC diagnostics and tests > Lag-order selection statistics (preestimation)

Postestimation for VECMs

Statistics > Multivariate time series > VEC diagnostics and tests > Lag-order selection statistics (postestimation)

803

804 varsoc — Obtain lag-order selection statistics for VARs and VECMs

Syntax
Preestimation syntax

varsoc depvarlist
[

if
] [

in
] [

, preestimation options
]

Postestimation syntax

varsoc
[
, estimates(estname)

]
preestimation options Description

Main

maxlag(#) set maximum lag order to #; default is maxlag(4)

exog(varlist) use varlist as exogenous variables
constraints(constraints) apply constraints to exogenous variables
noconstant suppress constant term
lutstats use Lütkepohl’s version of information criteria
level(#) set confidence level; default is level(95)

separator(#) draw separator line after every # rows

You must tsset your data before using varsoc; see [TS] tsset.
by is allowed with the preestimation version of varsoc; see [U] 11.1.10 Prefix commands.

Preestimation options

� � �
Main �

maxlag(#) specifies the maximum lag order for which the statistics are to be obtained.

exog(varlist) specifies exogenous variables to include in the VARs fit by varsoc.

constraints(constraints) specifies a list of constraints on the exogenous variables to be applied.
Do not specify constraints on the lags of the endogenous variables because specifying one would
mean that at least one of the VAR models considered by varsoc will not contain the lag specified
in the constraint. Use var directly to obtain selection-order criteria with constraints on lags of the
endogenous variables.

noconstant suppresses the constant terms from the model. By default, constant terms are included.

lutstats specifies that the Lütkepohl (2005) versions of the information criteria be reported. See
Methods and formulas for a discussion of these statistics.

level(#) specifies the confidence level, as a percentage, that is used to identify the first likelihood-
ratio test that rejects the null hypothesis that the additional parameters from adding a lag are jointly
zero. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals.

separator(#) specifies how often separator lines should be drawn between rows. By default,
separator lines do not appear. For example, separator(1) would draw a line between each row,
separator(2) between every other row, and so on.

varsoc — Obtain lag-order selection statistics for VARs and VECMs 805

Postestimation option
estimates(estname) specifies the name of a previously stored set of var or svar estimates.

When no depvarlist is specified, varsoc uses the postestimation syntax and uses the currently
active estimation results or the results specified in estimates(estname). See [R] estimates for
information on manipulating estimation results.

Remarks and examples
Many selection-order statistics have been developed to assist researchers in fitting a VAR of the

correct order. Several of these selection-order statistics appear in the [TS] var output. The varsoc
command computes these statistics over a range of lags p while maintaining a common sample and
option specification.

varsoc can be used as a preestimation or a postestimation command. When it is used as a
preestimation command, a depvarlist is required, and the default maximum lag is 4. When it is used
as a postestimation command, varsoc uses the model specification stored in estname or the previously
fitted model.

varsoc computes four information criteria as well as a sequence of likelihood ratio (LR) tests.
The information criteria include the FPE, AIC, the HQIC, and SBIC.

For a given lag p, the LR test compares a VAR with p lags with one with p − 1 lags. The null
hypothesis is that all the coefficients on the pth lags of the endogenous variables are zero. To use this
sequence of LR tests to select a lag order, we start by looking at the results of the test for the model
with the most lags, which is at the bottom of the table. Proceeding up the table, the first test that
rejects the null hypothesis is the lag order selected by this process. See Lütkepohl (2005, 143–144)
for more information on this procedure. An ‘*’ appears next to the LR statistic indicating the optimal
lag.

For the remaining statistics, the lag with the smallest value is the order selected by that criterion.
An ‘*’ indicates the optimal lag. Strictly speaking, the FPE is not an information criterion, though
we include it in this discussion because, as with an information criterion, we select the lag length
corresponding to the lowest value; and, naturally, we want to minimize the prediction error. The AIC
measures the discrepancy between the given model and the true model, which, of course, we want
to minimize. Amemiya (1985) provides an intuitive discussion of the arguments in Akaike (1973).
The SBIC and the HQIC can be interpreted similarly to the AIC, though the SBIC and the HQIC have a
theoretical advantage over the AIC and the FPE. As Lütkepohl (2005, 148–152) demonstrates, choosing
p to minimize the SBIC or the HQIC provides consistent estimates of the true lag order, p. In contrast,
minimizing the AIC or the FPE will overestimate the true lag order with positive probability, even
with an infinite sample size.

Although VAR models assume that the modulus is strictly less than 1 (see [TS] varstable), VECMs
do not need to satisfy this condition, and they work even if all the variables included in the model
are integrated of order 1, I(1). Regardless of these differences, varsoc works for both estimation
commands. As shown by Nielsen (2001), the lag-order selection statistics discussed above can be
used in the presence of I(1) variables.

806 varsoc — Obtain lag-order selection statistics for VARs and VECMs

Example 1: Preestimation

Here we use varsoc as a preestimation command.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. varsoc dln_inv dln_inc dln_consump if qtr<=tq(1978q4), lutstats

Selection-order criteria (lutstats)
Sample: 1961q2 - 1978q4 Number of obs = 71

lag LL LR df p FPE AIC HQIC SBIC

0 564.784 2.7e-11 -24.423 -24.423* -24.423*
1 576.409 23.249 9 0.006 2.5e-11 -24.497 -24.3829 -24.2102
2 588.859 24.901* 9 0.003 2.3e-11* -24.5942* -24.3661 -24.0205
3 591.237 4.7566 9 0.855 2.7e-11 -24.4076 -24.0655 -23.5472
4 598.457 14.438 9 0.108 2.9e-11 -24.3575 -23.9012 -23.2102

Endogenous: dln_inv dln_inc dln_consump
Exogenous: _cons

The sample used begins in 1961q2 because all the VARs are fit to the sample defined by any if or
in conditions and the available data for the maximum lag specified. The default maximum number
of lags is four. Because we specified the lutstats option, the table contains the Lütkepohl (2005)
versions of the information criteria, which differ from the standard definitions in that they drop the
constant term from the log likelihood. In this example, the likelihood-ratio tests selected a model
with two lags. AIC and FPE have also both chosen a model with two lags, whereas SBIC and HQIC
have both selected a model with zero lags.

Example 2: Postestimation

varsoc works as a postestimation command when no dependent variables are specified.

. var dln_inc dln_consump if qtr<=tq(1978q4), lutstats exog(l.dln_inv)
(output omitted)

. varsoc

Selection-order criteria (lutstats)
Sample: 1960q4 - 1978q4 Number of obs = 73

lag LL LR df p FPE AIC HQIC SBIC

0 460.646 1.3e-08 -18.2962 -18.2962 -18.2962*
1 467.606 13.919 4 0.008 1.2e-08 -18.3773 -18.3273 -18.2518
2 477.087 18.962* 4 0.001 1.0e-08* -18.5275* -18.4274* -18.2764

Endogenous: dln_inc dln_consump
Exogenous: L.dln_inv _cons

Because we included one lag of dln inv in our original model, varsoc did likewise with each
model it fit.

Based on the work of Tsay (1984), Paulsen (1984), and Nielsen (2001), these lag-order selection
criteria can be used to determine the lag length of the VAR underlying a VECM. See [TS] vec intro
for an example in which we use varsoc to choose the lag order for a VECM.

varsoc — Obtain lag-order selection statistics for VARs and VECMs 807

Stored results
varsoc stores the following in r():

Scalars
r(N) number of observations r(mlag) maximum lag order
r(tmax) last time period in sample r(N gaps) the number of gaps in
r(tmin) first time period in sample the sample

Macros
r(endog) names of endogenous variables r(exog) names of exogenous variables
r(lutstats) lutstats, if specified r(rmlutstats) rmlutstats, if specified
r(cns#) the #th constraint

Matrices
r(stats) LL, LR, FPE, AIC, HQIC,

SBIC, and p-values

Methods and formulas
As shown by Hamilton (1994, 295–296), the log likelihood for a VAR(p) is

LL =

(
T

2

){
ln
(
|Σ̂
−1
|
)
−Kln(2π)−K

}
where T is the number of observations, K is the number of equations, and Σ̂ is the maximum
likelihood estimate of E[utu

′
t], where ut is the K × 1 vector of disturbances. Because

ln
(
|Σ̂
−1
|
)

= −ln
(
|Σ̂|
)

the log likelihood can be rewritten as

LL = −
(
T

2

){
ln
(
|Σ̂|
)

+Kln(2π) +K
}

Letting LL(j) be the value of the log likelihood with j lags yields the LR statistic for lag order j as

LR(j) = 2
{

LL(j)− LL(j − 1)
}

Model-order statistics

The formula for the FPE given in Lütkepohl (2005, 147) is

FPE = |Σu|
(
T +Kp+ 1

T −Kp− 1

)K
This formula, however, assumes that there is a constant in the model and that none of the variables
are dropped because of collinearity. To deal with these problems, the FPE is implemented as

FPE = |Σu|
(
T +m

T −m

)K
where m is the average number of parameters over the K equations. This implementation accounts
for variables dropped because of collinearity.

808 varsoc — Obtain lag-order selection statistics for VARs and VECMs

By default, the AIC, SBIC, and HQIC are computed according to their standard definitions, which
include the constant term from the log likelihood. That is,

AIC =− 2

(
LL

T

)
+

2tp
T

SBIC =− 2

(
LL

T

)
+

ln(T)

T
tp

HQIC =− 2

(
LL

T

)
+

2ln
{

ln(T)
}

T
tp

where tp is the total number of parameters in the model and LL is the log likelihood.

Lutstats

Lütkepohl (2005) advocates dropping the constant term from the log likelihood because it does
not affect inference. The Lütkepohl versions of the information criteria are

AIC = ln
(
|Σu|

)
+

2pK2

T

SBIC = ln
(
|Σu|

)
+

ln(T)

T
pK2

HQIC = ln
(
|Σu|

)
+

2ln
{

ln(T)
}

T
pK2

References
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second International

Symposium on Information Theory, ed. B. N. Petrov and F. Csaki, 267–281. Budapest: Akailseoniai–Kiudo.

Amemiya, T. 1985. Advanced Econometrics. Cambridge, MA: Harvard University Press.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Nielsen, B. 2001. Order determination in general vector autoregressions. Working paper, Department of Economics,
University of Oxford and Nuffield College. http://ideas.repec.org/p/nuf/econwp/0110.html.

Paulsen, J. 1984. Order determination of multivariate autoregressive time series with unit roots. Journal of Time Series
Analysis 5: 115–127.

Tsay, R. S. 1984. Order selection in nonstationary autoregressive models. Annals of Statistics 12: 1425–1433.

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] vec — Vector error-correction models

[TS] var intro — Introduction to vector autoregressive models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html
http://ideas.repec.org/p/nuf/econwp/0110.html

Title

varstable — Check the stability condition of VAR or SVAR estimates

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

varstable checks the eigenvalue stability condition after estimating the parameters of a vector
autoregression using var or svar.

Quick start
Check eigenvalue stability condition after var or svar

varstable

As above, and graph the eigenvalues of the companion matrix
varstable, graph

As above, and label each eigenvalue with its distance from the unit circle
varstable, graph dlabel

As above, but label the eigenvalues with their moduli
varstable, graph modlabel

Menu
Statistics > Multivariate time series > VAR diagnostics and tests > Check stability condition of VAR estimates

809

810 varstable — Check the stability condition of VAR or SVAR estimates

Syntax
varstable

[
, options

]
options Description

Main

estimates(estname) use previously stored results estname; default is to use active results
amat(matrix name) save the companion matrix as matrix name
graph graph eigenvalues of the companion matrix
dlabel label eigenvalues with the distance from the unit circle
modlabel label eigenvalues with the modulus
marker options change look of markers (color, size, etc.)
rlopts(cline options) affect rendition of reference unit circle
nogrid suppress polar grid circles
pgrid(

[
. . .
]
) specify radii and appearance of polar grid circles; see Options for details

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

varstable can be used only after var or svar; see [TS] var and [TS] var svar.

Options

� � �
Main �

estimates(estname) requests that varstable use the previously obtained set of var estimates
stored as estname. By default, varstable uses the active estimation results. See [R] estimates
for information on manipulating estimation results.

amat(matrix name) specifies a valid Stata matrix name by which the companion matrix A can be
saved (see Methods and formulas for the definition of the matrix A). The default is not to save
the A matrix.

graph causes varstable to draw a graph of the eigenvalues of the companion matrix.

dlabel labels each eigenvalue with its distance from the unit circle. dlabel cannot be specified
with modlabel.

modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

rlopts(cline options) affect the rendition of the reference unit circle; see [G-3] cline options.

nogrid suppresses the polar grid circles.

pgrid(
[

numlist
] [

, line options
]
) determines the radii and appearance of the polar grid circles.

By default, the graph includes nine polar grid circles with radii 0.1, 0.2, . . . , 0.9 that have the grid
line style. The numlist specifies the radii for the polar grid circles. The line options determine the
appearance of the polar grid circles; see [G-3] line options. Because the pgrid() option can be
repeated, circles with different radii can have distinct appearances.

varstable — Check the stability condition of VAR or SVAR estimates 811

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, except by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Inference after var and svar requires that variables be covariance stationary. The variables in yt

are covariance stationary if their first two moments exist and are independent of time. More explicitly,
a variable yt is covariance stationary if

1. E[yt] is finite and independent of t.

2. Var[yt] is finite and independent of t

3. Cov[yt, ys] is a finite function of |t− s| but not of t or s alone.

Interpretation of VAR models, however, requires that an even stricter stability condition be met. If a
VAR is stable, it is invertible and has an infinite-order vector moving-average representation. If the
VAR is stable, impulse–response functions and forecast-error variance decompositions have known
interpretations.

Lütkepohl (2005) and Hamilton (1994) both show that if the modulus of each eigenvalue of the
matrix A is strictly less than one, the estimated VAR is stable (see Methods and formulas for the
definition of the matrix A).

Example 1

After fitting a VAR with var, we can use varstable to check the stability condition. Using the
same VAR model that was used in [TS] var, we demonstrate the use of varstable.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
(output omitted)

. varstable, graph

Eigenvalue stability condition

Eigenvalue Modulus

.5456253 .545625
-.3785754 + .3853982i .540232
-.3785754 - .3853982i .540232
-.0643276 + .4595944i .464074
-.0643276 - .4595944i .464074
-.3698058 .369806

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

Because the modulus of each eigenvalue is strictly less than 1, the estimates satisfy the eigenvalue
stability condition.

812 varstable — Check the stability condition of VAR or SVAR estimates

Specifying the graph option produced a graph of the eigenvalues with the real components on
the x axis and the complex components on the y axis. The graph below indicates visually that these
eigenvalues are well inside the unit circle.

−
1

−
.5

0
.5

1
Im

a
g

in
a

ry

−1 −.5 0 .5 1
Real

Roots of the companion matrix

Example 2

This example illustrates two other features of the varstable command. First, varstable can
check the stability of the estimates of the VAR underlying an SVAR fit by var svar. Second, varstable
can check the stability of any previously stored var or var svar estimates.

We begin by refitting the previous VAR and storing the results as var1. Because this is the same
VAR that was fit in the previous example, the stability results should be identical.

. var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
(output omitted)

. estimates store var1

Now we use svar to fit an SVAR with a different underlying VAR and check the estimates of that
underlying VAR for stability.

. matrix A = (.,0\.,.)

. matrix B = I(2)

. svar d.ln_inc d.ln_consump, aeq(A) beq(B)
(output omitted)

. varstable

Eigenvalue stability condition

Eigenvalue Modulus

.548711 .548711
-.2979493 + .4328013i .525443
-.2979493 - .4328013i .525443
-.3570825 .357082

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

varstable — Check the stability condition of VAR or SVAR estimates 813

The estimates() option allows us to check the stability of the var results stored as var1.

. varstable, est(var1)

Eigenvalue stability condition

Eigenvalue Modulus

.5456253 .545625
-.3785754 + .3853982i .540232
-.3785754 - .3853982i .540232
-.0643276 + .4595944i .464074
-.0643276 - .4595944i .464074
-.3698058 .369806

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

The results are identical to those obtained in the previous example, confirming that we were
checking the results in var1.

Stored results
varstable stores the following in r():

Matrices
r(Re) real part of the eigenvalues of A
r(Im) imaginary part of the eigenvalues of A
r(Modulus) modulus of the eigenvalues of A

Methods and formulas
varstable forms the companion matrix

A =

A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

and obtains its eigenvalues by using matrix eigenvalues. The modulus of the complex eigenvalue
r + ci is

√
r2 + c2. As shown by Lütkepohl (2005) and Hamilton (1994), the VAR is stable if the

modulus of each eigenvalue of A is strictly less than 1.

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

http://www.stata.com/bookstore/imtsa.html

814 varstable — Check the stability condition of VAR or SVAR estimates

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] var intro — Introduction to vector autoregressive models

Title

varwle — Obtain Wald lag-exclusion statistics after var or svar

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

varwle reports Wald tests the hypothesis that the endogenous variables at a given lag are jointly
zero for each equation and for all equations jointly.

Quick start
Wald lag-exclusion statistics after var or svar

varwle

As above, but use VAR or SVAR estimation results stored in myest

varwle, estimates(myest)

Menu
Statistics > Multivariate time series > VAR diagnostics and tests > Wald lag-exclusion statistics

815

816 varwle — Obtain Wald lag-exclusion statistics after var or svar

Syntax
varwle

[
, estimates(estname) separator(#)

]
varwle can be used only after var or svar; see [TS] var and [TS] var svar.

Options
estimates(estname) requests that varwle use the previously obtained set of var or svar estimates

stored as estname. By default, varwle uses the active estimation results. See [R] estimates for
information on manipulating estimation results.

separator(#) specifies how often separator lines should be drawn between rows. By default,
separator lines do not appear. For example, separator(1) would draw a line between each row,
separator(2) between every other row, and so on.

Remarks and examples
After fitting a VAR, one hypothesis of interest is that all the endogenous variables at a given lag

are jointly zero. varwle reports Wald tests of this hypothesis for each equation and for all equations
jointly. varwle uses the estimation results from a previously fitted var or svar. By default, varwle
uses the active estimation results, but you may also use a stored set of estimates by specifying the
estimates() option.

If the VAR was fit with the small option, varwle also presents small-sample F statistics; otherwise,
varwle presents large-sample chi-squared statistics.

varwle — Obtain Wald lag-exclusion statistics after var or svar 817

Example 1: After var

We analyze the model with the German data described in [TS] var using varwle.

. use http://www.stata-press.com/data/r14/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk small
(output omitted)

. varwle

Equation: dln_inv

lag F df df_r Prob > F

1 2.64902 3 66 0.0560
2 1.25799 3 66 0.2960

Equation: dln_inc

lag F df df_r Prob > F

1 2.19276 3 66 0.0971
2 .907499 3 66 0.4423

Equation: dln_consump

lag F df df_r Prob > F

1 1.80804 3 66 0.1543
2 5.57645 3 66 0.0018

Equation: All

lag F df df_r Prob > F

1 3.78884 9 66 0.0007
2 2.96811 9 66 0.0050

Because the VAR was fit with the dfk and small options, varwle used the small-sample estimator
of Σ̂ in constructing the VCE, producing an F statistic. The first two equations appear to have a
different lag structure from that of the third. In the first two equations, we cannot reject the null
hypothesis that all three endogenous variables have zero coefficients at the second lag. The hypothesis
that all three endogenous variables have zero coefficients at the first lag can be rejected at the 10%
level for both of the first two equations. In contrast, in the third equation, the coefficients on the
second lag of the endogenous variables are jointly significant, but not those on the first lag. However,
we strongly reject the hypothesis that the coefficients on the first lag of the endogenous variables
are zero in all three equations jointly. Similarly, we can also strongly reject the hypothesis that the
coefficients on the second lag of the endogenous variables are zero in all three equations jointly.

If we believe these results strongly enough, we might want to refit the original VAR, placing some
constraints on the coefficients. See [TS] var for details on how to fit VAR models with constraints.

818 varwle — Obtain Wald lag-exclusion statistics after var or svar

Example 2: After svar

Here we fit a simple SVAR and then run varwle:

. matrix a = (.,0\.,.)

. matrix b = I(2)

. svar dln_inc dln_consump, aeq(a) beq(b)
Estimating short-run parameters

Iteration 0: log likelihood = -159.21683
Iteration 1: log likelihood = 490.92264
Iteration 2: log likelihood = 528.66126
Iteration 3: log likelihood = 573.96363
Iteration 4: log likelihood = 578.05136
Iteration 5: log likelihood = 578.27633
Iteration 6: log likelihood = 578.27699
Iteration 7: log likelihood = 578.27699

Structural vector autoregression

(1) [a_1_2]_cons = 0
(2) [b_1_1]_cons = 1
(3) [b_1_2]_cons = 0
(4) [b_2_1]_cons = 0
(5) [b_2_2]_cons = 1

Sample: 1960q4 - 1982q4 Number of obs = 89
Exactly identified model Log likelihood = 578.277

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 89.72411 6.725107 13.34 0.000 76.54315 102.9051
/a_2_1 -64.73622 10.67698 -6.06 0.000 -85.66271 -43.80973
/a_1_2 0 (constrained)
/a_2_2 126.2964 9.466318 13.34 0.000 107.7428 144.8501

/b_1_1 1 (constrained)
/b_2_1 0 (constrained)
/b_1_2 0 (constrained)
/b_2_2 1 (constrained)

The output table from var svar gives information about the estimates of the parameters in the A
and B matrices in the structural VAR. But, as discussed in [TS] var svar, an SVAR model builds on
an underlying VAR. When varwle uses the estimation results produced by svar, it performs Wald
lag-exclusion tests on the underlying VAR model. Next we run varwle on these svar results.

varwle — Obtain Wald lag-exclusion statistics after var or svar 819

. varwle

Equation: dln_inc

lag chi2 df Prob > chi2

1 6.88775 2 0.032
2 1.873546 2 0.392

Equation: dln_consump

lag chi2 df Prob > chi2

1 9.938547 2 0.007
2 13.89996 2 0.001

Equation: All

lag chi2 df Prob > chi2

1 34.54276 4 0.000
2 19.44093 4 0.001

Now we fit the underlying VAR with two lags and apply varwle to these results.

. var dln_inc dln_consump
(output omitted)

. varwle

Equation: dln_inc

lag chi2 df Prob > chi2

1 6.88775 2 0.032
2 1.873546 2 0.392

Equation: dln_consump

lag chi2 df Prob > chi2

1 9.938547 2 0.007
2 13.89996 2 0.001

Equation: All

lag chi2 df Prob > chi2

1 34.54276 4 0.000
2 19.44093 4 0.001

Because varwle produces the same results in these two cases, we can conclude that when varwle
is applied to svar results, it performs Wald lag-exclusion tests on the underlying VAR.

820 varwle — Obtain Wald lag-exclusion statistics after var or svar

Stored results
varwle stores the following in r():

Matrices
if e(small)==""

r(chi2) χ2 test statistics
r(df) degrees of freedom
r(p) p-values

if e(small)!=""
r(F) F test statistics
r(df r) numerator degrees of freedom
r(df) denominator degree of freedom
r(p) p-values

Methods and formulas
varwle uses test to obtain Wald statistics of the hypotheses that all the endogenous variables at

a given lag are jointly zero for each equation and for all equations jointly. Like the test command,
varwle uses estimation results stored by var or var svar to determine whether to calculate and
report small-sample F statistics or large-sample chi-squared statistics.

� �
Abraham Wald (1902–1950) was born in Cluj, in what is now Romania. He studied mathematics at
the University of Vienna, publishing at first on geometry, but then became interested in economics
and econometrics. He moved to the United States in 1938 and later joined the faculty at Columbia.
His major contributions to statistics include work in decision theory, optimal sequential sampling,
large-sample distributions of likelihood-ratio tests, and nonparametric inference. Wald died in a
plane crash in India.� �

References
Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.

Mangel, M., and F. J. Samaniego. 1984. Abraham Wald’s work on aircraft survivability. Journal of the American
Statistical Association 79: 259–267.

Wolfowitz, J. 1952. Abraham Wald, 1902–1950. Annals of Mathematical Statistics 23: 1–13 (and other reports in
same issue).

Also see
[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] varbasic — Fit a simple VAR and graph IRFs or FEVDs

[TS] var intro — Introduction to vector autoregressive models

http://www.stata.com/giftshop/bookmarks/series5/wald/

Title

vec intro — Introduction to vector error-correction models

Description Remarks and examples References Also see

Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference

on vector error-correction models (VECMs) with cointegrating variables. After fitting a VECM, the
irf commands can be used to obtain impulse–response functions (IRFs) and forecast-error variance
decompositions (FEVDs). The table below describes the available commands.

Fitting a VECM
vec [TS] vec Fit vector error-correction models

Model diagnostics and inference
vecrank [TS] vecrank Estimate the cointegrating rank of a VECM
veclmar [TS] veclmar Perform LM test for residual autocorrelation

after vec
vecnorm [TS] vecnorm Test for normally distributed disturbances after vec
vecstable [TS] vecstable Check the stability condition of VECM estimates
varsoc [TS] varsoc Obtain lag-order selection statistics for VARs

and VECMs

Forecasting from a VECM
fcast compute [TS] fcast compute Compute dynamic forecasts after var, svar, or vec
fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs and FEVDs
irf [TS] irf Create and analyze IRFs and FEVDs

This manual entry provides an overview of the commands for VECMs; provides an introduction
to integration, cointegration, estimation, inference, and interpretation of VECM models; and gives an
example of how to use Stata’s vec commands.

Remarks and examples
vec estimates the parameters of cointegrating VECMs. You may specify any of the five trend

specifications in Johansen (1995, sec. 5.7). By default, identification is obtained via the Johansen
normalization, but vec allows you to obtain identification by placing your own constraints on
the parameters of the cointegrating vectors. You may also put more restrictions on the adjustment
coefficients.

vecrank is the command for determining the number of cointegrating equations. vecrank im-
plements Johansen’s multiple trace test procedure, the maximum eigenvalue test, and a method based
on minimizing either of two different information criteria.

821

822 vec intro — Introduction to vector error-correction models

Because Nielsen (2001) has shown that the methods implemented in varsoc can be used to choose
the order of the autoregressive process, no separate vec command is needed; you can simply use
varsoc. veclmar tests that the residuals have no serial correlation, and vecnorm tests that they are
normally distributed.

All the irf routines described in [TS] irf are available for estimating, interpreting, and managing
estimated IRFs and FEVDs for VECMs.

Remarks are presented under the following headings:

Introduction to cointegrating VECMs
What is cointegration?
The multivariate VECM specification
Trends in the Johansen VECM framework

VECM estimation in Stata
Selecting the number of lags
Testing for cointegration
Fitting a VECM
Fitting VECMs with Johansen’s normalization
Postestimation specification testing
Impulse–response functions for VECMs
Forecasting with VECMs

Introduction to cointegrating VECMs

This section provides a brief introduction to integration, cointegration, and cointegrated vector
error-correction models. For more details about these topics, see Hamilton (1994), Johansen (1995),
Lütkepohl (2005), Watson (1994), and Becketti (2013).

What is cointegration?

Standard regression techniques, such as ordinary least squares (OLS), require that the variables
be covariance stationary. A variable is covariance stationary if its mean and all its autocovariances
are finite and do not change over time. Cointegration analysis provides a framework for estimation,
inference, and interpretation when the variables are not covariance stationary.

Instead of being covariance stationary, many economic time series appear to be “first-difference
stationary”. This means that the level of a time series is not stationary but its first difference is. First-
difference stationary processes are also known as integrated processes of order 1, or I(1) processes.
Covariance-stationary processes are I(0). In general, a process whose dth difference is stationary is
an integrated process of order d, or I(d).

The canonical example of a first-difference stationary process is the random walk. This is a variable
xt that can be written as

xt = xt−1 + εt (1)

where the εt are independent and identically distributed with mean zero and a finite variance σ2.
Although E[xt] = 0 for all t, Var[xt] = Tσ2 is not time invariant, so xt is not covariance stationary.
Because ∆xt = xt − xt−1 = εt and εt is covariance stationary, xt is first-difference stationary.

These concepts are important because, although conventional estimators are well behaved when
applied to covariance-stationary data, they have nonstandard asymptotic distributions and different
rates of convergence when applied to I(1) processes. To illustrate, consider several variants of the
model

yt = a+ bxt + et (2)

Throughout the discussion, we maintain the assumption that E[et] = 0.

vec intro — Introduction to vector error-correction models 823

If both yt and xt are covariance-stationary processes, et must also be covariance stationary. As
long as E[xtet] = 0, we can consistently estimate the parameters a and b by using OLS. Furthermore,
the distribution of the OLS estimator converges to a normal distribution centered at the true value as
the sample size grows.

If yt and xt are independent random walks and b = 0, there is no relationship between yt and
xt, and (2) is called a spurious regression. Granger and Newbold (1974) performed Monte Carlo
experiments and showed that the usual t statistics from OLS regression provide spurious results: given
a large enough dataset, we can almost always reject the null hypothesis of the test that b = 0 even
though b is in fact zero. Here the OLS estimator does not converge to any well-defined population
parameter.

Phillips (1986) later provided the asymptotic theory that explained the Granger and Newbold (1974)
results. He showed that the random walks yt and xt are first-difference stationary processes and that
the OLS estimator does not have its usual asymptotic properties when the variables are first-difference
stationary.

Because ∆yt and ∆xt are covariance stationary, a simple regression of ∆yt on ∆xt appears to
be a viable alternative. However, if yt and xt cointegrate, as defined below, the simple regression of
∆yt on ∆xt is misspecified.

If yt and xt are I(1) and b 6= 0, et could be either I(0) or I(1). Phillips and Durlauf (1986) have
derived the asymptotic theory for the OLS estimator when et is I(1), though it has not been widely
used in applied work. More interesting is the case in which et = yt − a− bxt is I(0). yt and xt are
then said to be cointegrated. Two variables are cointegrated if each is an I(1) process but a linear
combination of them is an I(0) process.

It is not possible for yt to be a random walk and xt and et to be covariance stationary. As
Granger (1981) pointed out, because a random walk cannot be equal to a covariance-stationary
process, the equation does not “balance”. An equation balances when the processes on each side
of the equal sign are of the same order of integration. Before attacking any applied problem with
integrated variables, make sure that the equation balances before proceeding.

An example from Engle and Granger (1987) provides more intuition. Redefine yt and xt to be

yt + βxt = εt, εt = εt−1 + ξt (3)

yt + αxt = νt, νt = ρνt−1 + ζt, |ρ| < 1 (4)

where ξt and ζt are i.i.d. disturbances over time that are correlated with each other. Because εt is
I(1), (3) and (4) imply that both xt and yt are I(1). The condition that |ρ| < 1 implies that νt and
yt + αxt are I(0). Thus yt and xt cointegrate, and (1, α) is the cointegrating vector.

Using a bit of algebra, we can rewrite (3) and (4) as

∆yt =βδzt−1 + η1t (5)

∆xt =− δzt−1 + η2t (6)

where δ = (1−ρ)/(α−β), zt = yt+αxt, and η1t and η2t are distinct, stationary, linear combinations
of ξt and ζt. This representation is known as the vector error-correction model (VECM). One can
think of zt = 0 as being the point at which yt and xt are in equilibrium. The coefficients on zt−1

describe how yt and xt adjust to zt−1 being nonzero, or out of equilibrium. zt is the “error” in the
system, and (5) and (6) describe how system adjusts or corrects back to the equilibrium. As ρ→ 1,
the system degenerates into a pair of correlated random walks. The VECM parameterization highlights
this point, because δ → 0 as ρ→ 1.

824 vec intro — Introduction to vector error-correction models

If we knew α, we would know zt, and we could work with the stationary system of (5) and (6).
Although knowing α seems silly, we can conduct much of the analysis as if we knew α because
there is an estimator for the cointegrating parameter α that converges to its true value at a faster rate
than the estimator for the adjustment parameters β and δ.

The definition of a bivariate cointegrating relation requires simply that there exist a linear combination
of the I(1) variables that is I(0). If yt and xt are I(1) and there are two finite real numbers a 6= 0
and b 6= 0, such that ayt + bxt is I(0), then yt and xt are cointegrated. Although there are two
parameters, a and b, only one will be identifiable because if ayt + bxt is I(0), so is cayt + cbxt
for any finite, nonzero, real number c. Obtaining identification in the bivariate case is relatively
simple. The coefficient on yt in (4) is unity. This natural construction of the model placed the
necessary identification restriction on the cointegrating vector. As we discuss below, identification in
the multivariate case is more involved.

If yt is a K × 1 vector of I(1) variables and there exists a vector β, such that βyt is a vector
of I(0) variables, then yt is said to be cointegrating of order (1, 0) with cointegrating vector β. We
say that the parameters in β are the parameters in the cointegrating equation. For a vector of length
K, there may be at most K − 1 distinct cointegrating vectors. Engle and Granger (1987) provide a
more general definition of cointegration, but this one is sufficient for our purposes.

The multivariate VECM specification

In practice, most empirical applications analyze multivariate systems, so the rest of our discussion
focuses on that case. Consider a VAR with p lags

yt = v + A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt (7)

where yt is a K × 1 vector of variables, v is a K × 1 vector of parameters, A1–Ap are K ×K
matrices of parameters, and εt is a K × 1 vector of disturbances. εt has mean 0, has covariance
matrix Σ, and is i.i.d. normal over time. Any VAR(p) can be rewritten as a VECM. Using some algebra,
we can rewrite (7) in VECM form as

∆yt = v + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt (8)

where Π =
∑j=p
j=1 Aj − Ik and Γi = −

∑j=p
j=i+1 Aj . The v and εt in (7) and (8) are identical.

Engle and Granger (1987) show that if the variables yt are I(1) the matrix Π in (8) has rank
0 ≤ r < K, where r is the number of linearly independent cointegrating vectors. If the variables
cointegrate, 0 < r < K and (8) shows that a VAR in first differences is misspecified because it omits
the lagged level term Πyt−1.

Assume that Π has reduced rank 0 < r < K so that it can be expressed as Π = αβ′, where α
and β are both r ×K matrices of rank r. Without further restrictions, the cointegrating vectors are
not identified: the parameters (α,β) are indistinguishable from the parameters (αQ,βQ−1′) for any
r × r nonsingular matrix Q. Because only the rank of Π is identified, the VECM is said to identify
the rank of the cointegrating space, or equivalently, the number of cointegrating vectors. In practice,
the estimation of the parameters of a VECM requires at least r2 identification restrictions. Stata’s vec
command can apply the conventional Johansen restrictions discussed below or use constraints that
the user supplies.

The VECM in (8) also nests two important special cases. If the variables in yt are I(1) but not
cointegrated, Π is a matrix of zeros and thus has rank 0. If all the variables are I(0), Π has full rank
K.

vec intro — Introduction to vector error-correction models 825

There are several different frameworks for estimation and inference in cointegrating systems.
Although the methods in Stata are based on the maximum likelihood (ML) methods developed by
Johansen (1988, 1991, 1995), other useful frameworks have been developed by Park and Phillips (1988,
1989); Sims, Stock, and Watson (1990); Stock (1987); and Stock and Watson (1988); among others.
The ML framework developed by Johansen was independently developed by Ahn and Reinsel (1990).
Maddala and Kim (1998) and Watson (1994) survey all of these methods. The cointegration methods
in Stata are based on Johansen’s maximum likelihood framework because it has been found to be
particularly useful in several comparative studies, including Gonzalo (1994) and Hubrich, Lütkepohl,
and Saikkonen (2001).

Trends in the Johansen VECM framework

Deterministic trends in a cointegrating VECM can stem from two distinct sources; the mean of the
cointegrating relationship and the mean of the differenced series. Allowing for a constant and a linear
trend and assuming that there are r cointegrating relations, we can rewrite the VECM in (8) as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ εt (9)

where δ is a K× 1 vector of parameters. Because (9) models the differences of the data, the constant
implies a linear time trend in the levels, and the time trend δt implies a quadratic time trend in the
levels of the data. Often we may want to include a constant or a linear time trend for the differences
without allowing for the higher-order trend that is implied for the levels of the data. VECMs exploit
the properties of the matrix α to achieve this flexibility.

Because α is a K × r rank matrix, we can rewrite the deterministic components in (9) as

v = αµ+ γ (10a)

δt = αρt+ τt (10b)

where µ and ρ are r × 1 vectors of parameters and γ and τ are K × 1 vectors of parameters. γ
is orthogonal to αµ, and τ is orthogonal to αρ; that is, γ′αµ = 0 and τ′αρ = 0, allowing us to
rewrite (9) as

∆yt = α(β′yt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt (11)

Placing restrictions on the trend terms in (11) yields five cases.

CASE 1: Unrestricted trend

If no restrictions are placed on the trend parameters, (11) implies that there are quadratic trends
in the levels of the variables and that the cointegrating equations are stationary around time
trends (trend stationary).

CASE 2: Restricted trend, τ = 0

By setting τ = 0, we assume that the trends in the levels of the data are linear but not quadratic.
This specification allows the cointegrating equations to be trend stationary.

CASE 3: Unrestricted constant, τ = 0 and ρ = 0

By setting τ = 0 and ρ = 0, we exclude the possibility that the levels of the data have
quadratic trends, and we restrict the cointegrating equations to be stationary around constant
means. Because γ is not restricted to zero, this specification still puts a linear time trend in the
levels of the data.

826 vec intro — Introduction to vector error-correction models

CASE 4: Restricted constant, τ = 0, ρ = 0, and γ = 0

By adding the restriction that γ = 0, we assume there are no linear time trends in the levels of
the data. This specification allows the cointegrating equations to be stationary around a constant
mean, but it allows no other trends or constant terms.

CASE 5: No trend, τ = 0, ρ = 0, γ = 0, and µ = 0

This specification assumes that there are no nonzero means or trends. It also assumes that the
cointegrating equations are stationary with means of zero and that the differences and the levels
of the data have means of zero.

This flexibility does come at a price. Below we discuss testing procedures for determining the
number of cointegrating equations. The asymptotic distribution of the LR for hypotheses about r
changes with the trend specification, so we must first specify a trend specification. A combination of
theory and graphical analysis will aid in specifying the trend before proceeding with the analysis.

VECM estimation in Stata

We provide an overview of the vec commands in Stata through an extended example. We have
monthly data on the average selling prices of houses in four cities in Texas: Austin, Dallas, Houston,
and San Antonio. In the dataset, these average housing prices are contained in the variables austin,
dallas, houston, and sa. The series begin in January of 1990 and go through December 2003, for
a total of 168 observations. The following graph depicts our data.

1
1

.2
1

1
.4

1
1

.6
1

1
.8

1
2

1
2

.2

1990m1 1995m1 2000m1 2005m1
t

ln of house prices in austin ln of house prices in dallas

ln of house prices in houston ln of house prices in san antonio

The plots on the graph indicate that all the series are trending and potential I(1) processes. In a
competitive market, the current and past prices contain all the information available, so tomorrow’s
price will be a random walk from today’s price. Some researchers may opt to use [TS] dfgls to
investigate the presence of a unit root in each series, but the test for cointegration we use includes the
case in which all the variables are stationary, so we defer formal testing until we test for cointegration.
The time trends in the data appear to be approximately linear, so we will specify trend(constant)
when modeling these series, which is the default with vec.

The next graph shows just Dallas’s and Houston’s data, so we can more carefully examine their
relationship.

vec intro — Introduction to vector error-correction models 827

1
1

.2
1

1
.4

1
1

.6
1

1
.8

1
2

1
2

.2

1994m1 1996m1 1998m1 2000m1 2002m1 2004m11990m1 1991m11
t

ln of house prices in dallas ln of house prices in houston

Except for the crash at the end of 1991, housing prices in Dallas and Houston appear closely
related. Although average prices in the two cities will differ because of resource variations and other
factors, if the housing markets become too dissimilar, people and businesses will migrate, bringing
the average housing prices back toward each other. We therefore expect the series of average housing
prices in Houston to be cointegrated with the series of average housing prices in Dallas.

Selecting the number of lags

To test for cointegration or fit cointegrating VECMs, we must specify how many lags to include.
Building on the work of Tsay (1984) and Paulsen (1984), Nielsen (2001) has shown that the methods
implemented in varsoc can be used to determine the lag order for a VAR model with I(1) variables.
As can be seen from (9), the order of the corresponding VECM is always one less than the VAR. vec
makes this adjustment automatically, so we will always refer to the order of the underlying VAR. The
output below uses varsoc to determine the lag order of the VAR of the average housing prices in
Dallas and Houston.

. use http://www.stata-press.com/data/r14/txhprice

. varsoc dallas houston

Selection-order criteria
Sample: 1990m5 - 2003m12 Number of obs = 164

lag LL LR df p FPE AIC HQIC SBIC

0 299.525 .000091 -3.62835 -3.61301 -3.59055
1 577.483 555.92 4 0.000 3.2e-06 -6.9693 -6.92326 -6.85589
2 590.978 26.991* 4 0.000 2.9e-06* -7.0851* -7.00837* -6.89608*
3 593.437 4.918 4 0.296 2.9e-06 -7.06631 -6.95888 -6.80168
4 596.364 5.8532 4 0.210 3.0e-06 -7.05322 -6.9151 -6.71299

Endogenous: dallas houston
Exogenous: _cons

We will use two lags for this bivariate model because the Hannan–Quinn information criterion (HQIC)
method, Schwarz Bayesian information criterion (SBIC) method, and sequential likelihood-ratio (LR)
test all chose two lags, as indicated by the “*” in the output.

The reader can verify that when all four cities’ data are used, the LR test selects three lags, the
HQIC method selects two lags, and the SBIC method selects one lag. We will use three lags in our
four-variable model.

828 vec intro — Introduction to vector error-correction models

Testing for cointegration

The tests for cointegration implemented in vecrank are based on Johansen’s method. If the log
likelihood of the unconstrained model that includes the cointegrating equations is significantly different
from the log likelihood of the constrained model that does not include the cointegrating equations,
we reject the null hypothesis of no cointegration.

Here we use vecrank to determine the number of cointegrating equations:

. vecrank dallas houston

Johansen tests for cointegration
Trend: constant Number of obs = 166
Sample: 1990m3 - 2003m12 Lags = 2

5%
maximum trace critical

rank parms LL eigenvalue statistic value
0 6 576.26444 . 46.8252 15.41
1 9 599.58781 0.24498 0.1785* 3.76
2 10 599.67706 0.00107

Besides presenting information about the sample size and time span, the header indicates that test
statistics are based on a model with two lags and a constant trend. The body of the table presents test
statistics and their critical values of the null hypotheses of no cointegration (line 1) and one or fewer
cointegrating equations (line 2). The eigenvalue shown on the last line is used to compute the trace
statistic in the line above it. Johansen’s testing procedure starts with the test for zero cointegrating
equations (a maximum rank of zero) and then accepts the first null hypothesis that is not rejected.

In the output above, we strongly reject the null hypothesis of no cointegration and fail to reject
the null hypothesis of at most one cointegrating equation. Thus we accept the null hypothesis that
there is one cointegrating equation in the bivariate model.

Using all four series and a model with three lags, we find that there are two cointegrating
relationships.

. vecrank austin dallas houston sa, lag(3)

Johansen tests for cointegration
Trend: constant Number of obs = 165
Sample: 1990m4 - 2003m12 Lags = 3

5%
maximum trace critical

rank parms LL eigenvalue statistic value
0 36 1107.7833 . 101.6070 47.21
1 43 1137.7484 0.30456 41.6768 29.68
2 48 1153.6435 0.17524 9.8865* 15.41
3 51 1158.4191 0.05624 0.3354 3.76
4 52 1158.5868 0.00203

Fitting a VECM

vec estimates the parameters of cointegrating VECMs. There are four types of parameters of interest:

1. The parameters in the cointegrating equations β

2. The adjustment coefficients α

3. The short-run coefficients

4. Some standard functions of β and α that have useful interpretations

vec intro — Introduction to vector error-correction models 829

Although all four types are discussed in [TS] vec, here we discuss only types 1–3 and how they
appear in the output of vec.

Having determined that there is a cointegrating equation between the Dallas and Houston series,
we now want to estimate the parameters of a bivariate cointegrating VECM for these two series by
using vec.

. vec dallas houston

Vector error-correction model

Sample: 1990m3 - 2003m12 Number of obs = 166
AIC = -7.115516

Log likelihood = 599.5878 HQIC = -7.04703
Det(Sigma_ml) = 2.50e-06 SBIC = -6.946794

Equation Parms RMSE R-sq chi2 P>chi2

D_dallas 4 .038546 0.1692 32.98959 0.0000
D_houston 4 .045348 0.3737 96.66399 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_dallas
_ce1
L1. -.3038799 .0908504 -3.34 0.001 -.4819434 -.1258165

dallas
LD. -.1647304 .0879356 -1.87 0.061 -.337081 .0076202

houston
LD. -.0998368 .0650838 -1.53 0.125 -.2273988 .0277251

_cons .0056128 .0030341 1.85 0.064 -.0003339 .0115595

D_houston
_ce1
L1. .5027143 .1068838 4.70 0.000 .2932258 .7122028

dallas
LD. -.0619653 .1034547 -0.60 0.549 -.2647327 .1408022

houston
LD. -.3328437 .07657 -4.35 0.000 -.4829181 -.1827693

_cons .0033928 .0035695 0.95 0.342 -.0036034 .010389

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 1640.088 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
dallas 1

houston -.8675936 .0214231 -40.50 0.000 -.9095821 -.825605
_cons -1.688897

830 vec intro — Introduction to vector error-correction models

The header contains information about the sample, the fit of each equation, and overall model
fit statistics. The first estimation table contains the estimates of the short-run parameters, along with
their standard errors, z statistics, and confidence intervals. The two coefficients on L. ce1 are the
parameters in the adjustment matrix α for this model. The second estimation table contains the
estimated parameters of the cointegrating vector for this model, along with their standard errors, z
statistics, and confidence intervals.

Using our previous notation, we have estimated

α̂ = (−0.304, 0.503) β̂ = (1,−0.868) v̂ = (0.0056, 0.0034)

and

Γ̂ =

(
−0.165 −0.0998
−0.062 −0.333

)
Overall, the output indicates that the model fits well. The coefficient on houston in the cointegrating

equation is statistically significant, as are the adjustment parameters. The adjustment parameters in
this bivariate example are easy to interpret, and we can see that the estimates have the correct
signs and imply rapid adjustment toward equilibrium. When the predictions from the cointegrating
equation are positive, dallas is above its equilibrium value because the coefficient on dallas in
the cointegrating equation is positive. The estimate of the coefficient [D dallas]L. ce1 is −0.3.
Thus when the average housing price in Dallas is too high, it quickly falls back toward the Houston
level. The estimated coefficient [D houston]L. ce1 of 0.5 implies that when the average housing
price in Dallas is too high, the average price in Houston quickly adjusts toward the Dallas level at
the same time that the Dallas prices are adjusting.

Fitting VECMs with Johansen’s normalization

As discussed by Johansen (1995), if there are r cointegrating equations, then at least r2 restrictions
are required to identify the free parameters in β. Johansen proposed a default identification scheme
that has become the conventional method of identifying models in the absence of theoretically justified
restrictions. Johansen’s identification scheme is

β′ = (Ir, β̃
′
)

where Ir is the r × r identity matrix and β̃ is an (K − r)× r matrix of identified parameters. vec
applies Johansen’s normalization by default.

To illustrate, we fit a VECM with two cointegrating equations and three lags on all four series. We
are interested only in the estimates of the parameters in the cointegrating equations, so we can specify
the noetable option to suppress the estimation table for the adjustment and short-run parameters.

vec intro — Introduction to vector error-correction models 831

. vec austin dallas houston sa, lags(3) rank(2) noetable

Vector error-correction model

Sample: 1990m4 - 2003m12 Number of obs = 165
AIC = -13.40174

Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 586.3044 0.0000
_ce2 2 2169.826 0.0000

Identification: beta is exactly identified

Johansen normalization restrictions imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
austin 1
dallas 0 (omitted)

houston -.2623782 .1893625 -1.39 0.166 -.6335219 .1087655
sa -1.241805 .229643 -5.41 0.000 -1.691897 -.7917128

_cons 5.577099

_ce2
austin 0 (omitted)
dallas 1

houston -1.095652 .0669898 -16.36 0.000 -1.22695 -.9643545
sa .2883986 .0812396 3.55 0.000 .1291718 .4476253

_cons -2.351372

The Johansen identification scheme has placed four constraints on the parameters in β:
[ce1]austin = 1, [ce1]dallas = 0, [ce2]austin = 0, and [ce2]dallas = 1. We
interpret the results of the first equation as indicating the existence of an equilibrium relationship
between the average housing price in Austin and the average prices of houses in Houston and San
Antonio.

The Johansen normalization restricted the coefficient on dallas to be unity in the second
cointegrating equation, but we could instead constrain the coefficient on houston. Both sets of
restrictions define just-identified models, so fitting the model with the latter set of restrictions will
yield the same maximized log likelihood. To impose the alternative set of constraints, we use the
constraint command.

. constraint define 1 [_ce1]austin = 1

. constraint define 2 [_ce1]dallas = 0

. constraint define 3 [_ce2]austin = 0

. constraint define 4 [_ce2]houston = 1

832 vec intro — Introduction to vector error-correction models

. vec austin dallas houston sa, lags(3) rank(2) noetable bconstraints(1/4)

Iteration 1: log likelihood = 1148.8745
(output omitted)

Iteration 25: log likelihood = 1153.6435

Vector error-correction model

Sample: 1990m4 - 2003m12 Number of obs = 165
AIC = -13.40174

Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 586.3392 0.0000
_ce2 2 3455.469 0.0000

Identification: beta is exactly identified

(1) [_ce1]austin = 1
(2) [_ce1]dallas = 0
(3) [_ce2]austin = 0
(4) [_ce2]houston = 1

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
austin 1
dallas 0 (omitted)

houston -.2623784 .1876727 -1.40 0.162 -.6302102 .1054534
sa -1.241805 .2277537 -5.45 0.000 -1.688194 -.7954157

_cons 5.577099

_ce2
austin 0 (omitted)
dallas -.9126985 .0595804 -15.32 0.000 -1.029474 -.7959231

houston 1
sa -.2632209 .0628791 -4.19 0.000 -.3864617 -.1399802

_cons 2.146094

Only the estimates of the parameters in the second cointegrating equation have changed, and the
new estimates are simply the old estimates divided by −1.095652 because the new constraints are
just an alternative normalization of the same just-identified model. With the new normalization, we
can interpret the estimates of the parameters in the second cointegrating equation as indicating an
equilibrium relationship between the average house price in Houston and the average prices of houses
in Dallas and San Antonio.

Postestimation specification testing

Inference on the parameters in α depends crucially on the stationarity of the cointegrating equations,
so we should check the specification of the model. As a first check, we can predict the cointegrating
equations and graph them over time.

. predict ce1, ce equ(#1)

. predict ce2, ce equ(#2)

vec intro — Introduction to vector error-correction models 833

. twoway line ce1 t

−
.4

−
.2

0
.2

.4
P

re
d

ic
te

d
 c

o
in

te
g

ra
te

d
 e

q
u

a
ti
o

n

1990m1 1995m1 2000m1 2005m1
t

. twoway line ce2 t

−
.3

−
.2

−
.1

0
.1

.2
P

re
d

ic
te

d
 c

o
in

te
g

ra
te

d
 e

q
u

a
ti
o

n

1990m1 1995m1 2000m1 2005m1
t

Although the large shocks apparent in the graph of the levels have clear effects on the predictions
from the cointegrating equations, our only concern is the negative trend in the first cointegrating
equation since the end of 2000. The graph of the levels shows that something put a significant brake
on the growth of housing prices after 2000 and that the growth of housing prices in San Antonio
slowed during 2000 but then recuperated while Austin maintained slower growth. We suspect that
this indicates that the end of the high-tech boom affected Austin more severely than San Antonio.
This difference is what causes the trend in the first cointegrating equation. Although we could try to
account for this effect with a more formal analysis, we will proceed as if the cointegrating equations
are stationary.

We can use vecstable to check whether we have correctly specified the number of cointegrating
equations. As discussed in [TS] vecstable, the companion matrix of a VECM with K endogenous
variables and r cointegrating equations has K−r unit eigenvalues. If the process is stable, the moduli
of the remaining r eigenvalues are strictly less than one. Because there is no general distribution

834 vec intro — Introduction to vector error-correction models

theory for the moduli of the eigenvalues, ascertaining whether the moduli are too close to one can
be difficult.

. vecstable, graph

Eigenvalue stability condition

Eigenvalue Modulus

1 1
1 1

-.6698661 .669866
.3740191 + .4475996i .583297
.3740191 - .4475996i .583297
-.386377 + .395972i .553246
-.386377 - .395972i .553246
.540117 .540117

-.0749239 + .5274203i .532715
-.0749239 - .5274203i .532715
-.2023955 .202395
.09923966 .09924

The VECM specification imposes 2 unit moduli.

−
1

−
.5

0
.5

1
Im

a
g

in
a

ry

−1 −.5 0 .5 1
Real

The VECM specification imposes 2 unit moduli

Roots of the companion matrix

Because we specified the graph option, vecstable plotted the eigenvalues of the companion
matrix. The graph of the eigenvalues shows that none of the remaining eigenvalues appears close to
the unit circle. The stability check does not indicate that our model is misspecified.

Here we use veclmar to test for serial correlation in the residuals.

. veclmar, mlag(4)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 56.8757 16 0.00000
2 31.1970 16 0.01270
3 30.6818 16 0.01477
4 14.6493 16 0.55046

H0: no autocorrelation at lag order

vec intro — Introduction to vector error-correction models 835

The results clearly indicate serial correlation in the residuals. The results in Gonzalo (1994) indicate
that underspecifying the number of lags in a VECM can significantly increase the finite-sample bias
in the parameter estimates and lead to serial correlation. For this reason, we refit the model with five
lags instead of three.

. vec austin dallas houston sa, lags(5) rank(2) noetable bconstraints(1/4)

Iteration 1: log likelihood = 1200.5402
(output omitted)

Iteration 20: log likelihood = 1203.9465

Vector error-correction model

Sample: 1990m6 - 2003m12 Number of obs = 163
AIC = -13.79075

Log likelihood = 1203.946 HQIC = -13.1743
Det(Sigma_ml) = 4.51e-12 SBIC = -12.27235

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 498.4682 0.0000
_ce2 2 4125.926 0.0000

Identification: beta is exactly identified

(1) [_ce1]austin = 1
(2) [_ce1]dallas = 0
(3) [_ce2]austin = 0
(4) [_ce2]houston = 1

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
austin 1
dallas 0 (omitted)

houston -.6525574 .2047061 -3.19 0.001 -1.053774 -.2513407
sa -.6960166 .2494167 -2.79 0.005 -1.184864 -.2071688

_cons 3.846275

_ce2
austin 0 (omitted)
dallas -.932048 .0564332 -16.52 0.000 -1.042655 -.8214409

houston 1
sa -.2363915 .0599348 -3.94 0.000 -.3538615 -.1189215

_cons 2.065719

Comparing these results with those from the previous model reveals that

1. there is now evidence that the coefficient [ce1]houston is not equal to zero,

2. the two sets of estimated coefficients for the first cointegrating equation are different, and

3. the two sets of estimated coefficients for the second cointegrating equation are similar.

The assumption that the errors are independent and are identically and normally distributed with
zero mean and finite variance allows us to derive the likelihood function. If the errors do not come
from a normal distribution but are just independent and identically distributed with zero mean and
finite variance, the parameter estimates are still consistent, but they are not efficient.

836 vec intro — Introduction to vector error-correction models

We use vecnorm to test the null hypothesis that the errors are normally distributed.

. quietly vec austin dallas houston sa, lags(5) rank(2) bconstraints(1/4)

. vecnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

D_austin 74.324 2 0.00000
D_dallas 3.501 2 0.17370

D_houston 245.032 2 0.00000
D_sa 8.426 2 0.01481
ALL 331.283 8 0.00000

Skewness test

Equation Skewness chi2 df Prob > chi2

D_austin .60265 9.867 1 0.00168
D_dallas .09996 0.271 1 0.60236

D_houston -1.0444 29.635 1 0.00000
D_sa .38019 3.927 1 0.04752
ALL 43.699 4 0.00000

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

D_austin 6.0807 64.458 1 0.00000
D_dallas 3.6896 3.229 1 0.07232

D_houston 8.6316 215.397 1 0.00000
D_sa 3.8139 4.499 1 0.03392
ALL 287.583 4 0.00000

The results indicate that we can strongly reject the null hypothesis of normally distributed errors.
Most of the errors are both skewed and kurtotic.

Impulse–response functions for VECMs

With a model that we now consider acceptably well specified, we can use the irf commands to
estimate and interpret the IRFs. Whereas IRFs from a stationary VAR die out over time, IRFs from a
cointegrating VECM do not always die out. Because each variable in a stationary VAR has a time-
invariant mean and finite, time-invariant variance, the effect of a shock to any one of these variables
must die out so that the variable can revert to its mean. In contrast, the I(1) variables modeled in a
cointegrating VECM are not mean reverting, and the unit moduli in the companion matrix imply that
the effects of some shocks will not die out over time.

These two possibilities gave rise to new terms. When the effect of a shock dies out over time, the
shock is said to be transitory. When the effect of a shock does not die out over time, the shock is
said to be permanent.

Below we use irf create to estimate the IRFs and irf graph to graph two of the orthogonalized
IRFs.

vec intro — Introduction to vector error-correction models 837

. irf create vec1, set(vecintro, replace) step(24)
(file vecintro.irf created)
(file vecintro.irf now active)
(file vecintro.irf updated)

. irf graph oirf, impulse(austin dallas) response(sa) yline(0)

0

.005

.01

.015

0 10 20 30 0 10 20 30

vec1, austin, sa vec1, dallas, sa

step
Graphs by irfname, impulse variable, and response variable

The graphs indicate that an orthogonalized shock to the average housing price in Austin has a
permanent effect on the average housing price in San Antonio but that an orthogonalized shock to
the average price of housing in Dallas has a transitory effect. According to this model, unexpected
shocks that are local to the Austin housing market will have a permanent effect on the housing market
in San Antonio, but unexpected shocks that are local to the Dallas housing market will have only a
transitory effect on the housing market in San Antonio.

Forecasting with VECMs

Cointegrating VECMs are also used to produce forecasts of both the first-differenced variables and
the levels of the variables. Comparing the variances of the forecast errors of stationary VARs with
those from a cointegrating VECM reveals a fundamental difference between the two models. Whereas
the variances of the forecast errors for a stationary VAR converge to a constant as the prediction
horizon grows, the variances of the forecast errors for the levels of a cointegrating VECM diverge
with the forecast horizon. (See sec. 6.5 of Lütkepohl [2005] for more about this result.) Because all
the variables in the model for the first differences are stationary, the forecast errors for the dynamic
forecasts of the first differences remain finite. In contrast, the forecast errors for the dynamic forecasts
of the levels diverge to infinity.

We use fcast compute to obtain dynamic forecasts of the levels and fcast graph to graph
these dynamic forecasts, along with their asymptotic confidence intervals.

838 vec intro — Introduction to vector error-correction models

. tsset
time variable: t, 1990m1 to 2003m12

delta: 1 month

. fcast compute m1_, step(24)

. fcast graph m1_austin m1_dallas m1_houston m1_sa

1
2

.1
1

2
.2

1
2

.3
1

2
.4

1
2

.5

1
2

1
2

.2
1

2
.4

1
1

.9
1

2
1

2
.1

1
2

.2
1

2
.3

1
1

.7
1

1
.8

1
1

.9
1

2
1

2
.1

2004m1 2004m7 2005m1 2005m7 2006m1 2004m1 2004m7 2005m1 2005m7 2006m1

Forecast for austin Forecast for dallas

Forecast for houston Forecast for sa

95% CI forecast

As expected, the widths of the confidence intervals grow with the forecast horizon.

References
Ahn, S. K., and G. C. Reinsel. 1990. Estimation for partially nonstationary multivariate autoregressive models. Journal

of the American Statistical Association 85: 813–823.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Engle, R. F., and C. W. J. Granger. 1987. Co-integration and error correction: Representation, estimation, and testing.
Econometrica 55: 251–276.

Gonzalo, J. 1994. Five alternative methods of estimating long-run equilibrium relationships. Journal of Econometrics
60: 203–233.

Granger, C. W. J. 1981. Some properties of time series data and their use in econometric model specification. Journal
of Econometrics 16: 121–130.

Granger, C. W. J., and P. Newbold. 1974. Spurious regressions in econometrics. Journal of Econometrics 2: 111–120.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Hubrich, K., H. Lütkepohl, and P. Saikkonen. 2001. A review of systems cointegration tests. Econometric Reviews
20: 247–318.

Johansen, S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12:
231–254.

. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models.
Econometrica 59: 1551–1580.

. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/imtsa.html

vec intro — Introduction to vector error-correction models 839

Maddala, G. S., and I.-M. Kim. 1998. Unit Roots, Cointegration, and Structural Change. Cambridge: Cambridge
University Press.

Nielsen, B. 2001. Order determination in general vector autoregressions. Working paper, Department of Economics,
University of Oxford and Nuffield College. http://ideas.repec.org/p/nuf/econwp/0110.html.

Park, J. Y., and P. C. B. Phillips. 1988. Statistical inference in regressions with integrated processes: Part I. Econometric
Theory 4: 468–497.

. 1989. Statistical inference in regressions with integrated processes: Part II. Econometric Theory 5: 95–131.

Paulsen, J. 1984. Order determination of multivariate autoregressive time series with unit roots. Journal of Time Series
Analysis 5: 115–127.

Phillips, P. C. B. 1986. Understanding spurious regressions in econometrics. Journal of Econometrics 33: 311–340.

Phillips, P. C. B., and S. N. Durlauf. 1986. Multiple time series regressions with integrated processes. Review of
Economic Studies 53: 473–495.

Sims, C. A., J. H. Stock, and M. W. Watson. 1990. Inference in linear time series models with some unit roots.
Econometrica 58: 113–144.

Stock, J. H. 1987. Asymptotic properties of least squares estimators of cointegrating vectors. Econometrica 55:
1035–1056.

Stock, J. H., and M. W. Watson. 1988. Testing for common trends. Journal of the American Statistical Association
83: 1097–1107.

Tsay, R. S. 1984. Order selection in nonstationary autoregressive models. Annals of Statistics 12: 1425–1433.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

Also see
[TS] vec — Vector error-correction models

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

http://ideas.repec.org/p/nuf/econwp/0110.html

Title

vec — Vector error-correction models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vec fits a type of vector autoregression in which some of the variables are cointegrated by using
Johansen’s (1995) maximum likelihood method. Constraints may be placed on the parameters in the
cointegrating equations or on the adjustment terms. See [TS] vec intro for a list of commands that
are used in conjunction with vec.

Quick start
Vector error-correction model for y1, y2, and y3 using tsset data

vec y1 y2 y3

Use 4 lags for the underlying VAR model
vec y1 y2 y3, lags(4)

Use 2 cointegrating equations
vec y1 y2 y3, lags(4) rank(2)

Add a linear trend in the cointegrating equations and a quadratic trend in the undifferenced data
vec y1 y2 y3, lags(4) rank(2) trend(trend)

As above, but without a trend or a constant
vec y1 y2 y3, lags(4) rank(2) trend(none)

Menu
Statistics > Multivariate time series > Vector error-correction model (VECM)

840

vec — Vector error-correction models 841

Syntax
vec depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

rank(#) use # cointegrating equations; default is rank(1)

lags(#) use # for the maximum lag in underlying VAR model
trend(constant) include an unrestricted constant in model; the default
trend(rconstant) include a restricted constant in model
trend(trend) include a linear trend in the cointegrating equations and a

quadratic trend in the undifferenced data
trend(rtrend) include a restricted trend in model
trend(none) do not include a trend or a constant
bconstraints(constraintsbc) place constraintsbc on cointegrating vectors
aconstraints(constraintsac) place constraintsac on adjustment parameters

Adv. model

sindicators(varlistsi) include normalized seasonal indicator variables varlistsi
noreduce do not perform checks and corrections for collinearity among

lags of dependent variables

Reporting

level(#) set confidence level; default is level(95)

nobtable do not report parameters in the cointegrating equations
noidtest do not report the likelihood-ratio test of overidentifying

restrictions
alpha report adjustment parameters in separate table
pi report parameters in Π = αβ′

noptable do not report elements of Π matrix
mai report parameters in the moving-average impact matrix
noetable do not report adjustment and short-run parameters
dforce force reporting of short-run, beta, and alpha parameters when

the parameters in beta are not identified; advanced option
nocnsreport do not display constraints
display options control columns and column formats, row spacing, and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

vec does not allow gaps in the data.
You must tsset your data before using vec; see [TS] tsset.
varlist must contain at least two variables and may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

842 vec — Vector error-correction models

Options

� � �
Model �

rank(#) specifies the number of cointegrating equations; rank(1) is the default.

lags(#) specifies the maximum lag to be included in the underlying VAR model. The maximum lag
in a VECM is one smaller than the maximum lag in the corresponding VAR in levels; the number
of lags must be greater than zero but small enough so that the degrees of freedom used up by the
model are fewer than the number of observations. The default is lags(2).

trend(trend spec) specifies which of Johansen’s five trend specifications to include in the model.
These specifications are discussed in Specification of constants and trends below. The default is
trend(constant).

bconstraints(constraintsbc) specifies the constraints to be placed on the parameters of the coin-
tegrating equations. When no constraints are placed on the adjustment parameters—that is, when
the aconstraints() option is not specified—the default is to place the constraints defined by
Johansen’s normalization on the parameters of the cointegrating equations. When constraints are
placed on the adjustment parameters, the default is not to place constraints on the parameters in
the cointegrating equations.

aconstraints(constraintsac) specifies the constraints to be placed on the adjustment parameters.
By default, no constraints are placed on the adjustment parameters.

� � �
Adv. model �

sindicators(varlistsi) specifies the normalized seasonal indicator variables to include in the model.
The indicator variables specified in this option must be normalized as discussed in Johansen (1995).
If the indicators are not properly normalized, the estimator of the cointegrating vector does not
converge to the asymptotic distribution derived by Johansen (1995). More details about how these
variables are handled are provided in Methods and formulas. sindicators() cannot be specified
with trend(none) or with trend(rconstant).

noreduce causes vec to skip the checks and corrections for collinearity among the lags of the
dependent variables. By default, vec checks to see whether the current lag specification causes
some of the regressions performed by vec to contain perfectly collinear variables; if so, it reduces
the maximum lag until the perfect collinearity is removed.

� � �
Reporting �

level(#); see [R] estimation options.

nobtable suppresses the estimation table for the parameters in the cointegrating equations. By default,
vec displays the estimation table for the parameters in the cointegrating equations.

noidtest suppresses the likelihood-ratio test of the overidentifying restrictions, which is reported
by default when the model is overidentified.

alpha displays a separate estimation table for the adjustment parameters, which is not displayed by
default.

pi displays a separate estimation table for the parameters in Π = αβ′, which is not displayed by
default.

noptable suppresses the estimation table for the elements of the Π matrix, which is displayed by
default when the parameters in the cointegrating equations are not identified.

mai displays a separate estimation table for the parameters in the moving-average impact matrix,
which is not displayed by default.

vec — Vector error-correction models 843

noetable suppresses the main estimation table that contains information about the estimated adjustment
parameters and the short-run parameters, which is displayed by default.

dforce displays the estimation tables for the short-run parameters and α and β—if the last two are
requested—when the parameters in β are not identified. By default, when the specified constraints
do not identify the parameters in the cointegrating equations, estimation tables are displayed only
for Π and the MAI.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#), nolog, trace, toltrace, tolerance(#), ltolerance(#),
afrom(matrixa), and bfrom(matrixb); see [R] maximize.

toltrace displays the relative differences for the log likelihood and the coefficient vector at every
iteration. This option cannot be specified if no constraints are defined or if nolog is specified.

afrom(matrixa) specifies a 1×(K∗r) row vector with starting values for the adjustment parameters,
where K is the number of endogenous variables and r is the number of cointegrating equations
specified in the rank() option. The starting values should be ordered as they are reported in
e(alpha). This option cannot be specified if no constraints are defined.

bfrom(matrixb) specifies a 1× (m1 ∗ r) row vector with starting values for the parameters of the
cointegrating equations, where m1 is the number of variables in the trend-augmented system and
r is the number of cointegrating equations specified in the rank() option. (See Methods and
formulas for more details about m1.) The starting values should be ordered as they are reported
in e(betavec). As discussed in Methods and formulas , for some trend specifications, e(beta)
contains parameter estimates that are not obtained directly from the optimization algorithm.
bfrom() should specify only starting values for the parameters reported in e(betavec). This
option cannot be specified if no constraints are defined.

The following option is available with vec but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Specification of constants and trends
Collinearity

Introduction

VECMs are used to model the stationary relationships between multiple time series that contain
unit roots. vec implements Johansen’s approach for estimating the parameters of a VECM.

[TS] vec intro reviews the basics of integration and cointegration and highlights why we need
special methods for modeling the relationships between processes that contain unit roots. This manual
entry assumes familiarity with the material in [TS] vec intro and provides examples illustrating how to
use the vec command. See Johansen (1995), Hamilton (1994), and Becketti (2013) for more in-depth
introductions to cointegration analysis.

844 vec — Vector error-correction models

Example 1

This example uses annual data on the average per-capita disposable personal income in the eight
U.S. Bureau of Economic Analysis (BEA) regions of the United States. We use data from 1948–2002
in logarithms. Unit-root tests on these series fail to reject the null hypothesis that per-capita disposable
income in each region contains a unit root. Because capital and labor can move easily between the
different regions of the United States, we would expect that no one series will diverge from all the
remaining series and that cointegrating relationships exist.

Below we graph the natural logs of average disposal income in the New England and the Southeast
regions.

. use http://www.stata-press.com/data/r14/rdinc

. line ln_ne ln_se year

7
8

9
1

0
1

1

1950 1960 1970 1980 1990 2000
year

ln(new_england) ln(southeast)

The graph indicates a differential between the two series that shrinks between 1960 and about
1980 and then grows until it stabilizes around 1990. We next estimate the parameters of a bivariate
VECM with one cointegrating relationship.

vec — Vector error-correction models 845

. vec ln_ne ln_se

Vector error-correction model

Sample: 1950 - 2002 Number of obs = 53
AIC = -11.00462

Log likelihood = 300.6224 HQIC = -10.87595
Det(Sigma_ml) = 4.06e-08 SBIC = -10.67004

Equation Parms RMSE R-sq chi2 P>chi2

D_ln_ne 4 .017896 0.9313 664.4668 0.0000
D_ln_se 4 .018723 0.9292 642.7179 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_ln_ne
_ce1
L1. -.4337524 .0721365 -6.01 0.000 -.5751373 -.2923675

ln_ne
LD. .7168658 .1889085 3.79 0.000 .3466119 1.08712

ln_se
LD. -.6748754 .2117975 -3.19 0.001 -1.089991 -.2597599

_cons -.0019846 .0080291 -0.25 0.805 -.0177214 .0137521

D_ln_se
_ce1
L1. -.3543935 .0754725 -4.70 0.000 -.5023168 -.2064701

ln_ne
LD. .3366786 .1976448 1.70 0.088 -.050698 .7240553

ln_se
LD. -.1605811 .2215922 -0.72 0.469 -.5948939 .2737317

_cons .002429 .0084004 0.29 0.772 -.0140355 .0188936

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 29805.02 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
ln_ne 1
ln_se -.9433708 .0054643 -172.64 0.000 -.9540807 -.9326609
_cons -.8964065

The default output has three parts. The header provides information about the sample, the model
fit, and the identification of the parameters in the cointegrating equation. The main estimation table
contains the estimates of the short-run parameters, along with their standard errors and confidence
intervals. The second estimation table reports the estimates of the parameters in the cointegrating
equation, along with their standard errors and confidence intervals.

846 vec — Vector error-correction models

The results indicate strong support for a cointegrating equation such that

ln ne− 0.943 ln se− 0.896

should be a stationary series. Identification of the parameters in the cointegrating equation is achieved
by constraining some of them to be fixed, and fixed parameters do not have standard errors. In this
example, the coefficient on ln ne has been normalized to 1, so its standard error is missing. As
discussed in Methods and formulas, the constant term in the cointegrating equation is not directly
estimated in this trend specification but rather is backed out from other estimates. Not all the elements
of the VCE that correspond to this parameter are readily available, so the standard error for the cons
parameter is missing.

To get a better idea of how our model fits, we predict the cointegrating equation and graph it over
time:

. predict ce, ce

. line ce year

−
.2

5
−

.2
−

.1
5

−
.1

−
.0

5
P

re
d

ic
te

d
 c

o
in

te
g

ra
te

d
 e

q
u

a
ti
o

n

1950 1960 1970 1980 1990 2000
year

Although the predicted cointegrating equation has the right appearance for the time before the
mid-1960s, afterward the predicted cointegrating equation does not look like a stationary series. A
better model would account for the trends in the size of the differential.

As discussed in [TS] vec intro, simply normalizing one of the coefficients to be one is sufficient to
identify the parameters of the single cointegrating vector. When there is more than one cointegrating
equation, more restrictions are required.

Example 2

We have data on monthly unemployment rates in Indiana, Illinois, Kentucky, and Missouri from
January 1978 through December 2003. We suspect that factor mobility will keep the unemployment
rates in equilibrium. The following graph plots the data.

vec — Vector error-correction models 847

. use http://www.stata-press.com/data/r14/urates, clear

. line missouri indiana kentucky illinois t

2
4

6
8

1
0

1
2

1980m1 1985m1 1990m1 1995m1 2000m1 2005m1
t

missouri indiana

kentucky illinois

The graph shows that although the series do appear to move together, the relationship is not as clear
as in the previous example. There are periods when Indiana has the highest rate and others when
Indiana has the lowest rate. Although the Kentucky rate moves closely with the other series for most
of the sample, there is a period in the mid-1980s when the unemployment rate in Kentucky does not
fall at the same rate as the other series.

We will model the series with two cointegrating equations and no linear or quadratic time trends
in the original series. Because we are focusing on the cointegrating vectors, we use the noetable
option to suppress displaying the short-run estimation table.

848 vec — Vector error-correction models

. vec missouri indiana kentucky illinois, trend(rconstant) rank(2) lags(4)
> noetable

Vector error-correction model

Sample: 1978m5 - 2003m12 Number of obs = 308
AIC = -2.306048

Log likelihood = 417.1314 HQIC = -2.005818
Det(Sigma_ml) = 7.83e-07 SBIC = -1.555184

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 133.3885 0.0000
_ce2 2 195.6324 0.0000

Identification: beta is exactly identified

Johansen normalization restrictions imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
missouri 1
indiana 0 (omitted)

kentucky .3493902 .2005537 1.74 0.081 -.0436879 .7424683
illinois -1.135152 .2069063 -5.49 0.000 -1.540681 -.7296235

_cons -.3880707 .4974323 -0.78 0.435 -1.36302 .5868787

_ce2
missouri -1.11e-16
indiana 1

kentucky .2059473 .2718678 0.76 0.449 -.3269038 .7387985
illinois -1.51962 .2804792 -5.42 0.000 -2.069349 -.9698907

_cons 2.92857 .6743122 4.34 0.000 1.606942 4.250197

Except for the coefficients on kentucky in the two cointegrating equations and the constant
term in the first, all the parameters are significant at the 5% level. We can refit the model with the
Johansen normalization and the overidentifying constraint that the coefficient on kentucky in the
second cointegrating equation is zero.

. constraint define 1 [_ce1]missouri = 1

. constraint define 2 [_ce1]indiana = 0

. constraint define 3 [_ce2]missouri = 0

. constraint define 4 [_ce2]indiana = 1

. constraint define 5 [_ce2]kentucky = 0

vec — Vector error-correction models 849

. vec missouri indiana kentucky illinois, trend(rconstant) rank(2)
> lags(4) noetable bconstraints(1/5)

Iteration 1: log likelihood = 416.97177
(output omitted)

Iteration 20: log likelihood = 416.9744

Vector error-correction model

Sample: 1978m5 - 2003m12 Number of obs = 308
AIC = -2.311522

Log likelihood = 416.9744 HQIC = -2.016134
Det(Sigma_ml) = 7.84e-07 SBIC = -1.572769

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 145.233 0.0000
_ce2 1 209.9344 0.0000

Identification: beta is overidentified

(1) [_ce1]missouri = 1
(2) [_ce1]indiana = 0
(3) [_ce2]missouri = 0
(4) [_ce2]indiana = 1
(5) [_ce2]kentucky = 0

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
missouri 1
indiana 0 (omitted)

kentucky .2521685 .1649653 1.53 0.126 -.0711576 .5754946
illinois -1.037453 .1734165 -5.98 0.000 -1.377343 -.6975626

_cons -.3891102 .4726968 -0.82 0.410 -1.315579 .5373586

_ce2
missouri 0 (omitted)
indiana 1

kentucky 0 (omitted)
illinois -1.314265 .0907071 -14.49 0.000 -1.492048 -1.136483

_cons 2.937016 .6448924 4.55 0.000 1.67305 4.200982

LR test of identifying restrictions: chi2(1) = .3139 Prob > chi2 = 0.575

The test of the overidentifying restriction does not reject the null hypothesis that the restriction
is valid, and the p-value on the coefficient on kentucky in the first cointegrating equation indicates
that it is not significant. We will leave the variable in the model and attribute the lack of significance
to whatever caused the kentucky series to temporarily rise above the others from 1985 until 1990,
though we could instead consider removing kentucky from the model.

Next, we look at the estimates of the adjustment parameters. In the output below, we replay
the previous results. We specify the alpha option so that vec will display an estimation table for
the estimates of the adjustment parameters, and we specify nobtable to suppress the table for the
parameters of the cointegrating equations because we have already looked at those.

850 vec — Vector error-correction models

. vec, alpha nobtable noetable
Vector error-correction model

Sample: 1978m5 - 2003m12 Number of obs = 308
AIC = -2.311522

Log likelihood = 416.9744 HQIC = -2.016134
Det(Sigma_ml) = 7.84e-07 SBIC = -1.572769

Adjustment parameters

Equation Parms chi2 P>chi2

D_missouri 2 19.39607 0.0001
D_indiana 2 6.426086 0.0402
D_kentucky 2 8.524901 0.0141
D_illinois 2 22.32893 0.0000

alpha Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_missouri
_ce1
L1. -.0683152 .0185763 -3.68 0.000 -.1047242 -.0319063

_ce2
L1. .0405613 .0112417 3.61 0.000 .018528 .0625946

D_indiana
_ce1
L1. -.0342096 .0220955 -1.55 0.122 -.0775159 .0090967

_ce2
L1. .0325804 .0133713 2.44 0.015 .0063732 .0587877

D_kentucky
_ce1
L1. -.0482012 .0231633 -2.08 0.037 -.0936004 -.0028021

_ce2
L1. .0374395 .0140175 2.67 0.008 .0099657 .0649133

D_illinois
_ce1
L1. .0138224 .0227041 0.61 0.543 -.0306768 .0583215

_ce2
L1. .0567664 .0137396 4.13 0.000 .0298373 .0836955

LR test of identifying restrictions: chi2(1) = .3139 Prob > chi2 = 0.575

All the coefficients are significant at the 5% level, except those on Indiana and Illinois in the first
cointegrating equation. From an economic perspective, the issue is whether the unemployment rates
in Indiana and Illinois adjust when the first cointegrating equation is out of equilibrium. We could
impose restrictions on one or both of those parameters and refit the model, or we could just decide
to use the current results.

vec — Vector error-correction models 851

Technical note
vec can be used to fit models in which the parameters in β are not identified, in which case only

the parameters in Π and the moving-average impact matrix C are identified. When the parameters in
β are not identified, the values of β̂ and α̂ can vary depending on the starting values. However, the
estimates of Π and C are identified and have known asymptotic distributions. This method is valid
because these additional normalization restrictions impose no restriction on Π or C.

Specification of constants and trends

As discussed in [TS] vec intro, allowing for a constant term and linear time trend allow us to
write the VECM as

∆yt = α(βyt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt

Five different trend specifications are available:

Option in trend() Parameter restrictions Johansen (1995) notation

trend none H(r)
rtrend τ = 0 H∗(r)
constant ρ = 0, and τ = 0 H1(r)
rconstant ρ = 0, γ = 0 and τ = 0 H∗1 (r)
none µ = 0, ρ = 0, γ = 0, and τ = 0 H2(r)

trend(trend) allows for a linear trend in the cointegrating equations and a quadratic trend in
the undifferenced data. A linear trend in the cointegrating equations implies that the cointegrating
equations are assumed to be trend stationary.

trend(rtrend) defines a restricted trend model that excludes linear trends in the differenced data
but allows for linear trends in the cointegrating equations. As in the previous case, a linear trend in
a cointegrating equation implies that the cointegrating equation is trend stationary.

trend(constant) defines a model with an unrestricted constant. This allows for a linear trend
in the undifferenced data and cointegrating equations that are stationary around a nonzero mean. This
is the default.

trend(rconstant) defines a model with a restricted constant in which there is no linear or
quadratic trend in the undifferenced data. A nonzero µ allows for the cointegrating equations to be
stationary around nonzero means, which provide the only intercepts for differenced data. Seasonal
indicators are not allowed with this specification.

trend(none) defines a model that does not include a trend or a constant. When there is no trend
or constant, the cointegrating equations are restricted to being stationary with zero means. Also, after
adjusting for the effects of lagged endogenous variables, the differenced data are modeled as having
mean zero. Seasonal indicators are not allowed with this specification.

852 vec — Vector error-correction models

Technical note

vec uses a switching algorithm developed by Boswijk (1995) to maximize the log-likelihood
function when constraints are placed on the parameters. The starting values affect both the ability of
the algorithm to find a maximum and its speed in finding that maximum. By default, vec uses the
parameter estimates that correspond to Johansen’s normalization. Sometimes, other starting values
will cause the algorithm to find a maximum faster.

To specify starting values for the parameters in α, we specify a 1× (K ∗r) matrix in the afrom()
option. Specifying starting values for the parameters in β is slightly more complicated. As explained
in Methods and formulas, specifying trend(constant), trend(rtrend), or trend(trend) causes
some of the estimates of the trend parameters appearing in β̂ to be “backed out”. The switching
algorithm estimates only the parameters of the cointegrating equations whose estimates are stored in
e(betavec). For this reason, only the parameters stored in e(betavec) can have their initial values
set via bfrom().

The table below describes which trend parameters in the cointegrating equations are estimated by
the switching algorithm for each of the five specifications.

Trend specification Trend parameters in Trend parameter estimated
cointegrating equations via switching algorithm

none none none
rconstant cons cons
constant cons none
rtrend cons, trend trend
trend cons, trend none

Collinearity

As expected, collinearity among variables causes some parameters to be unidentified numerically.
If vec encounters perfect collinearity among the dependent variables, it exits with an error.

In contrast, if vec encounters perfect collinearity that appears to be due to too many lags in the
model, vec displays a warning message and reduces the maximum lag included in the model in an
effort to find a model with fewer lags in which all the parameters are identified by the data. Specifying
the noreduce option causes vec to skip over these additional checks and corrections for collinearity.
Thus the noreduce option can be used to force the estimation to proceed when not all the parameters
are identified by the data. When some parameters are not identified because of collinearity, the results
cannot be interpreted but can be used to find the source of the collinearity.

vec — Vector error-correction models 853

Stored results
vec stores the following in e():

Scalars
e(N) number of observations
e(k rank) number of unconstrained parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k ce) number of cointegrating equations
e(n lags) number of lags
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2 res) value of test of overidentifying restrictions
e(df lr) degrees of freedom of the test of overidentifying restrictions
e(beta iden) 1 if the parameters in β are identified and 0 otherwise
e(beta icnt) number of independent restrictions placed on β
e(k #) number of variables in equation #
e(df m#) model degrees of freedom in equation #
e(r2 #) R2 of equation #
e(chi2 #) χ2 statistic for equation #
e(rmse #) RMSE of equation #
e(aic) value of AIC
e(hqic) value of HQIC
e(sbic) value of SBIC
e(tmin) minimum time
e(tmax) maximum time
e(detsig ml) determinant of the estimated covariance matrix
e(rank) rank of e(V)
e(converge) 1 if the switching algorithm converged, 0 if it did not converge

Macros
e(cmd) vec
e(cmdline) command as typed
e(trend) trend specified
e(tsfmt) format of the time variable
e(tvar) variable denoting time within groups
e(endog) endogenous variables
e(covariates) list of covariates
e(eqnames) equation names
e(cenames) names of cointegrating equations
e(reduce opt) noreduce, if noreduce is specified
e(reduce lags) list of maximum lags to which the model has been reduced
e(title) title in estimation output
e(aconstraints) constraints placed on α
e(bconstraints) constraints placed on β
e(sindicators) sindicators, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins

854 vec — Vector error-correction models

Matrices
e(b) estimates of short-run parameters
e(V) VCE of short-run parameter estimates
e(beta) estimates of β

e(V beta) VCE of β̂
e(betavec) directly obtained estimates of β

e(pi) estimates of Π̂

e(V pi) VCE of Π̂
e(alpha) estimates of α
e(V alpha) VCE of α̂

e(omega) estimates of Ω̂
e(mai) estimates of C
e(V mai) VCE of Ĉ

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

General specification of the VECM
The log-likelihood function

Unrestricted trend
Restricted trend
Unrestricted constant
Restricted constant
No trend

Estimation with Johansen identification
Estimation with constraints: β identified
Estimation with constraints: β not identified
Formulas for the information criteria
Formulas for predict

General specification of the VECM

vec estimates the parameters of a VECM that can be written as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ w1s1 + · · ·+ wmsm + εt (1)

where

yt is a K × 1 vector of endogenous variables,

α is a K × r matrix of parameters,

β is a K × r matrix of parameters,

Γ1, . . . ,Γp−1 are K ×K matrices of parameters,

v is a K × 1 vector of parameters,

δ is a K × 1 vector of trend coefficients,

t is a linear time trend,

s1, . . . , sm are orthogonalized seasonal indicators specified in the sindicators() option, and

w1, . . . ,wm are K × 1 vectors of coefficients on the orthogonalized seasonal indicators.

vec — Vector error-correction models 855

There are two types of deterministic elements in (1): the trend, v + δt, and the orthogonalized
seasonal terms, w1s1 + · · · + wmsm. Johansen (1995, chap. 11) shows that inference about the
number of cointegrating equations is based on nonstandard distributions and that the addition of any
term that generalizes the deterministic specification in (1) changes the asymptotic distributions of the
statistics used for inference on the number of cointegrating equations and the asymptotic distribution
of the ML estimator of the cointegrating equations. In fact, Johansen (1995, 84) notes that including
event indicators causes the statistics used for inference on the number of cointegrating equations to
have asymptotic distributions that must be computed case by case. For this reason, event indicators
may not be specified in the present version of vec.

If seasonal indicators are included in the model, they cannot be collinear with a constant term. If
they are collinear with a constant term, one of the indicator variables is omitted.

As discussed in Specification of constants and trends, we can reparameterize the model as

∆yt = α(βyt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt (2)

The log-likelihood function

We can maximize the log-likelihood function much more easily by writing it in concentrated
form. In fact, as discussed below, in the simple case with the Johansen normalization on β and no
constraints on α, concentrating the log-likelihood function produces an analytical solution for the
parameter estimates.

To concentrate the log likelihood, rewrite (2) as

Z0t = αβ̃
′
Z1t + ΨZ2t + εt (3)

where Z0t is a K × 1 vector of variables ∆yt, α is the K × r matrix of adjustment coefficients,
and εt is a K × 1 vector of independent and identically distributed normal vectors with mean 0 and
contemporaneous covariance matrix Ω. Z1t, Z2t, β̃, and Ψ depend on the trend specification and are
defined below.

The log-likelihood function for the model in (3) is

L = −1

2

{
TK ln(2π) + T ln(|Ω|)

+

T∑
t=1

(Z0t − αβ̃
′
Z1t −ΨZ2t)

′Ω−1(Z0t − αβ̃
′
Z1t −ΨZ2t)

}
(4)

with the constraints that α and β̃ have rank r.

Johansen (1995, chap. 6), building on Anderson (1951), shows how the Ψ parameters can be
expressed as analytic functions of α, β̃, and the data, yielding the concentrated log-likelihood function

Lc = −1

2

{
TK ln(2π) + T ln(|Ω|)

+

T∑
t=1

(R0t − αβ̃
′
R1t)

′Ω−1(R0t − αβ̃
′
R1t)

}
(5)

856 vec — Vector error-correction models

where

Mij = T−1
∑T
t=1 ZitZ

′
jt, i, j ∈ {0, 1, 2};

R0t = Z0t −M02M
−1
22 Z2t; and

R1t = Z1t −M12M
−1
22 Z2t.

The definitions of Z1t, Z2t, β̃, and Ψ change with the trend specifications, although some of their
components stay the same.

Unrestricted trend

When the trend in the VECM is unrestricted, we can define the variables in (3) directly in terms
of the variables in (1):

Z1t = yt−1 is K × 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, t, s1, . . . , sm)′ is {K(p− 1) + 2 +m} × 1;

Ψ = (Γ1, . . . ,Γp−1,v, δ,w1, . . . ,wm) is K × {K(p− 1) + 2 +m}

β̃ = β is the K × r matrix composed of the r cointegrating vectors.

In the unrestricted trend specification, m1 = K, m2 = K(p − 1) + 2 + m, and there are
nparms = Kr +Kr +K{K(p− 1) + 2 +m} parameters in (3).

Restricted trend

When there is a restricted trend in the VECM in (2), τ = 0, but the intercept v = αµ + γ is
unrestricted. The VECM with the restricted trend can be written as

∆yt = α(β′,ρ)

(
yt−1

t

)
+

p−1∑
i=1

Γi∆yt−i + v + w1s1 + · · ·+ wmsm + εt

This equation can be written in the form of (3) by defining

Z1t =
(
y′t−1, t

)′
is (K + 1)× 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, s1, . . . , sm)′ is {K(p− 1) + 1 +m} × 1

Ψ = (Γ1, . . . ,Γp−1,v,w1, . . . ,wm) is K × {K(p− 1) + 1 +m}

β̃ =
(
β′,ρ

)′
is the (K + 1) × r matrix composed of the r cointegrating vectors and the r

trend coefficients ρ

In the restricted trend specification, m1 = K + 1, m2 = {K(p − 1) + 1 + m}, and there are
nparms = Kr + (K + 1)r +K{K(p− 1) + 1 +m} parameters in (3).

Unrestricted constant

An unrestricted constant in the VECM in (2) is equivalent to setting δ = 0 in (1), which can be
written in the form of (3) by defining

Z1t = yt−1 is (K × 1)

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, s1, . . . , sm)′ is {K(p− 1) + 1 +m} × 1;

Ψ = (Γ1, . . . ,Γp−1,v,w1, . . . ,wm) is K × {K(p− 1) + 1 +m}

β̃ = β is the K × r matrix composed of the r cointegrating vectors

vec — Vector error-correction models 857

In the unrestricted constant specification, m1 = K, m2 = {K(p − 1) + 1 + m}, and there are
nparms = Kr +Kr +K{K(p− 1) + 1 +m} parameters in (3).

Restricted constant

When there is a restricted constant in the VECM in (2), it can be written in the form of (3) by
defining

Z1t =
(
y′t−1, 1

)′
is (K + 1)× 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1)′ is K(p− 1)× 1

Ψ = (Γ1, . . . ,Γp−1) is K ×K(p− 1)

β̃ =
(
β′,µ

)′
is the (K + 1) × r matrix composed of the r cointegrating vectors and the r

constants in the cointegrating relations.

In the restricted trend specification, m1 = K + 1, m2 = K(p − 1), and there are nparms =
Kr + (K + 1)r +K{K(p− 1)} parameters in (3).

No trend

When there is no trend in the VECM in (2), it can be written in the form of (3) by defining

Z1t = yt−1 is K × 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1)′ is K(p− 1) +m× 1

Ψ = (Γ1, . . . ,Γp−1) is K ×K(p− 1)

β̃ = β is K × r matrix of r cointegrating vectors

In the no-trend specification, m1 = K, m2 = K(p − 1), and there are nparms = Kr + Kr +
K{K(p− 1)} parameters in (3).

Estimation with Johansen identification

Not all the parameters in α and β̃ are identified. Consider the simple case in which β̃ is K × r
and let Q be a nonsingular r × r matrix. Then

αβ̃
′

= αQQ−1β̃
′

= αQ(β̃Q
′−1)′ = α̇β̇

′

Substituting α̇β̇
′

into the log likelihood in (5) for αβ̃
′

would not change the value of the log
likelihood, so some a priori identification restrictions must be found to identify α and β̃. As discussed
in Johansen (1995, chap. 5 and 6) and Boswijk (1995), if the restrictions exactly identify or overidentify
β̃, the estimates of the unconstrained parameters in β̃will be superconsistent, meaning that the estimates
of the free parameters in β̃ will converge at a faster rate than estimates of the short-run parameters
in α and Γi. This allows the distribution of the estimator of the short-run parameters to be derived
conditional on the estimated β̃.

Johansen (1995, chap. 6) has proposed a normalization method for use when theory does not
provide sufficient a priori restrictions to identify the cointegrating vector. This method has become
widely adopted by researchers. Johansen’s identification scheme is

β̃
′

= (Ir, β̆
′
) (6)

where Ir is the r × r identity matrix and β̆ is a (m1 − r)× r matrix of identified parameters.

858 vec — Vector error-correction models

Johansen’s identification method places r2 linearly independent constraints on the parameters in
β̃, thereby defining an exactly identified model. The total number of freely estimated parameters is
nparms − r2 = {K + m2 + (K + m1 − r)r}, and the degrees of freedom d is calculated as the
integer part of (nparms − r2)/K.

When only the rank and the Johansen identification restrictions are placed on the model, we can
further manipulate the log likelihood in (5) to obtain analytic formulas for the parameters in β̃, α,
and Ω. For a given value of β̃, α and Ω can be found by regressing R0t on β̃

′
R1t. This allows a

further simplification of the problem in which

α(β̃) = S01β̃(β̃
′
S11β̃)−1

Ω(β̃) = S00 − S01β̃(β̃
′
S11β̃)−1β̃

′
S10

Sij = (1/T)
∑T
t=1RitR

′
jt i, j ∈ {0, 1}

Johansen (1995) shows that by inserting these solutions into equation (5), β̂ is given by the r
eigenvectors v1, . . . ,vr corresponding to the r largest eigenvalues λ1, . . . , λr that solve the generalized
eigenvalue problem

|λiS11 − S10S
−1
00 S01| = 0 (7)

The eigenvectors corresponding to λ1, . . . , λr that solve (7) are the unidentified parameter estimates.
To impose the identification restrictions in (6), we normalize the eigenvectors such that

λiS11vi = S01S
−1
00 S01vi (8)

and
v′iS11vj =

{
1 if i = j
0 otherwise

(9)

At the optimum the log-likelihood function with the Johansen identification restrictions can be expressed
in terms of T, K, S00, and the r largest eigenvalues

Lc = −1

2
T
{
K ln(2π) +K + ln(|S00|) +

r∑
i=1

ln(1− λ̂i)
}

where the λ̂i are the eigenvalues that solve (7), (8), and (9).

Using the normalized β̂, we can then obtain the estimates

α̂ = S01β̂(β̂
′
S11β̂)−1 (10)

and
Ω̂ = S00 − α̂β̂

′
S10

Let β̂y be a K × r matrix that contains the estimates of the parameters in β in (1). β̂y differs
from β̂ in that any trend parameter estimates are omitted from β̂. We can then use β̂y to obtain
predicted values for the r nondemeaned cointegrating equations

̂̃
Et = β̂

′
yyt

vec — Vector error-correction models 859

The r series in ̂̃Et are called the predicted, nondemeaned cointegrating equations because they still
contain the terms µ and ρ. We want to work with the predicted, demeaned cointegrating equations.
Thus we need estimates of µ and ρ. In the trend(rconstant) specification, the algorithm directly
produces the estimator µ̂. Similarly, in the trend(rtrend) specification, the algorithm directly
produces the estimator ρ̂. In the remaining cases, to back out estimates of µ and ρ, we need estimates
of v and δ, which we can obtain by estimating the parameters of the following VAR:

∆yt = α
̂̃
Et−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ w1s1 + · · ·+ wmsm + εt (11)

Depending on the trend specification, we use α̂ to back out the estimates of

µ̂ = (α̂′α̂)−1α̂′v̂ (12)

ρ̂ = (α̂′α̂)−1α̂′δ̂ (13)

if they are not already in β̂ and are included in the trend specification.

We then augment β̂y to

β̂
′
f = (β̂

′
y, µ̂, ρ̂)

where the estimates of µ̂ and ρ̂ are either obtained from β̂ or backed out using (12) and (13). We
next use β̂f to obtain the r predicted, demeaned cointegrating equations, Êt, via

Êt = β̂
′
f (y′t, 1, t)

′

We last obtain estimates of all the short-run parameters from the VAR:

∆yt = αÊt−1 +

p−1∑
i=1

Γi∆yt−i + γ+ τt+ w1s1 + · · ·+ wmsm + εt (14)

Because the estimator β̂f converges in probability to its true value at a rate faster than T−
1
2 , we

can take our estimated Êt−1 as given data in (14). This allows us to estimate the variance–covariance
(VCE) matrix of the estimates of the parameters in (14) by using the standard VAR VCE estimator.
Equation (11) can be used to obtain consistent estimates of all the parameters and of the VCE of all
the parameters, except v and δ. The standard VAR VCE of v̂ and δ̂ is incorrect because these estimates
converge at a faster rate. This is why it is important to use the predicted, demeaned cointegrating
equations, Êt−1, when estimating the short-run parameters and trend terms. In keeping with the
cointegration literature, vec makes a small-sample adjustment to the VCE estimator so that the divisor
is (T − d) instead of T , where d represents the degrees of freedom of the model. d is calculated as
the integer part of nparms/K, where nparms is the total number of freely estimated parameters in
the model.

In the trend(rconstant) specification, the estimation procedure directly estimates µ. For
trend(constant), trend(rtrend), and trend(trend), the estimates of µ are backed out us-
ing (12). In the trend(rtrend) specification, the estimation procedure directly estimates ρ. In the
trend(trend) specification, the estimates of ρ are backed out using (13). Because the elements of
the estimated VCE are readily available only when the estimates are obtained directly, when the trend
parameter estimates are backed out, their elements in the VCE for β̂f are missing.

860 vec — Vector error-correction models

Under the Johansen identification restrictions, vec obtains β̂, the estimates of the parameters in
the r×m1 matrix β̃

′
in (5). The VCE of vec(β̂) is rm1× rm1. Per Johansen (1995), the asymptotic

distribution of β̂ is mixed Gaussian, and its VCE is consistently estimated by(
1

T − d

)
(Ir ⊗HJ)

{
(α̂′Ω−1α̂)⊗ (H′JS11HJ)

}−1
(Ir ⊗HJ)′ (15)

where HJ is the m1× (m1− r) matrix given by HJ = (0′r×(m1−r), Im1−r)
′. The VCE reported in

e(V beta) is the estimated VCE in (15) augmented with missing values to account for any backed-out
estimates of µ or ρ.

The parameter estimates α̂ can be found either as a function of β̂, using (10) or from the VAR in
(14). The estimated VCE of α̂ reported in e(V alpha) is given by

1

(T − d)
Ω̂⊗ Σ̂B

where Σ̂B = (β̂
′
S11β̂)−1.

As we would expect, the estimator of Π = αβ′ is

Π̂ = α̂β̂
′

and its estimated VCE is given by
1

(T − d)
Ω̂⊗ (β̂Σ̂Bβ̂

′
)

The moving-average impact matrix C is estimated by

Ĉ = β̂⊥(α̂⊥Γ̂β̂⊥)−1α̂′⊥

where β̂⊥ is the orthogonal complement of β̂y , α̂⊥ is the orthogonal complement of α̂, and
Γ̂ = IK −

∑p−1
i=1 Γi. The orthogonal complement of a K × r matrix Q that has rank r is a matrix

Q⊥ of rank K− r, such that Q′Q⊥ = 0. Although this operation is not uniquely defined, the results
used by vec do not depend on the method of obtaining the orthogonal complement. vec uses the
following method: the orthogonal complement of Q is given by the r eigenvectors with the highest
eigenvalues from the matrix Q′(Q′Q)−1Q′.

Per Johansen (1995, chap. 13) and Drukker (2004), the VCE of Ĉ is estimated by

T − d
T

ŜqV̂ν̂Ŝ′q (16)

where

Ŝq = Ĉ⊗ ξ̂

ξ̂ =

{
(ξ̂1, ξ̂2) if p > 1
ξ̂1 if p = 1

ξ̂1 = (Ĉ′Γ̂
′
− IK)ᾱ

ᾱ = α̂(α̂′α̂)−1

ξ̂2 = ιp−1 ⊗ Ĉ

ιp−1 is a (p− 1)× 1 vector of ones

V̂ν̂ is the estimated VCE of ν̂ = (α̂, Γ̂1, . . . Γ̂p−1)

vec — Vector error-correction models 861

Estimation with constraints: β identified

vec can also fit models in which the adjustment parameters are subject to homogeneous linear
constraints and the cointegrating vectors are subject to general linear restrictions. Mathematically,
vec allows for constraints of the form

R′αvec(α) = 0 (17)

where Rα is a known Kr × nα constraint matrix, and

R′
β̃

vec(β̃) = b (18)

where R
β̃

is a known m1r × nβ constraint matrix and b is a known nβ × 1 vector of constants.

Although (17) and (18) are intuitive, they can be rewritten in a form to facilitate computation.
Specifically, (17) can be written as

vec(α′) = Ga (19)

where G is Kr × nα and a is nα × 1. Equation (18) can be rewritten as

vec(β̃) = Hb + h0 (20)

where H is a known n1r × nβ matrix, b is an nβ × 1 matrix of parameters, and h0 is a known
n1r× 1 matrix. See [P] makecns for a discussion of the different ways of specifying the constraints.

When constraints are specified via the aconstraints() and bconstraints() options, the
Boswijk (1995) rank method determines whether the parameters in β̃ are underidentified, exactly
identified, or overidentified.

Boswijk (1995) uses the Rothenberg (1971) method to determine whether the parameters in β̃ are
identified. Thus the parameters in β̃ are exactly identified if ρβ = r2, and the parameters in β̃ are
overidentified if ρβ > r2, where

ρβ = rank

{
R
β̃

(Ir ⊗ β̈)

}
and β̈ is a full-rank matrix with the same dimensions as β̃. The computed ρβ is stored in
e(beta icnt).

Similarly, the number of freely estimated parameters in α and β̃ is given by ρjacob, where

ρjacob = rank
{

(α̂⊗ Im1
)H, (IK ⊗ β̂)G

}
Using ρjacob, we can calculate several other parameter counts of interest. In particular, the degrees of
freedom of the overidentifying test are given by (K +m1 − r)r − ρjacob, and the number of freely
estimated parameters in the model is nparms = Km2 + ρjacob.

Although the problem of maximizing the log-likelihood function in (4), subject to the constraints in
(17) and (18), could be handled by the algorithms in [R] ml, the switching algorithm of Boswijk (1995)
has proven to be more convergent. For this reason, vec uses the Boswijk (1995) switching algorithm
to perform the optimization.

862 vec — Vector error-correction models

Given starting values (b̂0, â0, Ω̂0), the algorithm iteratively updates the estimates until convergence
is achieved, as follows:

α̂j is constructed from (19) and âj

β̂j is constructed from (20) and b̂j

b̂j+1 = {H′(α̂′jΩ̂
−1

j α̂j ⊗ S11)H}−1H′(α̂jΩ̂
−1

j ⊗ S11){vec(P̂)− (α̂j ⊗ InZ1
)h0}

âj+1 = {G(Ω̂
−1

j ⊗ β̂jS11β̂j)G}−1G′(Ω̂
−1

j ⊗ β̂jS11)vec(P̂)

Ω̂j+1 = S00 − S01β̂jα̂
′
j − α̂jβ̂

′
jS10 + α̂jβ̂

′
jS11β̂jα̂

′
j

The estimated VCE of β̂ is given by

1

(T − d)
H{H′(W ⊗ S11)H}−1H′

where W is α̂′Ω̂
−1
α̂. As in the case without constraints, the estimated VCE of α̂ can be obtained

either from the VCE of the short-run parameters, as described below, or via the formula

V̂α̂ =
1

(T − d)
G

[
G′
{
Ω̂
−1
⊗ (β̂

′
S11β̂)G

}−1
]
G′

Boswijk (1995) notes that, as long as the parameters of the cointegrating equations are exactly
identified or overidentified, the constrained ML estimator produces superconsistent estimates of β̃.
This implies that the method of estimating the short-run parameters described above applies in the
presence of constraints, as well, albeit with a caveat: when there are constraints placed on α, the
VARs must be estimated subject to these constraints.

With these estimates and the estimated VCE of the short-run parameter matrix V̂ν̂, Drukker (2004)

shows that the estimated VCE for Π̂ is given by

(β̂⊗ IK)V̂α̂(β̂⊗ IK)′

Drukker (2004) also shows that the estimated VCE of Ĉ can be obtained from (16) with the extension
that V̂ν̂ is the estimated VCE of ν̂ that takes into account any constraints on α̂.

Estimation with constraints: β not identified
When the parameters in β are not identified, only the parameters in Π = αβ and C are identified.

The estimates of Π and C would not change if more identification restrictions were imposed to
achieve exact identification. Thus the VCE matrices for Π̂ and Ĉ can be derived as if the model
exactly identified β.

vec — Vector error-correction models 863

Formulas for the information criteria

The AIC, SBIC, and HQIC are calculated according to their standard definitions, which include the
constant term from the log likelihood; that is,

AIC =− 2

(
L

T

)
+

2nparms

T

SBIC =− 2

(
L

T

)
+

ln(T)

T
nparms

HQIC =− 2

(
L

T

)
+

2ln
{

ln(T)
}

T
nparms

where nparms is the total number of parameters in the model and L is the value of the log likelihood
at the optimum.

Formulas for predict

xb, residuals and stdp are standard and are documented in [R] predict. ce causes predict to
compute Êt = β̂fyt for the requested cointegrating equation.

levels causes predict to compute the predictions for the levels of the data. Let ŷdt be the
predicted value of ∆yt. Because the computations are performed for a given equation, yt is a scalar.
Using ŷdt , we can predict the level by ŷt = ŷdt + yt−1.

Because the residuals from the VECM for the differences and the residuals from the corresponding
VAR in levels are identical, there is no need for an option for predicting the residuals in levels.

References
Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions.

Annals of Mathematical Statistics 22: 327–351.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Boswijk, H. P. 1995. Identifiability of cointegrated systems. Discussion Paper #95-78, Tinbergen Institute.
http://www1.fee.uva.nl/ke/boswijk/ident.pdf.

Boswijk, H. P., and J. A. Doornik. 2004. Identifying, estimating and testing restricted cointegrating systems: An
overview. Statistica Neerlandica 58: 440–465.

Box-Steffensmeier, J. M., J. R. Freeman, M. P. Hitt, and J. C. W. Pevehouse. 2014. Time Series Analysis for the
Social Science. New York: Cambridge University Press.

Drukker, D. M. 2004. Some further results on estimation and inference in the presence of constraints on alpha in a
cointegrating VECM. Working paper, StataCorp.

Engle, R. F., and C. W. J. Granger. 1987. Co-integration and error correction: Representation, estimation, and testing.
Econometrica 55: 251–276.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Johansen, S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12:
231–254.

. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models.
Econometrica 59: 1551–1580.

. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www1.fee.uva.nl/ke/boswijk/ident.pdf
http://www1.fee.uva.nl/ke/boswijk/ident.pdf
http://www.stata.com/bookstore/time-series-analysis-social-sciences/
http://www.stata.com/bookstore/time-series-analysis-social-sciences/

864 vec — Vector error-correction models

Maddala, G. S., and I.-M. Kim. 1998. Unit Roots, Cointegration, and Structural Change. Cambridge: Cambridge
University Press.

Park, J. Y., and P. C. B. Phillips. 1988. Statistical inference in regressions with integrated processes: Part I. Econometric
Theory 4: 468–497.

. 1989. Statistical inference in regressions with integrated processes: Part II. Econometric Theory 5: 95–131.

Phillips, P. C. B. 1986. Understanding spurious regressions in econometrics. Journal of Econometrics 33: 311–340.

Phillips, P. C. B., and S. N. Durlauf. 1986. Multiple time series regressions with integrated processes. Review of
Economic Studies 53: 473–495.

Pickup, M. 2015. Introduction to Time Series Analysis. Thousand Oaks, CA: Sage.

Rothenberg, T. J. 1971. Identification in parametric models. Econometrica 39: 577–591.

Sims, C. A., J. H. Stock, and M. W. Watson. 1990. Inference in linear time series models with some unit roots.
Econometrica 58: 113–144.

Stock, J. H. 1987. Asymptotic properties of least squares estimators of cointegrating vectors. Econometrica 55:
1035–1056.

Stock, J. H., and M. W. Watson. 1988. Testing for common trends. Journal of the American Statistical Association
83: 1097–1107.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

Also see
[TS] vec postestimation — Postestimation tools for vec

[TS] tsset — Declare data to be time-series data

[TS] var — Vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[U] 20 Estimation and postestimation commands
[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/introduction-time-series-analysis/

Title

vec postestimation — Postestimation tools for vec

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are of special interest after vec:

Command Description

fcast compute obtain dynamic forecasts
fcast graph graph dynamic forecasts obtained from fcast compute

irf create and analyze IRFs and FEVDs
veclmar LM test for autocorrelation in residuals
vecnorm test for normally distributed residuals
vecstable check stability condition of estimates

The following standard postestimation commands are also available:
Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

865

866 vec postestimation — Postestimation tools for vec

predict

Description for predict

predict creates a new variable containing predictions such as expected values, residuals, and
cointegrating equations.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic equation(eqno | eqname)
]

statistic Description

Main

xb fitted value for the specified equation; the default
stdp standard error of the linear prediction
residuals residuals
ce the predicted value of specified cointegrating equation
levels one-step prediction of the level of the endogenous variable
usece(varlistce) compute the predictions using previously predicted cointegrating equations

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict� � �
Main �

xb, the default, calculates the fitted values for the specified equation. The form of the VECM implies
that these fitted values are the one-step predictions for the first-differenced variables.

stdp calculates the standard error of the linear prediction for the specified equation.

residuals calculates the residuals from the specified equation of the VECM.

ce calculates the predicted value of the specified cointegrating equation.

levels calculates the one-step prediction of the level of the endogenous variable in the requested
equation.

usece(varlistce) specifies that previously predicted cointegrating equations saved under the names in
varlistce be used to compute the predictions. The number of variables in the varlistce must equal
the number of cointegrating equations specified in the model.

equation(eqno | eqname) specifies to which equation you are referring.

equation() is filled in with one eqno or eqname for xb, residuals, stdp, ce, and levels
options. equation(#1) would mean that the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equation by its
name. equation(D income) would refer to the equation named D income and equation(ce1),
to the first cointegrating equation, which is named ce1 by vec.

If you do not specify equation(), the results are as if you specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] predict.

vec postestimation — Postestimation tools for vec 867

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
stdp not allowed with margins

residuals not allowed with margins

ce not allowed with margins

levels not allowed with margins

usece(varlistce) not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Model selection and inference
Forecasting

Model selection and inference
See the following sections for information on model selection and inference after vec.

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
[TS] varsoc — Obtain lag-order selection statistics for VARs and VECMs
[TS] veclmar — Perform LM test for residual autocorrelation after vec
[TS] vecnorm — Test for normally distributed disturbances after vec
[TS] vecrank — Estimate the cointegrating rank of a VECM
[TS] vecstable — Check the stability condition of VECM estimates

868 vec postestimation — Postestimation tools for vec

Forecasting

See the following sections for information on obtaining forecasts after vec:

[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec
[TS] fcast graph — Graph forecasts after fcast compute

Also see
[TS] vec — Vector error-correction models

[U] 20 Estimation and postestimation commands
[TS] vec intro — Introduction to vector error-correction models

Title

veclmar — Perform LM test for residual autocorrelation after vec

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

veclmar implements a Lagrange multiplier (LM) test for autocorrelation in the residuals of vector
error-correction models (VECMs).

Quick start
Test of residual autocorrelation for the first two lags of the residuals after vec

veclmar

As above, but test the first 5 lags
veclmar, mlag(5)

As above, but perform test using stored estimates myest from a VECM

veclmar, mlag(5) estimates(myest)

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > LM test for residual autocorrelation

869

870 veclmar — Perform LM test for residual autocorrelation after vec

Syntax

veclmar
[
, options

]
options Description

mlag(#) use # for the maximum order of autocorrelation; default is mlag(2)

estimates(estname) use previously stored results estname; default is to use active results
separator(#) draw separator line after every # rows

veclmar can be used only after vec; see [TS] vec.
You must tsset your data before using veclmar; see [TS] tsset.

Options
mlag(#) specifies the maximum order of autocorrelation to be tested. The integer specified in mlag()

must be greater than 0; the default is 2.

estimates(estname) requests that veclmar use the previously obtained set of vec estimates stored
as estname. By default, veclmar uses the active results. See [R] estimates for information on
manipulating estimation results.

separator(#) specifies how many rows should appear in the table between separator lines. By
default, separator lines do not appear. For example, separator(1) would draw a line between
each row, separator(2) between every other row, and so on.

Remarks and examples

Estimation, inference, and postestimation analysis of VECMs is predicated on the errors’ not being
autocorrelated. veclmar implements the LM test for autocorrelation in the residuals of a VECM
discussed in Johansen (1995, 21–22). The test is performed at lags j = 1, . . . , mlag(). For each j,
the null hypothesis of the test is that there is no autocorrelation at lag j.

Example 1

We fit a VECM using the regional income data described in [TS] vec and then call veclmar to test
for autocorrelation.

. use http://www.stata-press.com/data/r14/rdinc

. vec ln_ne ln_se

(output omitted)

. veclmar, mlag(4)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 8.9586 4 0.06214
2 4.9809 4 0.28926
3 4.8519 4 0.30284
4 0.3270 4 0.98801

H0: no autocorrelation at lag order

veclmar — Perform LM test for residual autocorrelation after vec 871

At the 5% level, we cannot reject the null hypothesis that there is no autocorrelation in the residuals
for any of the orders tested. Thus this test finds no evidence of model misspecification.

Stored results
veclmar stores the following in r():

Matrices
r(lm) χ2, df, and p-values

Methods and formulas
Consider a VECM without any trend:

∆yt = αβyt−1 +

p−1∑
i=1

Γi∆yt−i + εt

As discussed in [TS] vec, as long as the parameters in the cointegrating vectors, β, are exactly
identified or overidentified, the estimates of these parameters are superconsistent. This implies that
the r × 1 vector of estimated cointegrating relations

Êt = β̂yt (1)

can be used as data with standard estimation and inference methods. When the parameters of the
cointegrating equations are not identified, (1) does not provide consistent estimates of Êt; in these
cases, veclmar exits with an error message.

The VECM above can be rewritten as

∆yt = αÊt +

p−1∑
i=1

Γi∆yt−i + εt

which is just a VAR with p− 1 lags where the endogenous variables have been first-differenced and
is augmented with the exogenous variables Ê. veclmar fits this VAR and then calls varlmar to
compute the LM test for autocorrelation.

The above discussion assumes no trend and implicitly ignores constraints on the parameters in
α. As discussed in vec, the other four trend specifications considered by Johansen (1995, sec. 5.7)
complicate the estimation of the free parameters in β but do not alter the basic result that the Êt can
be used as data in the subsequent VAR. Similarly, constraints on the parameters in α imply that the
subsequent VAR must be estimated with these constraints applied, but Êt can still be used as data in
the VAR.

See [TS] varlmar for more information on the Johansen LM test.

872 veclmar — Perform LM test for residual autocorrelation after vec

Reference
Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University

Press.

Also see
[TS] vec — Vector error-correction models

[TS] varlmar — Perform LM test for residual autocorrelation after var or svar

[TS] vec intro — Introduction to vector error-correction models

Title

vecnorm — Test for normally distributed disturbances after vec

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecnorm computes and reports a series of statistics against the null hypothesis that the disturbances
in a VECM are normally distributed.

Quick start
Compute Jarque–Bera, skewness, and kurtosis statistics after vec to test the null hypothesis that the

residuals are normally distributed
vecnorm

As above, but only report the Jarque–Bera statistic
vecnorm, jbera

As above, but only report kurtosis
vecnorm, kurtosis

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > Test for normally distributed disturbances

873

874 vecnorm — Test for normally distributed disturbances after vec

Syntax
vecnorm

[
, options

]
options Description

jbera report Jarque–Bera statistic; default is to report all three statistics
skewness report skewness statistic; default is to report all three statistics
kurtosis report kurtosis statistic; default is to report all three statistics
estimates(estname) use previously stored results estname; default is to use active results
dfk make small-sample adjustment when computing the estimated

variance–covariance matrix of the disturbances
separator(#) draw separator line after every # rows

vecnorm can be used only after vec; see [TS] vec.

Options
jbera requests that the Jarque–Bera statistic and any other explicitly requested statistic be reported.

By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

skewness requests that the skewness statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

kurtosis requests that the kurtosis statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

estimates(estname) requests that vecnorm use the previously obtained set of vec estimates stored
as estname. By default, vecnorm uses the active results. See [R] estimates for information on
manipulating estimation results.

dfk requests that a small-sample adjustment be made when computing the estimated variance–
covariance matrix of the disturbances.

separator(#) specifies how many rows should appear in the table between separator lines. By
default, separator lines do not appear. For example, separator(1) would draw a line between
each row, separator(2) between every other row, and so on.

Remarks and examples
vecnorm computes a series of test statistics of the null hypothesis that the disturbances in a VECM

are normally distributed. For each equation and all equations jointly, up to three statistics may be
computed: a skewness statistic, a kurtosis statistic, and the Jarque–Bera statistic. By default, all three
statistics are reported; if you specify only one statistic, the others are not reported. The Jarque–Bera
statistic tests skewness and kurtosis jointly. The single-equation results are against the null hypothesis
that the disturbance for that particular equation is normally distributed. The results for all the equations
are against the null that all K disturbances have a K-dimensional multivariate normal distribution.
Failure to reject the null hypothesis indicates lack of model misspecification.

As noted by Johansen (1995, 141), the log likelihood for the VECM is derived assuming the errors
are independent and identically distributed normal, though many of the asymptotic properties can be
derived under the weaker assumption that the errors are merely independent and identically distributed.
Many researchers still prefer to test for normality. vecnorm uses the results from vec to produce
a series of statistics against the null hypothesis that the K disturbances in the VECM are normally
distributed.

vecnorm — Test for normally distributed disturbances after vec 875

Example 1

This example uses vecnorm to test for normality after estimating the parameters of a VECM using
the regional income data.

. use http://www.stata-press.com/data/r14/rdinc

. vec ln_ne ln_se
(output omitted)

. vecnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

D_ln_ne 0.094 2 0.95417
D_ln_se 0.586 2 0.74608

ALL 0.680 4 0.95381

Skewness test

Equation Skewness chi2 df Prob > chi2

D_ln_ne .05982 0.032 1 0.85890
D_ln_se .243 0.522 1 0.47016

ALL 0.553 2 0.75835

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

D_ln_ne 3.1679 0.062 1 0.80302
D_ln_se 2.8294 0.064 1 0.79992

ALL 0.126 2 0.93873

The Jarque–Bera results present test statistics for each equation and for all equations jointly
against the null hypothesis of normality. For the individual equations, the null hypothesis is that the
disturbance term in that equation has a univariate normal distribution. For all equations jointly, the
null hypothesis is that the K disturbances come from a K-dimensional normal distribution. In this
example, the single-equation and overall Jarque–Bera statistics do not reject the null of normality.

The single-equation skewness test statistics are of the null hypotheses that the disturbance term
in each equation has zero skewness, which is the skewness of a normally distributed variable. The
row marked ALL shows the results for a test that the disturbances in all equations jointly have zero
skewness. The skewness results shown above do not suggest nonnormality.

The kurtosis of a normally distributed variable is three, and the kurtosis statistics presented in the
table test the null hypothesis that the disturbance terms have kurtosis consistent with normality. The
results in this example do not reject the null hypothesis.

The statistics computed by vecnorm are based on the estimated variance–covariance matrix of the
disturbances. vec saves the ML estimate of this matrix, which vecnorm uses by default. Specifying
the dfk option instructs vecnorm to make a small-sample adjustment to the variance–covariance
matrix before computing the test statistics.

876 vecnorm — Test for normally distributed disturbances after vec

Stored results
vecnorm stores the following in r():

Macros
r(dfk) dfk, if specified

Matrices
r(jb) Jarque–Bera χ2, df, and p-values
r(skewness) skewness χ2, df, and p-values
r(kurtosis) kurtosis χ2, df, and p-values

Methods and formulas
As discussed in Methods and formulas of [TS] vec, a cointegrating VECM can be rewritten as a

VAR in first differences that includes the predicted cointegrating equations as exogenous variables.
vecnorm computes the tests discussed in [TS] varnorm for the corresponding augmented VAR in first
differences. See Methods and formulas of [TS] veclmar for more information on this approach.

When the parameters of the cointegrating equations are not identified, the consistent estimates
of the cointegrating equations are not available, and, in these cases, vecnorm exits with an error
message.

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Jarque, C. M., and A. K. Bera. 1987. A test for normality of observations and regression residuals. International
Statistical Review 2: 163–172.

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] vec — Vector error-correction models

[TS] varnorm — Test for normally distributed disturbances after var or svar

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html

Title

vecrank — Estimate the cointegrating rank of a VECM

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecrank produces statistics used to determine the number of cointegrating equations in a vector
error-correction model (VECM).

Quick start
Estimate the cointegrating rank for a VECM of y1, y2, and y3 using tsset data

vecrank y1 y2 y3

As above, but specify that the underlying VAR model have 6 lags
vecrank y1 y2 y3, lags(6)

As above, but specify that the model includes a linear trend in the cointegrating equations and a
quadratic trend in the undifferenced data

vecrank y1 y2 y3, lags(6) trend(trend)

As above, and report information criteria
vecrank y1 y2 y3, lags(6) trend(trend) ic

Menu
Statistics > Multivariate time series > Cointegrating rank of a VECM

877

878 vecrank — Estimate the cointegrating rank of a VECM

Syntax

vecrank depvarlist
[

if
] [

in
] [

, options
]

options Description

Model

lags(#) use # for the maximum lag in underlying VAR model
trend(constant) include an unrestricted constant in model; the default
trend(rconstant) include a restricted constant in model
trend(trend) include a linear trend in the cointegrating equations and a

quadratic trend in the undifferenced data
trend(rtrend) include a restricted trend in model
trend(none) do not include a trend or a constant

Adv. model

sindicators(varlistsi) include normalized seasonal indicator variables varlistsi
noreduce do not perform checks and corrections for collinearity among lags

of dependent variables

Reporting

notrace do not report the trace statistic
max report maximum-eigenvalue statistic
ic report information criteria
level99 report 1% critical values instead of 5% critical values
levela report both 1% and 5% critical values

You must tsset your data before using vecrank; see [TS] tsset.
depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vecrank does not allow gaps in the data.

Options

� � �
Model �

lags(#) specifies the number of lags in the VAR representation of the model. The VECM will include
one fewer lag of the first differences. The number of lags must be greater than zero but small
enough so that the degrees of freedom used by the model are less than the number of observations.

trend(trend spec) specifies one of five trend specifications to include in the model. See [TS] vec
intro and [TS] vec for descriptions. The default is trend(constant).

� � �
Adv. model �

sindicators(varlistsi) specifies normalized seasonal indicator variables to be included in the model.
The indicator variables specified in this option must be normalized as discussed in Johansen (1995,
84). If the indicators are not properly normalized, the likelihood-ratio–based tests for the number
of cointegrating equations do not converge to the asymptotic distributions derived by Johansen.
For details, see Methods and formulas of [TS] vec. sindicators() cannot be specified with
trend(none) or trend(rconstant)

vecrank — Estimate the cointegrating rank of a VECM 879

noreduce causes vecrank to skip the checks and corrections for collinearity among the lags of
the dependent variables. By default, vecrank checks whether the current lag specification causes
some of the regressions performed by vecrank to contain perfectly collinear variables and reduces
the maximum lag until the perfect collinearity is removed. See Collinearity in [TS] vec for more
information.

� � �
Reporting �

notrace requests that the output for the trace statistic not be displayed. The default is to display the
trace statistic.

max requests that the output for the maximum-eigenvalue statistic be displayed. The default is to not
display this output.

ic causes the output for the information criteria to be displayed. The default is to not display this
output.

level99 causes the 1% critical values to be displayed instead of the default 5% critical values.

levela causes both the 1% and the 5% critical values to be displayed.

Remarks and examples
Remarks are presented under the following headings:

Introduction
The trace statistic
The maximum-eigenvalue statistic
Minimizing an information criterion

Introduction

Before estimating the parameters of a VECM models, you must choose the number of lags in the
underlying VAR, the trend specification, and the number of cointegrating equations. vecrank offers
several ways of determining the number of cointegrating vectors conditional on a trend specification
and lag order.

vecrank implements three types of methods for determining r, the number of cointegrating
equations in a VECM. The first is Johansen’s “trace” statistic method. The second is his “maximum
eigenvalue” statistic method. The third method chooses r to minimize an information criterion.

All three methods are based on Johansen’s maximum likelihood (ML) estimator of the parameters
of a cointegrating VECM. The basic VECM is

∆yt = αβ′yt−1 +

p−1∑
t=1

Γi∆yt−i + εt

where y is a (K × 1) vector of I(1) variables, α and β are (K × r) parameter matrices with rank
r < K, Γ1, . . . ,Γp−1 are (K ×K) matrices of parameters, and εt is a (K × 1) vector of normally
distributed errors that is serially uncorrelated but has contemporaneous covariance matrix Ω.

Building on the work of Anderson (1951), Johansen (1995) derives an ML estimator for the
parameters and two likelihood-ratio (LR) tests for inference on r. These LR tests are known as the
trace statistic and the maximum-eigenvalue statistic because the log likelihood can be written as the
log of the determinant of a matrix plus a simple function of the eigenvalues of another matrix.

880 vecrank — Estimate the cointegrating rank of a VECM

Let λ1, . . . , λK be the K eigenvalues used in computing the log likelihood at the optimum.
Furthermore, assume that these eigenvalues are sorted from the largest λ1 to the smallest λK . If there
are r < K cointegrating equations, α and β have rank r and the eigenvalues λr+1, . . . , λK are zero.

The trace statistic
The null hypothesis of the trace statistic is that there are no more than r cointegrating relations.

Restricting the number of cointegrating equations to be r or less implies that the remaining K − r
eigenvalues are zero. Johansen (1995, chap. 11 and 12) derives the distribution of the trace statistic

−T
K∑

i=r+1

ln(1− λ̂i)

where T is the number of observations and the λ̂i are the estimated eigenvalues. For any given value
of r, large values of the trace statistic are evidence against the null hypothesis that there are r or
fewer cointegrating relations in the VECM.

One of the problems in determining the number of cointegrating equations is that the process
involves more than one statistical test. Johansen (1995, chap. 6, 11, and 12) derives a method based
on the trace statistic that has nominal coverage despite evaluating multiple tests. This method can
be interpreted as being an estimator r̂ of the true number of cointegrating equations r0. The method
starts testing at r = 0 and accepts as r̂ the first value of r for which the trace statistic fails to reject
the null.

Example 1

We have quarterly data on the natural logs of aggregate consumption, investment, and GDP in
the United States from the first quarter of 1959 through the fourth quarter of 1982. As discussed in
King et al. (1991), the balanced-growth hypothesis in economics implies that we would expect to
find two cointegrating equations among these three variables. In the output below, we use vecrank
to determine the number of cointegrating equations using Johansen’s multiple-trace test method.

vecrank — Estimate the cointegrating rank of a VECM 881

. use http://www.stata-press.com/data/r14/balance2
(macro data for VECM/balance study)

. vecrank y i c, lags(5)

Johansen tests for cointegration
Trend: constant Number of obs = 91
Sample: 1960q2 - 1982q4 Lags = 5

5%
maximum trace critical

rank parms LL eigenvalue statistic value
0 39 1231.1041 . 46.1492 29.68
1 44 1245.3882 0.26943 17.5810 15.41
2 47 1252.5055 0.14480 3.3465* 3.76
3 48 1254.1787 0.03611

The header produces information about the sample, the trend specification, and the number of
lags included in the model. The main table contains a separate row for each possible value of r, the
number of cointegrating equations. When r = 3, all three variables in this model are stationary.

In this example, because the trace statistic at r = 0 of 46.1492 exceeds its critical value of 29.68,
we reject the null hypothesis of no cointegrating equations. Similarly, because the trace statistic at
r = 1 of 17.581 exceeds its critical value of 15.41, we reject the null hypothesis that there is one or
fewer cointegrating equation. In contrast, because the trace statistic at r = 2 of 3.3465 is less than its
critical value of 3.76, we cannot reject the null hypothesis that there are two or fewer cointegrating
equations. Because Johansen’s method for estimating r is to accept as r̂ the first r for which the null
hypothesis is not rejected, we accept r = 2 as our estimate of the number of cointegrating equations
between these three variables. The “*” by the trace statistic at r = 2 indicates that this is the value
of r selected by Johansen’s multiple-trace test procedure. The eigenvalue shown in the last line of
output computes the trace statistic in the preceding line.

Example 2

In the previous example, we used the default 5% critical values. We can estimate r with 1%
critical values instead by specifying the level99 option.

. vecrank y i c, lags(5) level99

Johansen tests for cointegration
Trend: constant Number of obs = 91
Sample: 1960q2 - 1982q4 Lags = 5

1%
maximum trace critical

rank parms LL eigenvalue statistic value
0 39 1231.1041 . 46.1492 35.65
1 44 1245.3882 0.26943 17.5810* 20.04
2 47 1252.5055 0.14480 3.3465 6.65
3 48 1254.1787 0.03611

The output indicates that switching from the 5% to the 1% level changes the resulting estimate from
r = 2 to r = 1.

882 vecrank — Estimate the cointegrating rank of a VECM

The maximum-eigenvalue statistic

The alternative hypothesis of the trace statistic is that the number of cointegrating equations is
strictly larger than the number r assumed under the null hypothesis. Instead, we could assume a
given r under the null hypothesis and test this against the alternative that there are r+ 1 cointegrating
equations. Johansen (1995, chap. 6, 11, and 12) derives an LR test of the null of r cointegrating
relations against the alternative of r+ 1 cointegrating relations. Because the part of the log likelihood
that changes with r is a simple function of the eigenvalues of a (K ×K) matrix, this test is known
as the maximum-eigenvalue statistic. This method is used less often than the trace statistic method
because no solution to the multiple-testing problem has yet been found.

Example 3

In the output below, we reexamine the balanced-growth hypothesis. We use the levela option to
obtain both the 5% and 1% critical values, and we use the notrace option to suppress the table of
trace statistics.

. vecrank y i c, lags(5) max levela notrace

Johansen tests for cointegration
Trend: constant Number of obs = 91
Sample: 1960q2 - 1982q4 Lags = 5

maximum max 5% critical 1% critical
rank parms LL eigenvalue statistic value value

0 39 1231.1041 28.5682 20.97 25.52
1 44 1245.3882 0.26943 14.2346 14.07 18.63
2 47 1252.5055 0.14480 3.3465 3.76 6.65
3 48 1254.1787 0.03611

We can reject r = 1 in favor of r = 2 at the 5% level but not at the 1% level. As with the trace
statistic method, whether we choose to specify one or two cointegrating equations in our VECM will
depend on the significance level we use here.

Minimizing an information criterion

Many multiple-testing problems in the time-series literature have been solved by defining an
estimator that minimizes an information criterion with known asymptotic properties. Selecting the lag
length in an autoregressive model is probably the best-known example. Gonzalo and Pitarakis (1998)
and Aznar and Salvador (2002) have shown that this approach can be applied to determining the
number of cointegrating equations in a VECM. As in the lag-length selection problem, choosing the
number of cointegrating equations that minimizes either the Schwarz Bayesian information criterion
(SBIC) or the Hannan and Quinn information criterion (HQIC) provides a consistent estimator of the
number of cointegrating equations.

Example 4

We use these information-criteria methods to estimate the number of cointegrating equations in
our balanced-growth data.

vecrank — Estimate the cointegrating rank of a VECM 883

. vecrank y i c, lags(5) ic notrace

Johansen tests for cointegration
Trend: constant Number of obs = 91
Sample: 1960q2 - 1982q4 Lags = 5

maximum
rank parms LL eigenvalue SBIC HQIC AIC

0 39 1231.1041 -25.12401 -25.76596 -26.20009
1 44 1245.3882 0.26943 -25.19009 -25.91435 -26.40414
2 47 1252.5055 0.14480 -25.19781* -25.97144* -26.49463
3 48 1254.1787 0.03611 -25.18501 -25.97511 -26.50942

Both the SBIC and the HQIC estimators suggest that there are two cointegrating equations in the
balanced-growth data.

Stored results
vecrank stores the following in e():

Scalars
e(N) number of observations
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(tmin) minimum time
e(tmax) maximum time
e(n lags) number of lags
e(k ce95) number of cointegrating equations chosen by multiple trace tests with level(95)
e(k ce99) number of cointegrating equations chosen by multiple trace tests with level(99)
e(k cesbic) number of cointegrating equations chosen by minimizing SBIC
e(k cehqic) number of cointegrating equations chosen by minimizing HQIC

Macros
e(cmd) vecrank
e(cmdline) command as typed
e(trend) trend specified
e(reduced lags) list of maximum lags to which the model has been reduced
e(reduce opt) noreduce, if noreduce is specified
e(tsfmt) format for current time variable

Matrices
e(max) vector of maximum-eigenvalue statistics
e(trace) vector of trace statistics
e(lambda) vector of eigenvalues
e(k rank) vector of numbers of unconstrained parameters
e(hqic) vector of HQIC values
e(sbic) vector of SBIC values
e(aic) vector of AIC values

884 vecrank — Estimate the cointegrating rank of a VECM

Methods and formulas
As shown in Methods and formulas of [TS] vec, given a lag, trend, and seasonal specification

when there are 0 ≤ r ≤ K cointegrating equations, the log likelihood with the Johansen identification
restrictions can be written as

L = −1

2
T

[
K {ln (2π) + 1}+ ln (|S00|) +

r∑
i=1

ln
(

1− λ̂i
)]

(1)

where the (K × K) matrix S00 and the eigenvalues λ̂i are defined in Methods and formulas of
[TS] vec.

The trace statistic compares the null hypothesis that there are r or fewer cointegrating relations with
the alternative hypothesis that there are more than r cointegrating equations. Under the alternative
hypothesis, the log likelihood is

LA = −1

2
T

[
K {ln (2π) + 1}+ ln (|S00|) +

K∑
i=1

ln
(

1− λ̂i
)]

(2)

Thus the LR test that compares the unrestricted model in (2) with the restricted model in (1) is given
by

LRtrace = −T
K∑

i=r+1

ln
(

1− λ̂i
)

As discussed by Johansen (1995), the trace statistic has a nonstandard distribution under the null
hypothesis because the null hypothesis places restrictions on the coefficients on yt−1, which is
assumed to have K − r random-walk components. vecrank reports the Osterwald-Lenum (1992)
critical values.

The maximum-eigenvalue statistic compares the null model containing r cointegrating relations
with the alternative model that has r + 1 cointegrating relations. Thus using these two values for r
in (1) and a few lines of algebra implies that the LR test of this hypothesis is

LRmax = −T ln
(

1− λ̂r+1

)
As for the trace statistic, because this test involves restrictions on the coefficients on a vector of
I(1) variables, the test statistic’s distribution will be nonstandard. vecrank reports the Osterwald-
Lenum (1992) critical values.

The formulas for the AIC, SBIC, and HQIC are given in Methods and formulas of [TS] vec.

� �
Søren Johansen (1939–) earned degrees in mathematical statistics at the University of Copenhagen,
where he is now based. In addition to making contributions to mathematical statistics, probability
theory, and medical statistics, he has worked mostly in econometrics—in particular, on the theory
of cointegration.� �

vecrank — Estimate the cointegrating rank of a VECM 885

References
Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions.

Annals of Mathematical Statistics 22: 327–351.

Aznar, A., and M. Salvador. 2002. Selecting the rank of the cointegration space and the form of the intercept using
an information criterion. Econometric Theory 18: 926–947.

Engle, R. F., and C. W. J. Granger. 1987. Co-integration and error correction: Representation, estimation, and testing.
Econometrica 55: 251–276.

Gonzalo, J., and J.-Y. Pitarakis. 1998. Specification via model selection in vector error correction models. Economics
Letters 60: 321–328.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Hubrich, K., H. Lütkepohl, and P. Saikkonen. 2001. A review of systems cointegration tests. Econometric Reviews
20: 247–318.

Johansen, S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12:
231–254.

. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models.
Econometrica 59: 1551–1580.

. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

King, R. G., C. I. Plosser, J. H. Stock, and M. W. Watson. 1991. Stochastic trends and economic fluctuations.
American Economic Review 81: 819–840.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Maddala, G. S., and I.-M. Kim. 1998. Unit Roots, Cointegration, and Structural Change. Cambridge: Cambridge
University Press.

Osterwald-Lenum, M. G. 1992. A note with quantiles of the asymptotic distribution of the maximum likelihood
cointegration rank test statistics. Oxford Bulletin of Economics and Statistics 54: 461–472.

Park, J. Y., and P. C. B. Phillips. 1988. Statistical inference in regressions with integrated processes: Part I. Econometric
Theory 4: 468–497.

. 1989. Statistical inference in regressions with integrated processes: Part II. Econometric Theory 5: 95–131.

Phillips, P. C. B. 1986. Understanding spurious regressions in econometrics. Journal of Econometrics 33: 311–340.

Phillips, P. C. B., and S. N. Durlauf. 1986. Multiple time series regressions with integrated processes. Review of
Economic Studies 53: 473–495.

Sims, C. A., J. H. Stock, and M. W. Watson. 1990. Inference in linear time series models with some unit roots.
Econometrica 58: 113–144.

Stock, J. H. 1987. Asymptotic properties of least squares estimators of cointegrating vectors. Econometrica 55:
1035–1056.

Stock, J. H., and M. W. Watson. 1988. Testing for common trends. Journal of the American Statistical Association
83: 1097–1107.

Watson, M. W. 1994. Vector autoregressions and cointegration. In Vol. 4 of Handbook of Econometrics, ed. R. F.
Engle and D. L. McFadden. Amsterdam: Elsevier.

Also see
[TS] tsset — Declare data to be time-series data

[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html

Title

vecstable — Check the stability condition of VECM estimates

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecstable checks the eigenvalue stability condition in a vector error-correction model (VECM)
fit using vec.

Quick start
Check eigenvalue stability condition after vec

vecstable

As above, and graph the eigenvalues of the companion matrix
vecstable, graph

As above, and label each eigenvalue with its distance from the unit circle
vecstable, graph dlabel

As above, but label the eigenvalues with their moduli
vecstable, graph modlabel

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > Check stability condition of VEC estimates

886

vecstable — Check the stability condition of VECM estimates 887

Syntax
vecstable

[
, options

]
options Description

Main

estimates(estname) use previously stored results estname; default is to use active results
amat(matrix name) save the companion matrix as matrix name
graph graph eigenvalues of the companion matrix
dlabel label eigenvalues with the distance from the unit circle
modlabel label eigenvalues with the modulus
marker options change look of markers (color, size, etc.)
rlopts(cline options) affect rendition of reference unit circle
nogrid suppress polar grid circles
pgrid(

[
. . .
]
) specify radii and appearance of polar grid circles; see Options for details

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

vecstable can be used only after vec; see [TS] vec.

Options� � �
Main �

estimates(estname) requests that vecstable use the previously obtained set of vec estimates stored
as estname. By default, vecstable uses the active results. See [R] estimates for information on
manipulating estimation results.

amat(matrix name) specifies a valid Stata matrix name by which the companion matrix can be saved.
The companion matrix is referred to as the A matrix in Lütkepohl (2005) and [TS] varstable. The
default is not to save the companion matrix.

graph causes vecstable to draw a graph of the eigenvalues of the companion matrix.

dlabel labels the eigenvalues with their distances from the unit circle. dlabel cannot be specified
with modlabel.

modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

rlopts(cline options) affects the rendition of the reference unit circle; see [G-3] cline options.

nogrid suppresses the polar grid circles.

pgrid(
[

numlist
][
, line options

]
)
[
pgrid(

[
numlist

][
, line options

]
) . . .

pgrid(
[

numlist
][
, line options

]
)
]

determines the radii and appearance of the polar grid circles.
By default, the graph includes nine polar grid circles with radii 0.1, 0.2, . . . , 0.9 that have the grid
linestyle. The numlist specifies the radii for the polar grid circles. The line options determine the
appearance of the polar grid circles; see [G-3] line options. Because the pgrid() option can be
repeated, circles with different radii can have distinct appearances.

888 vecstable — Check the stability condition of VECM estimates

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples

Inference after vec requires that the cointegrating equations be stationary and that the number
of cointegrating equations be correctly specified. Although the methods implemented in vecrank
identify the number of stationary cointegrating equations, they assume that the individual variables are
I(1). vecstable provides indicators of whether the number of cointegrating equations is misspecified
or whether the cointegrating equations, which are assumed to be stationary, are not stationary.

vecstable is analogous to varstable. vecstable uses the coefficient estimates from the
previously fitted VECM to back out estimates of the coefficients of the corresponding VAR and then
compute the eigenvalues of the companion matrix. See [TS] varstable for details about how the
companion matrix is formed and about how to interpret the resulting eigenvalues for covariance-
stationary VAR models.

If a VECM has K endogenous variables and r cointegrating vectors, there will be K − r unit
moduli in the companion matrix. If any of the remaining moduli computed by vecrank are too close
to one, either the cointegrating equations are not stationary or there is another common trend and
the rank() specified in the vec command is too high. Unfortunately, there is no general distribution
theory that allows you to determine whether an estimated root is too close to one for all the cases
that commonly arise in practice.

Example 1

In example 1 of [TS] vec, we estimated the parameters of a bivariate VECM of the natural logs
of the average disposable incomes in two of the economic regions created by the U.S. Bureau of
Economic Analysis. In that example, we concluded that the predicted cointegrating equation was
probably not stationary. Here we continue that example by refitting that model and using vecstable
to analyze the eigenvalues of the companion matrix of the corresponding VAR.

. use http://www.stata-press.com/data/r14/rdinc

. vec ln_ne ln_se
(output omitted)

. vecstable

Eigenvalue stability condition

Eigenvalue Modulus

1 1
.9477854 .947785
.2545357 + .2312756i .343914
.2545357 - .2312756i .343914

The VECM specification imposes a unit modulus.

vecstable — Check the stability condition of VECM estimates 889

The output contains a table showing the eigenvalues of the companion matrix and their associated
moduli. The table shows that one of the roots is 1. The table footer reminds us that the specified
VECM imposes one unit modulus on the companion matrix.

The output indicates that there is a real root at about 0.95. Although there is no distribution
theory to measure how close this root is to one, per other discussions in the literature (for example,
Johansen [1995, 137–138]), we conclude that the root of 0.95 supports our earlier analysis, in which
we concluded that the predicted cointegrating equation is probably not stationary.

If we had included the graph option with vecstable, the following graph would have been
displayed:

−
1

−
.5

0
.5

1
Im

a
g

in
a

ry

−1 −.5 0 .5 1
Real

The VECM specification imposes 1 unit modulus

Roots of the companion matrix

The graph plots the eigenvalues of the companion matrix with the real component on the x axis and
the imaginary component on the y axis. Although the information is the same as in the table, the
graph shows visually how close the root with modulus 0.95 is to the unit circle.

Stored results
vecstable stores the following in r():
Scalars

r(unitmod) number of unit moduli imposed on the companion matrix
Matrices

r(Re) real part of the eigenvalues of A

r(Im) imaginary part of the eigenvalues of A

r(Modulus) moduli of the eigenvalues of A

where A is the companion matrix of the VAR that corresponds to the VECM.

Methods and formulas
vecstable uses the formulas given in Methods and formulas of [TS] irf create to obtain estimates of

the parameters in the corresponding VAR from the vec estimates. With these estimates, the calculations
are identical to those discussed in [TS] varstable. In particular, the derivation of the companion matrix,
A, from the VAR point estimates is given in [TS] varstable.

890 vecstable — Check the stability condition of VECM estimates

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models

http://www.stata.com/bookstore/imtsa.html

Title

wntestb — Bartlett’s periodogram-based test for white noise

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
wntestb performs Bartlett’s periodogram-based test for white noise. The result is presented

graphically by default but optionally may be presented as text in a table.

Quick start
Bartlett’s periodogram-based test for white noise on series y using tsset data

wntestb y

As above, but report table instead of graph
wntestb y, table

As above, but specify 90%, instead of 95%, confidence interval
wntestb y, table level(90)

Menu
Statistics > Time series > Tests > Bartlett’s periodogram-based white-noise test

891

892 wntestb — Bartlett’s periodogram-based test for white noise

Syntax
wntestb varname

[
if
] [

in
] [

, options
]

options Description

Main

table display a table instead of graphical output
level(#) set confidence level; default is level(95)

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options add connecting lines; change look

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

You must tsset your data before using wntestb; see [TS] tsset. In addition, the time series must be dense
(nonmissing with no gaps in the time variable) in the specified sample.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

table displays the test results as a table instead of as the default graph.

level(#) specifies the confidence level, as a percentage, for the confidence bands included on the
graph. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals.

� � �
Plot �

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

cline options specify if the points are to be connected with lines and the rendition of those lines; see
[G-3] cline options.

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

wntestb — Bartlett’s periodogram-based test for white noise 893

Remarks and examples
Bartlett’s test is a test of the null hypothesis that the data come from a white-noise process of

uncorrelated random variables having a constant mean and a constant variance.

For a discussion of this test, see Bartlett (1955, 92–94), Newton (1988, 172), or Newton (1996).

Example 1

In this example, we generate two time series and show the graphical and statistical tests that can
be obtained from this command. The first time series is a white-noise process, and the second is a
white-noise process with an embedded deterministic cosine curve.

. drop _all

. set seed 12393

. set obs 100
number of observations (_N) was 0, now 100

. generate x1 = rnormal()

. generate x2 = rnormal() + cos(2*_pi*(_n-1)/10)

. generate time = _n

. tsset time
time variable: time, 1 to 100

delta: 1 unit

We can then submit the white-noise data to the wntestb command by typing
. wntestb x1

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

C
u

m
u

la
ti
v
e

 p
e

ri
o

d
o

g
ra

m
 f

o
r

x
1

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Bartlett’s (B) statistic = 0.80 Prob > B = 0.5380

Cumulative Periodogram White−Noise Test

We can see in the graph that the values never appear outside the confidence bands. The test statistic
has a p-value of 0.91, so we conclude that the process is not different from white noise. If we had
wanted only the statistic without the plot, we could have used the table option.

894 wntestb — Bartlett’s periodogram-based test for white noise

Turning our attention to the other series (x2), we type
. wntestb x2

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

C
u

m
u

la
ti
v
e

 p
e

ri
o

d
o

g
ra

m
 f

o
r

x
2

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Bartlett’s (B) statistic = 2.17 Prob > B = 0.0002

Cumulative Periodogram White−Noise Test

Here the process does appear outside of the bands. In fact, it steps out of the bands at a frequency
of 0.1 (exactly as we synthesized this process). We also have confirmation from the test statistic, at
a p-value of 0.001, that the process is significantly different from white noise.

Stored results
wntestb stores the following in r():
Scalars

r(stat) Bartlett’s statistic r(p) probability value

Methods and formulas
If x(1), . . . , x(T) is a realization from a white-noise process with variance σ2, the spectral

distribution would be given by F (ω) = σ2ω for ω ∈ [0, 1], and we would expect the cumulative
periodogram (see [TS] cumsp) of the data to be close to the points Sk = k/q for q = bn/2c+ 1, k =
1, . . . , q. bn/2c is the greatest integer less than or equal to n/2.

Except for ω = 0 and ω = .5, the random variables 2f̂(ωk)/σ2 are asymptotically independent
and identically distributed as χ2

2. Because χ2
2 is the same as twice a random variable distributed

exponentially with mean 1, the cumulative periodogram has approximately the same distribution as
the ordered values from a uniform (on the unit interval) distribution. Feller (1948) shows that this
results in

limq→∞Pr

(
max1≤k≤q

√
q

∣∣∣∣Uk − k

q

∣∣∣∣ ≤ a) =

∞∑
j=−∞

(−1)je−2a2j2 = G(a)

where Uk is the ordered uniform quantile. The Bartlett statistic is computed as

B = max1≤k≤q

√
n

2

∣∣∣∣F̂k − k

q

∣∣∣∣

wntestb — Bartlett’s periodogram-based test for white noise 895

where F̂k is the cumulative periodogram defined in terms of the sample spectral density f̂ (see
[TS] pergram) as

F̂k =

∑k
j=1 f̂(ωj)∑q
j=1 f̂(ωj)

The associated p-value for the Bartlett statistic and the confidence bands on the graph are computed
as 1−G(B) using Feller’s result.

� �
Maurice Stevenson Bartlett (1910–2002) was a British statistician. Apart from a short period
in industry, he spent his career teaching and researching at the universities of Cambridge,
Manchester, London (University College), and Oxford. His many contributions include work on
the statistical analysis of multivariate data (especially factor analysis) and time series and on
stochastic models of population growth, epidemics, and spatial processes.� �

Acknowledgment
wntestb is based on the wntestf command by H. Joseph Newton (1996) of the Department of

Statistics at Texas A&M University and coeditor of the Stata Journal.

References
Bartlett, M. S. 1955. An Introduction to Stochastic Processes with Special Reference to Methods and Applications.

Cambridge: Cambridge University Press.

Feller, W. 1948. On the Kolmogorov–Smirnov limit theorems for empirical distributions. Annals of Mathematical
Statistics 19: 177–189.

Gani, J. 2002. Professor M. S. Bartlett FRS, 1910–2002. Statistician 51: 399–402.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

. 1996. sts12: A periodogram-based test for white noise. Stata Technical Bulletin 34: 36–39. Reprinted in Stata
Technical Bulletin Reprints, vol. 6, pp. 203–207. College Station, TX: Stata Press.

Olkin, I. 1989. A conversation with Maurice Bartlett. Statistical Science 4: 151–163.

Also see
[TS] tsset — Declare data to be time-series data

[TS] corrgram — Tabulate and graph autocorrelations

[TS] cumsp — Cumulative spectral distribution

[TS] pergram — Periodogram

[TS] wntestq — Portmanteau (Q) test for white noise

http://www.stata-journal.com/
http://www.stata.com/products/stb/journals/stb34.pdf

Title

wntestq — Portmanteau (Q) test for white noise

Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description

wntestq performs the portmanteau (or Q) test for white noise.

Quick start
Perform Portmanteau’s test for white noise on series y using tsset data

wntestq y

As above, but calculate 10 autocorrelations
wntestq y, lags(10)

Menu
Statistics > Time series > Tests > Portmanteau white-noise test

Syntax

wntestq varname
[

if
] [

in
] [

, lags(#)
]

You must tsset your data before using wntestq; see [TS] tsset. Also the time series must be dense (nonmissing
with no gaps in the time variable) in the specified sample.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Option
lags(#) specifies the number of autocorrelations to calculate. The default is to use min(bn/2c−2, 40),

where bn/2c is the greatest integer less than or equal to n/2.

Remarks and examples
Box and Pierce (1970) developed a portmanteau test of white noise that was refined by Ljung and

Box (1978). See also Diggle (1990, sec. 2.5).

896

wntestq — Portmanteau (Q) test for white noise 897

Example 1

In the example shown in [TS] wntestb, we generated two time series. One (x1) was a white-noise
process, and the other (x2) was a white-noise process with an embedded cosine curve. Here we
compare the output of the two tests.

. drop _all

. set seed 12393

. set obs 100
number of observations (_N) was 0, now 100

. generate x1 = rnormal()

. generate x2 = rnormal() + cos(2*_pi*(_n-1)/10)

. generate time = _n

. tsset time
time variable: time, 1 to 100

delta: 1 unit

. wntestb x1, table

Cumulative periodogram white-noise test

Bartlett’s (B) statistic = 0.8038
Prob > B = 0.5380

. wntestq x1

Portmanteau test for white noise

Portmanteau (Q) statistic = 31.0396
Prob > chi2(40) = 0.8443

. wntestb x2, table

Cumulative periodogram white-noise test

Bartlett’s (B) statistic = 2.1653
Prob > B = 0.0002

. wntestq x2

Portmanteau test for white noise

Portmanteau (Q) statistic = 225.6211
Prob > chi2(40) = 0.0000

This example shows that both tests agree. For the first process, the Bartlett and portmanteau tests
result in nonsignificant test statistics: a p-value of 0.5380 for wntestb and one of 0.8443 for wntestq.

For the second process, each test has a significant result to less than 0.0005.

Stored results
wntestq stores the following in r():

Scalars
r(stat) Q statistic r(p) probability value
r(df) degrees of freedom

898 wntestq — Portmanteau (Q) test for white noise

Methods and formulas
The portmanteau test relies on the fact that if x(1), . . . , x(n) is a realization from a white-noise

process. Then

Q = n(n+ 2)

m∑
j=1

1

n− j
ρ̂ 2(j) −→ χ2

m

where m is the number of autocorrelations calculated (equal to the number of lags specified) and
−→ indicates convergence in distribution to a χ2 distribution with m degrees of freedom. ρ̂j is the
estimated autocorrelation for lag j; see [TS] corrgram for details.

References
Box, G. E. P., and D. A. Pierce. 1970. Distribution of residual autocorrelations in autoregressive-integrated moving

average time series models. Journal of the American Statistical Association 65: 1509–1526.

Diggle, P. J. 1990. Time Series: A Biostatistical Introduction. Oxford: Oxford University Press.

Ljung, G. M., and G. E. P. Box. 1978. On a measure of lack of fit in time series models. Biometrika 65: 297–303.

Sperling, R. I., and C. F. Baum. 2001. sts19: Multivariate portmanteau (Q) test for white noise. Stata Technical
Bulletin 60: 39–41. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 373–375. College Station, TX:
Stata Press.

Also see
[TS] tsset — Declare data to be time-series data

[TS] corrgram — Tabulate and graph autocorrelations

[TS] cumsp — Cumulative spectral distribution

[TS] pergram — Periodogram

[TS] wntestb — Bartlett’s periodogram-based test for white noise

http://www.stata.com/products/stb/journals/stb60.pdf

Title

xcorr — Cross-correlogram for bivariate time series

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

xcorr plots the sample cross-correlation function.

Quick start
Plot sample cross-correlation function for y1 and y2 using tsset data

xcorr y1 y2

As above, but display a table instead of a graph
xcorr y1 y2, table

As above, but only include 10 lags and leads of the cross-correlation function
xcorr y1 y2, table lags(10)

As above, and generate xcorrvar containing the cross-correlation values
xcorr y1 y2, table lags(10) generate(xcorrvar)

Menu
Statistics > Time series > Graphs > Cross-correlogram for bivariate time series

899

900 xcorr — Cross-correlogram for bivariate time series

Syntax
xcorr varname1 varname2

[
if
] [

in
] [

, options
]

options Description

Main

generate(newvar) create newvar containing cross-correlation values
table display a table instead of graphical output
noplot do not include the character-based plot in tabular output
lags(#) include # lags and leads in graph

Plot

base(#) value to drop to; default is 0
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
line options change look of dropped lines

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

You must tsset your data before using xcorr; see [TS] tsset.
varname1 and varname2 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

generate(newvar) specifies a new variable to contain the cross-correlation values.

table requests that the results be presented as a table rather than the default graph.

noplot requests that the table not include the character-based plot of the cross-correlations.

lags(#) indicates the number of lags and leads to include in the graph. The default is to use
min(bn/2 c − 2, 20).

� � �
Plot �

base(#) specifies the value from which the lines should extend. The default is base(0).

marker options, marker label options, and line options affect the rendition of the plotted cross-
correlations.

marker options specify the look of markers. This look includes the marker symbol, the marker
size, and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

line options specify the look of the dropped lines, including pattern, width, and color; see
[G-3] line options.

xcorr — Cross-correlogram for bivariate time series 901

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples

Example 1

We have a bivariate time series (Box, Jenkins, and Reinsel 2008, Series J) on the input and output
of a gas furnace, where 296 paired observations on the input (gas rate) and output (% CO2) were
recorded every 9 seconds. The cross-correlation function is given by

. use http://www.stata-press.com/data/r14/furnace
(TIMESLAB: Gas furnace)

. xcorr input output, xline(5) lags(40)

−
1

.0
0

−
0

.5
0

0
.0

0
0

.5
0

1
.0

0

−
1

.0
0

−
0

.5
0

0
.0

0
0

.5
0

1
.0

0
C

ro
s
s
−

c
o

rr
e

la
ti
o

n
s
 o

f
in

p
u

t
a

n
d

 o
u

tp
u

t

−40 −20 0 20 40
Lag

Cross−correlogram

902 xcorr — Cross-correlogram for bivariate time series

We included a vertical line at lag 5, because there is a well-defined peak at this value. This peak
indicates that the output lags the input by five periods. Further, the fact that the correlations are
negative indicates that as input (coded gas rate) is increased, output (% CO2) decreases.

We may obtain the table of autocorrelations and the character-based plot of the cross-correlations
(analogous to the univariate time-series command corrgram) by specifying the table option.

. xcorr input output, table

-1 0 1
LAG CORR [Cross-correlation]

-20 -0.1033
-19 -0.1027
-18 -0.0998
-17 -0.0932
-16 -0.0832
-15 -0.0727
-14 -0.0660
-13 -0.0662
-12 -0.0751
-11 -0.0927
-10 -0.1180
-9 -0.1484
-8 -0.1793
-7 -0.2059
-6 -0.2266
-5 -0.2429
-4 -0.2604
-3 -0.2865
-2 -0.3287
-1 -0.3936
0 -0.4845
1 -0.5985
2 -0.7251
3 -0.8429
4 -0.9246
5 -0.9503
6 -0.9146
7 -0.8294
8 -0.7166
9 -0.5998
10 -0.4952
11 -0.4107
12 -0.3479
13 -0.3049
14 -0.2779
15 -0.2632
16 -0.2548
17 -0.2463
18 -0.2332
19 -0.2135
20 -0.1869

Once again, the well-defined peak is apparent in the plot.

xcorr — Cross-correlogram for bivariate time series 903

Methods and formulas
The cross-covariance function of lag k for time series x1 and x2 is given by

Cov
{
x1(t), x2(t+ k)

}
= R12(k)

This function is not symmetric about lag zero; that is,

R12(k) 6= R12(−k)

We define the cross-correlation function as

ρij(k) = Corr
{
xi(t), xj(t+ k)

}
=

Rij(k)√
Rii(0)Rjj(0)

where ρ11 and ρ22 are the autocorrelation functions for x1 and x2, respectively. The sequence ρ12(k)
is the cross-correlation function and is drawn for lags k ∈ (−Q,−Q+1, . . . ,−1, 0, 1, . . . , Q−1, Q).

If ρ12(k) = 0 for all lags, x1 and x2 are not cross-correlated.

References
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed.

Hoboken, NJ: Wiley.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Belmont, CA: Wadsworth.

Also see
[TS] tsset — Declare data to be time-series data

[TS] corrgram — Tabulate and graph autocorrelations

[TS] pergram — Periodogram

Glossary

add factor. An add factor is a quantity added to an endogenous variable in a forecast model. Add
factors can be used to incorporate outside information into a model, and they can be used to
produce forecasts under alternative scenarios.

ARCH model. An autoregressive conditional heteroskedasticity (ARCH) model is a regression model
in which the conditional variance is modeled as an autoregressive (AR) process. The ARCH(m)
model is

yt = xtβ+ εt

E(ε2t |ε2t−1, ε
2
t−2, . . .) = α0 + α1ε

2
t−1 + · · ·+ αmε

2
t−m

where εt is a white-noise error term. The equation for yt represents the conditional mean of
the process, and the equation for E(ε2t |ε2t−1, ε

2
t−2, . . .) specifies the conditional variance as an

autoregressive function of its past realizations. Although the conditional variance changes over
time, the unconditional variance is time invariant because yt is a stationary process. Modeling
the conditional variance as an AR process raises the implied unconditional variance, making this
model particularly appealing to researchers modeling fat-tailed data, such as financial data.

ARFIMA model. An autoregressive fractionally integrated moving-average (ARFIMA) model is a time-
series model suitable for use with long-memory processes. ARFIMA models generalize autoregressive
integrated moving-average (ARIMA) models by allowing the differencing parameter to be a real
number in (−0.5, 0.5) instead of requiring it to be an integer.

ARIMA model. An autoregressive integrated moving-average (ARIMA) model is a time-series model
suitable for use with integrated processes. In an ARIMA(p, d, q) model, the data is differenced d
times to obtain a stationary series, and then an ARMA(p, q) model is fit to this differenced data.
ARIMA models that include exogenous explanatory variables are known as ARMAX models.

ARMA model. An autoregressive moving-average (ARMA) model is a time-series model in which
the current period’s realization is the sum of an autoregressive (AR) process and a moving-average
(MA) process. An ARMA(p, q) model includes p AR terms and q MA terms. ARMA models with
just a few lags are often able to fit data as well as pure AR or MA models with many more lags.

ARMAX model. An ARMAX model is a time-series model in which the current period’s realization is
an ARMA process plus a linear function of a set of exogenous variables. Equivalently, an ARMAX
model is a linear regression model in which the error term is specified to follow an ARMA process.

autocorrelation function. The autocorrelation function (ACF) expresses the correlation between periods
t and t− k of a time series as function of the time t and the lag k. For a stationary time series,
the ACF does not depend on t and is symmetric about k = 0, meaning that the correlation between
periods t and t− k is equal to the correlation between periods t and t+ k.

autoregressive process. An autoregressive process is a time-series model in which the current value
of a variable is a linear function of its own past values and a white-noise error term. A first-order
autoregressive process, denoted as an AR(1) process, is yt = ρyt−1 + εt. An AR(p) model contains
p lagged values of the dependent variable.

band-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified
frequencies. Band-pass filters, such as those implemented in tsfilter bk and tsfilter cf,
pass through stochastic cycles in the specified range of frequencies and block all other stochastic
cycles.

904

Glossary 905

Cholesky ordering. Cholesky ordering is a method used to orthogonalize the error term in a VAR or
VECM to impose a recursive structure on the dynamic model, so that the resulting impulse–response
functions can be given a causal interpretation. The method is so named because it uses the Cholesky
decomposition of the error-covariance matrix.

Cochrane–Orcutt estimator. This estimation is a linear regression estimator that can be used when the
error term exhibits first-order autocorrelation. An initial estimate of the autocorrelation parameter ρ
is obtained from OLS residuals, and then OLS is performed on the transformed data ỹt = yt−ρyt−1

and x̃t = xt − ρxt−1.

cointegrating vector. A cointegrating vector specifies a stationary linear combination of nonstationary
variables. Specifically, if each of the variables x1, x2, . . . , xk is integrated of order one and there
exists a set of parameters β1, β2, . . . , βk such that zt = β1x1 +β2x2 + · · ·+βkxk is a stationary
process, the variables x1, x2, . . . , xk are said to be cointegrated, and the vector β is known as a
cointegrating vector.

conditional variance. Although the conditional variance is simply the variance of a conditional
distribution, in time-series analysis the conditional variance is often modeled as an autoregressive
process, giving rise to ARCH models.

correlogram. A correlogram is a table or graph showing the sample autocorrelations or partial
autocorrelations of a time series.

covariance stationarity. A process is covariance stationary if the mean of the process is finite and
independent of t, the unconditional variance of the process is finite and independent of t, and the
covariance between periods t and t− s is finite and depends on t− s but not on t or s themselves.
Covariance-stationary processes are also known as weakly stationary processes.

cross-correlation function. The cross-correlation function expresses the correlation between one series
at time t and another series at time t − k as a function of the time t and lag k. If both series
are stationary, the function does not depend on t. The function is not symmetric about k = 0:
ρ12(k) 6= ρ12(−k).

cyclical component. A cyclical component is a part of a time series that is a periodic function of
time. Deterministic functions of time are deterministic cyclical components, and random functions
of time are stochastic cyclical components. For example, fixed seasonal effects are deterministic
cyclical components and random seasonal effects are stochastic seasonal components.

Random coefficients on time inside of periodic functions form an especially useful class of stochastic
cyclical components; see [TS] ucm.

deterministic trend. A deterministic trend is a deterministic function of time that specifies the long-run
tendency of a time series.

difference operator. The difference operator ∆ denotes the change in the value of a variable
from period t − 1 to period t. Formally, ∆yt = yt − yt−1, and ∆2yt = ∆(yt − yt−1) =
(yt − yt−1)− (yt−1 − yt−2) = yt − 2yt−1 + yt−2.

drift. Drift is the constant term in a unit-root process. In

yt = α+ yt−1 + εt

α is the drift when εt is a stationary, zero-mean process.

dynamic forecast. A dynamic forecast uses forecast values wherever lagged values of the endogenous
variables appear in the model, allowing one to forecast multiple periods into the future.

dynamic-multiplier function. A dynamic-multiplier function measures the effect of a shock to an
exogenous variable on an endogenous variable. The kth dynamic-multiplier function of variable i

906 Glossary

on variable j measures the effect on variable j in period t+ k in response to a one-unit shock to
variable i in period t, holding everything else constant.

endogenous variable. An endogenous variable is a regressor that is correlated with the unobservable
error term. Equivalently, an endogenous variable is one whose values are determined by the
equilibrium or outcome of a structural model.

exogenous variable. An exogenous variable is a regressor that is not correlated with any of the
unobservable error terms in the model. Equivalently, an exogenous variable is one whose values
change independently of the other variables in a structural model.

exponential smoothing. Exponential smoothing is a method of smoothing a time series in which the
smoothed value at period t is equal to a fraction α of the series value at time t plus a fraction 1−α
of the previous period’s smoothed value. The fraction α is known as the smoothing parameter.

forecast-error variance decomposition. Forecast-error variance decompositions measure the fraction
of the error in forecasting variable i after h periods that is attributable to the orthogonalized shocks
to variable j.

forward operator. The forward operator F denotes the value of a variable at time t+ 1. Formally,
Fyt = yt+1, and F 2yt = Fyt+1 = yt+2.

frequency-domain analysis. Frequency-domain analysis is analysis of time-series data by considering
its frequency properties. The spectral density and distribution functions are key components of
frequency-domain analysis, so it is often called spectral analysis. In Stata, the cumsp and pergram
commands are used to analyze the sample spectral distribution and density functions, respectively.
psdensity estimates the spectral density or the spectral distribution function after estimating the
parameters of a parametric model using arfima, arima, or ucm.

gain (of a linear filter). The gain of a linear filter scales the spectral density of the unfiltered series
into the spectral density of the filtered series for each frequency. Specifically, at each frequency,
multiplying the spectral density of the unfiltered series by the square of the gain of a linear filter
yields the spectral density of the filtered series. If the gain at a particular frequency is 1, the filtered
and unfiltered spectral densities are the same at that frequency and the corresponding stochastic
cycles are passed through perfectly. If the gain at a particular frequency is 0, the filter removes
all the corresponding stochastic cycles from the unfiltered series.

GARCH model. A generalized autoregressive conditional heteroskedasticity (GARCH) model is a re-
gression model in which the conditional variance is modeled as an ARMA process. The GARCH(m, k)
model is

yt = xtβ+ εt

σ2
t = γ0 + γ1ε

2
t−1 + · · ·+ γmε

2
t−m + δ1σ

2
t−1 + · · ·+ δkσ

2
t−k

where the equation for yt represents the conditional mean of the process and σt represents the
conditional variance. See [TS] arch or Hamilton (1994, chap. 21) for details on how the conditional
variance equation can be viewed as an ARMA process. GARCH models are often used because the
ARMA specification often allows the conditional variance to be modeled with fewer parameters
than are required by a pure ARCH model. Many extensions to the basic GARCH model exist; see
[TS] arch for those that are implemented in Stata. See also ARCH model.

generalized least-squares estimator. A generalized least-squares (GLS) estimator is used to estimate
the parameters of a regression function when the error term is heteroskedastic or autocorrelated.
In the linear case, GLS is sometimes described as “OLS on transformed data” because the GLS
estimator can be implemented by applying an appropriate transformation to the dataset and then
using OLS.

Glossary 907

Granger causality. The variable x is said to Granger-cause variable y if, given the past values of y,
past values of x are useful for predicting y.

high-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified
frequencies. High-pass filters, such as those implemented in tsfilter bw and tsfilter hp, pass
through stochastic cycles above the cutoff frequency and block all other stochastic cycles.

Holt–Winters smoothing. A set of methods for smoothing time-series data that assume that the value
of a time series at time t can be approximated as the sum of a mean term that drifts over time,
as well as a time trend whose strength also drifts over time. Variations of the basic method allow
for seasonal patterns in data, as well.

impulse–response function. An impulse–response function (IRF) measures the effect of a shock to an
endogenous variable on itself or another endogenous variable. The kth impulse–response function
of variable i on variable j measures the effect on variable j in period t + k in response to a
one-unit shock to variable i in period t, holding everything else constant.

independent and identically distributed. A series of observations is independent and identically
distributed (i.i.d.) if each observation is an independent realization from the same underlying
distribution. In some contexts, the definition is relaxed to mean only that the observations are
independent and have identical means and variances; see Davidson and MacKinnon (1993, 42).

integrated process. A nonstationary process is integrated of order d, written I(d), if the process must
be differenced d times to produce a stationary series. An I(1) process yt is one in which ∆yt is
stationary.

Kalman filter. The Kalman filter is a recursive procedure for predicting the state vector in a state-space
model.

lag operator. The lag operator L denotes the value of a variable at time t−1. Formally, Lyt = yt−1,
and L2yt = Lyt−1 = yt−2.

linear filter. A linear filter is a sequence of weights used to compute a weighted average of a time
series at each time period. More formally, a linear filter α(L) is

α(L) = α0 + α1L+ α2L
2 + · · · =

∞∑
τ=0

ατL
τ

where L is the lag operator. Applying the linear filter α(L) to the time series xt yields a sequence
of weighted averages of xt:

α(L)xt =

∞∑
τ=0

ατL
τxt−τ

long-memory process. A long-memory process is a stationary process whose autocorrelations decay
at a slower rate than a short-memory process. ARFIMA models are typically used to represent
long-memory processes, and ARMA models are typically used to represent short-memory processes.

moving-average process. A moving-average process is a time-series process in which the current
value of a variable is modeled as a weighted average of current and past realizations of a white-
noise process and, optionally, a time-invariant constant. By convention, the weight on the current
realization of the white-noise process is equal to one, and the weights on the past realizations are
known as the moving-average (MA) coefficients. A first-order moving-average process, denoted as
an MA(1) process, is yt = θεt−1 + εt.

multivariate GARCH models. Multivariate GARCH models are multivariate time-series models in
which the conditional covariance matrix of the errors depends on its own past and its past shocks.

908 Glossary

The acute trade-off between parsimony and flexibility has given rise to a plethora of models; see
[TS] mgarch.

Newey–West covariance matrix. The Newey–West covariance matrix is a member of the class of
heteroskedasticity- and autocorrelation-consistent (HAC) covariance matrix estimators used with
time-series data that produces covariance estimates that are robust to both arbitrary heteroskedasticity
and autocorrelation up to a prespecified lag.

one-step-ahead forecast. See static forecast.

orthogonalized impulse–response function. An orthogonalized impulse–response function (OIRF)
measures the effect of an orthogonalized shock to an endogenous variable on itself or another
endogenous variable. An orthogonalized shock is one that affects one variable at time t but no
other variables. See [TS] irf create for a discussion of the difference between IRFs and OIRFs.

partial autocorrelation function. The partial autocorrelation function (PACF) expresses the correlation
between periods t and t−k of a time series as a function of the time t and lag k, after controlling
for the effects of intervening lags. For a stationary time series, the PACF does not depend on t.
The PACF is not symmetric about k = 0: the partial autocorrelation between yt and yt−k is not
equal to the partial autocorrelation between yt and yt+k.

periodogram. A periodogram is a graph of the spectral density function of a time series as a function
of frequency. The pergram command first standardizes the amplitude of the density by the sample
variance of the time series, and then plots the logarithm of that standardized density. Peaks in the
periodogram represent cyclical behavior in the data.

phase function. The phase function of a linear filter specifies how the filter changes the relative
importance of the random components at different frequencies in the frequency domain.

portmanteau statistic. The portmanteau, or Q, statistic is used to test for white noise and is calculated
using the first m autocorrelations of the series, where m is chosen by the user. Under the null
hypothesis that the series is a white-noise process, the portmanteau statistic has a χ2 distribution
with m degrees of freedom.

Prais–Winsten estimator. A Prais–Winsten estimator is a linear regression estimator that is used
when the error term exhibits first-order autocorrelation; see also Cochrane–Orcutt estimator. Here
the first observation in the dataset is transformed as ỹ1 =

√
1− ρ2 y1 and x̃1 =

√
1− ρ2 x1,

so that the first observation is not lost. The Prais–Winsten estimator is a generalized least-squares
estimator.

priming values. Priming values are the initial, preestimation values used to begin a recursive process.

random walk. A random walk is a time-series process in which the current period’s realization is
equal to the previous period’s realization plus a white-noise error term: yt = yt−1 + εt. A random
walk with drift also contains a nonzero time-invariant constant: yt = δ+ yt−1 + εt. The constant
term δ is known as the drift parameter. An important property of random-walk processes is that
the best predictor of the value at time t + 1 is the value at time t plus the value of the drift
parameter.

recursive regression analysis. A recursive regression analysis involves performing a regression at
time t by using all available observations from some starting time t0 through time t, performing
another regression at time t + 1 by using all observations from time t0 through time t + 1, and
so on. Unlike a rolling regression analysis, the first period used for all regressions is held fixed.

rolling regression analysis. A rolling, or moving window, regression analysis involves performing
regressions for each period by using the most recent m periods’ data, where m is known as the
window size. At time t the regression is fit using observations for times t− 19 through time t; at
time t+ 1 the regression is fit using the observations for time t− 18 through t+ 1; and so on.

Glossary 909

seasonal difference operator. The period-s seasonal difference operator ∆s denotes the difference
in the value of a variable at time t and time t − s. Formally, ∆syt = yt − yt−s, and ∆2

syt =
∆s(yt − yt−s) = (yt − yt−s)− (yt−s − yt−2s) = yt − 2yt−s + yt−2s.

serial correlation. Serial correlation refers to regression errors that are correlated over time. If a
regression model does not contained lagged dependent variables as regressors, the OLS estimates
are consistent in the presence of mild serial correlation, but the covariance matrix is incorrect.
When the model includes lagged dependent variables and the residuals are serially correlated, the
OLS estimates are biased and inconsistent. See, for example, Davidson and MacKinnon (1993,
chap. 10) for more information.

serial correlation tests. Because OLS estimates are at least inefficient and potentially biased in the
presence of serial correlation, econometricians have developed many tests to detect it. Popular ones
include the Durbin–Watson (1950, 1951, 1971) test, the Breusch–Pagan (1980) test, and Durbin’s
(1970) alternative test. See [R] regress postestimation time series.

smoothing. Smoothing a time series refers to the process of extracting an overall trend in the data.
The motivation behind smoothing is the belief that a time series exhibits a trend component as
well as an irregular component and that the analyst is interested only in the trend component.
Some smoothers also account for seasonal or other cyclical patterns.

spectral analysis. See frequency-domain analysis.

spectral density function. The spectral density function is the derivative of the spectral distribution
function. Intuitively, the spectral density function f(ω) indicates the amount of variance in a time
series that is attributable to sinusoidal components with frequency ω. See also spectral distribution
function. The spectral density function is sometimes called the spectrum.

spectral distribution function. The (normalized) spectral distribution function F (ω) of a process
describes the proportion of variance that can be explained by sinusoids with frequencies in the
range (0, ω), where 0 ≤ ω ≤ π. The spectral distribution and density functions used in frequency-
domain analysis are closely related to the autocorrelation function used in time-domain analysis;
see Chatfield (2004, chap. 6) and Wei (2006, chap. 12).

spectrum. See spectral density function.

state-space model. A state-space model describes the relationship between an observed time series
and an unobservable state vector that represents the “state” of the world. The measurement equation
expresses the observed series as a function of the state vector, and the transition equation describes
how the unobserved state vector evolves over time. By defining the parameters of the measurement
and transition equations appropriately, one can write a wide variety of time-series models in the
state-space form.

static forecast. A static forecast uses actual values wherever lagged values of the endogenous variables
appear in the model. As a result, static forecasts perform at least as well as dynamic forecasts,
but static forecasts cannot produce forecasts into the future if lags of the endogenous variables
appear in the model.

Because actual values will be missing beyond the last historical time period in the dataset, static
forecasts can only forecast one period into the future (assuming only first lags appear in the model);
for that reason, they are often called one-step-ahead forecasts.

steady-state equilibrium. The steady-state equilibrium is the predicted value of a variable in a dynamic
model, ignoring the effects of past shocks, or, equivalently, the value of a variable, assuming that
the effects of past shocks have fully died out and no longer affect the variable of interest.

910 Glossary

stochastic equation. A stochastic equation, in contrast to an identity, is an equation in a forecast model
that includes a random component, most often in the form of an additive error term. Stochastic
equations include parameters that must be estimated from historical data.

stochastic trend. A stochastic trend is a nonstationary random process. Unit-root process and random
coefficients on time are two common stochastic trends. See [TS] ucm for examples and discussions
of more commonly applied stochastic trends.

strict stationarity. A process is strictly stationary if the joint distribution of y1, . . . , yk is the same
as the joint distribution of y1+τ , . . . , yk+τ for all k and τ . Intuitively, shifting the origin of the
series by τ units has no effect on the joint distributions.

structural model. In time-series analysis, a structural model is one that describes the relationship
among a set of variables, based on underlying theoretical considerations. Structural models may
contain both endogenous and exogenous variables.

SVAR. A structural vector autoregressive (SVAR) model is a type of VAR in which short- or long-run
constraints are placed on the resulting impulse–response functions. The constraints are usually
motivated by economic theory and therefore allow causal interpretations of the IRFs to be made.

time-domain analysis. Time-domain analysis is analysis of data viewed as a sequence of observations
observed over time. The autocorrelation function, linear regression, ARCH models, and ARIMA
models are common tools used in time-domain analysis.

trend. The trend specifies the long-run behavior in a time series. The trend can be deterministic or
stochastic. Many economic, biological, health, and social time series have long-run tendencies to
increase or decrease. Before the 1980s, most time-series analysis specified the long-run tendencies
as deterministic functions of time. Since the 1980s, the stochastic trends implied by unit-root
processes have become a standard part of the toolkit.

unit-root process. A unit-root process is one that is integrated of order one, meaning that the process
is nonstationary but that first-differencing the process produces a stationary series. The simplest
example of a unit-root process is the random walk. See Hamilton (1994, chap. 15) for a discussion
of when general ARMA processes may contain a unit root.

unit-root tests. Whether a process has a unit root has both important statistical and economic
ramifications, so a variety of tests have been developed to test for them. Among the earliest
tests proposed is the one by Dickey and Fuller (1979), though most researchers now use an
improved variant called the augmented Dickey–Fuller test instead of the original version. Other
common unit-root tests implemented in Stata include the DF–GLS test of Elliott, Rothenberg, and
Stock (1996) and the Phillips–Perron (1988) test. See [TS] dfuller, [TS] dfgls, and [TS] pperron.

Variants of unit-root tests suitable for panel data have also been developed; see [XT] xtunitroot.
VAR. A vector autoregressive (VAR) model is a multivariate regression technique in which each

dependent variable is regressed on lags of itself and on lags of all the other dependent variables
in the model. Occasionally, exogenous variables are also included in the model.

VECM. A vector error-correction model (VECM) is a type of VAR that is used with variables that
are cointegrated. Although first-differencing variables that are integrated of order one makes them
stationary, fitting a VAR to such first-differenced variables results in misspecification error if the
variables are cointegrated. See The multivariate VECM specification in [TS] vec intro for more
on this point.

white noise. A variable ut represents a white-noise process if the mean of ut is zero, the variance
of ut is σ2, and the covariance between ut and us is zero for all s 6= t.

Glossary 911

Yule–Walker equations. The Yule–Walker equations are a set of difference equations that describe the
relationship among the autocovariances and autocorrelations of an autoregressive moving-average
(ARMA) process.

References
Breusch, T. S., and A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model specification in

econometrics. Review of Economic Studies 47: 239–253.

Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root.
Journal of the American Statistical Association 74: 427–431.

Durbin, J. 1970. Testing for serial correlation in least-squares regressions when some of the regressors are lagged
dependent variables. Econometrica 38: 410–421.

Durbin, J., and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I. Biometrika 37:
409–428.

. 1951. Testing for serial correlation in least squares regression. II. Biometrika 38: 159–177.

. 1971. Testing for serial correlation in least squares regression. III. Biometrika 58: 1–19.

Elliott, G. R., T. J. Rothenberg, and J. H. Stock. 1996. Efficient tests for an autoregressive unit root. Econometrica
64: 813–836.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Phillips, P. C. B., and P. Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–346.

Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

http://www.stata.com/bookstore/eie.html

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.

913

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac OS X

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.3.1What's new in statistics (general)
	What's new in statistics (SEM)
	What's new in statistics (multilevel modeling)
	What's new in statistics (treatment effects)
	What's new in statistics (longitudinal/panel data)
	What's new in statistics (time series)
	What's new in statistics (survival analysis)
	What's new in statistics (survey data)
	What's new in statistics (power and sample size)
	What's new in statistics (multiple imputation)
	What's new in statistics (multivariate)
	What's new in data management
	What's new in functions
	What's new in graphics
	What's new in Mata
	What's new in programming
	What's new in the Stata interface

	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support
	3.9 References

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata
	5.3 Size limits of Stata/MP, SE, IC, and Small Stata
	5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 Setting matsize
	6.5 The memory command

	7 --more-- conditions
	7.1 Description
	7.2 set more off
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to user-written additions?
	17.10 Reference

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specifying the estimation subsample
	20.7 Specifying the width of confidence intervals
	20.8 Formatting the coefficient table
	20.9 Obtaining the variance--covariance matrix
	20.10 Obtaining predicted values
	20.11 Accessing estimated coefficients
	20.12 Performing hypothesis tests on the coefficients
	20.13 Obtaining linear combinations of coefficients
	20.14 Obtaining nonlinear combinations of coefficients
	20.15 Obtaining marginal means, adjusted predictions, and predictive margins
	20.16 Obtaining conditional and average marginal effects
	20.17 Obtaining pairwise comparisons
	20.18 Obtaining contrasts, tests of interactions, and main effects
	20.19 Graphing margins, marginal effects, and contrasts
	20.20 Dynamic forecasts and simulations
	20.21 Obtaining robust variance estimates
	20.22 Obtaining scores
	20.23 Weighted estimation
	20.24 A list of postestimation commands
	20.25 References

	Advice
	21 Entering and importing data
	21.1 Overview
	21.2 Determining which method to use
	21.3 If you run out of memory
	21.4 Transfer programs
	21.5 ODBC sources
	21.6 Reference

	22 Combining datasets
	22.1 References

	23 Working with strings
	23.1 Description
	23.2 Categorical string variables
	23.3 Mistaken string variables
	23.4 Complex strings
	23.5 Reference

	24 Working with dates and times
	24.1 Overview
	24.2 Inputting dates and times
	24.3 Displaying dates and times
	24.4 Typing dates and times (datetime literals)
	24.5 Extracting components of dates and times
	24.6 Converting between date and time values
	24.7 Business dates and calendars
	24.8 References

	25 Working with categorical data and factor variables
	25.1 Continuous, categorical, and indicator variables
	25.2 Estimation with factor variables

	26 Overview of Stata estimation commands
	26.1 Introduction
	26.2 Means, proportions, and related statistics
	26.3 Linear regression with simple error structures
	26.4 Structural equation modeling (SEM)
	26.5 ANOVA, ANCOVA, MANOVA, and MANCOVA
	26.6 Generalized linear models
	26.7 Binary-outcome qualitative dependent-variable models
	26.8 ROC analysis
	26.9 Conditional logistic regression
	26.10 Fractional-outcome dependent-variable models
	26.11 Multiple-outcome qualitative dependent-variable models
	26.12 Item response theory
	26.13 Count dependent-variable models
	26.14 Exact estimators
	26.15 Linear regression with heteroskedastic errors
	26.16 Stochastic frontier models
	26.17 Regression with systems of equations
	26.18 Models with endogenous sample selection
	26.19 Models with time-series data
	26.20 Panel-data models
	26.21 Multilevel mixed-effects models
	26.22 Survival-time (failure-time) models
	26.23 Treatment-effect models
	26.24 Generalized method of moments (GMM)
	26.25 Estimation with correlated errors
	26.26 Survey data
	26.27 Multiple imputation
	26.28 Multivariate and cluster analysis
	26.29 Pharmacokinetic data
	26.30 Specification search tools
	26.31 Power and sample-size analysis
	26.32 Bayesian analysis
	26.33 Obtaining new estimation commands
	26.34 References

	27 Commands everyone should know
	27.1 41 commands
	27.2 The by construct

	28 Using the Internet to keep up to date
	28.1 Overview
	28.2 Sharing datasets (and other files)
	28.3 Official updates
	28.4 Downloading and managing additions by users
	28.5 Making your own download site

	[BAYES] Bayesian Analysis
	Contents
	intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary

	References
	Also see

	bayes
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of MH sampling

	Logistic regression model: a case of nonidentifiable parameters
	Ordered probit regression
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model{---}a random-coefficient model

	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Also see

	bayesmh postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after bayesmh

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	Reference
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	intro
	Description
	Also see

	data management
	Description
	Reference
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	datetime
	Description
	Syntax
	Types of dates and their human readable forms (HRFs)
	Stata internal form (SIF)
	HRF-to-SIF conversion functions
	Displaying SIFs in HRF
	Building SIFs from components
	SIF-to-SIF conversion
	Extracting time-of-day components from SIFs
	Extracting date components from SIFs
	Conveniently typing SIF values
	Obtaining and working with durations
	Using dates and times from other software

	Remarks and examples
	References
	Also see

	datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	datetime display formats
	Description
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	datetime translation
	Description
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the HRF-to-SIF functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Translating run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two SIF datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other translation functions

	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Acknowledgments
	References
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	References
	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode

	Reference
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats

	References
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type

	Methods and formulas
	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup

	Remarks and examples
	Using icd10
	Managing datasets with ICD-10 codes
	Creating new variables
	Working with U codes

	Stored results
	Acknowledgments
	References
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	odbc
	infile (free format){---}infile without a dictionary
	infix (fixed format)
	infile (fixed format){---}infile with a dictionary
	import sasxport
	import haver (Windows only)
	xmluse

	Examples
	Video example

	Reference
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	import delimited
	export delimited
	Video example

	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sasxport
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport
	Option for import sasxport, describe
	Options for export sasxport
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	References
	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Reference
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Reference
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples

	References
	Also see

	missing values
	Description
	Remarks and examples
	Reference
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings

	References
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xmlsave
	Description
	Menu
	Syntax
	Options for xmlsave
	Options for xmluse
	Remarks and examples
	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Option for zipfile
	Option for unzipfile
	Remarks and examples

	[FN] Functions
	Contents
	intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	lnfactorial()
	lngamma()
	log()
	log10()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	Matrix functions returning a scalar
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	KISS32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distributions
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distributions
	dunnettprob()
	invdunnettprob()
	Exponential distributions
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma and inverse gamma distributions
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distributions
	hypergeometricp()
	hypergeometric()
	Logistic distributions
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distributions
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), log of the normal, binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distributions
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distributions
	tukeyprob()
	invtukeyprob()
	Weibull distributions
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distributions
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart and inverse Wishart distributions
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexm()
	regexr()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	Reference
	Also see

	[G] Graphics
	Contents
	Introduction
	intro
	Description
	Also see

	graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	graph editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits

	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Reference
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	Reference
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboption
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	Reference
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Colors are independent of the background color
	White backgrounds and black backgrounds
	RGB values
	CMYK values
	HSV values
	Adjusting intensity

	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Remarks and examples
	Syntax
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	relativesize
	Description
	Syntax
	Remarks and examples
	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	Also see

	scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	scheme sj
	Description
	Syntax
	Remarks and examples
	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	intro
	Contents
	Description
	Remarks and examples
	What's new

	Also see

	Introduction and advice
	intro
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	first
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	how
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	limits
	Description
	Summary
	Remarks and examples
	Also see

	naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	returnedargs
	Description
	Syntax
	Remarks and examples
	Also see

	source
	Description
	Syntax
	Remarks and examples
	Also see

	tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Also see

	comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	Reference
	Also see

	subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Option
	Syntax
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Index and guide to functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	io
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	manipulation
	Contents
	Description
	Remarks and examples
	Also see

	mathematical
	Contents
	Description
	Remarks and examples
	Also see

	matrix
	Contents
	Description
	Remarks and examples
	Also see

	programming
	Contents
	Also see

	scalar
	Contents
	Description
	Remarks and examples
	Also see

	solvers
	Contents
	Description
	Remarks and examples
	Also see

	standard
	Contents
	Description
	Remarks and examples
	Also see

	stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	statistical
	Contents
	Description
	Remarks and examples
	Also see

	string
	Contents
	Description
	Remarks and examples
	Also see

	utility
	Contents
	Description
	Remarks and examples
	Also see

	Mata functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table

	Query routines
	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes
	Stata's matsize is irrelevant

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Setting the Excel worksheet
	Step 4: Reading and writing data from and to an Excel worksheet
	Step 5: Formatting cells in an Excel worksheet
	Step 6: Formatting text in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Specifying the Excel worksheet
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples
	Format colors

	Utility functions
	Handling errors
	Error codes

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models

	Acknowledgments
	References
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	References
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models

	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	meqrlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	meqrlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	References
	Also see

	meqrpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	meqrpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc
	Options for estat recovariance
	Options for estat wcorrelation
	Options for estat df

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations
	Within-cluster covariance matrix
	Small-sample inference

	References
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order
	What's new

	Acknowledgments
	Also see

	estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	intro
	Description
	Also see

	multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents
	intro
	Description
	References
	Also see

	automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Efficiency settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Unicode settings
	Other settings
	Other

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	file formats .dta
	Description
	Remarks and examples
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	java
	Description
	Usage
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Option
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro extended functions
	Macro extended function for extracting program properties
	Macro extended functions for extracting data attributes
	Macro extended function for naming variables
	Macro extended functions for filenames and file paths
	Macro extended function for accessing operating-system parameters
	Macro extended functions for names of stored results
	Macro extended function for formatting results
	Macro extended function for manipulating lists
	Macro extended functions related to matrices
	Macro extended function related to time-series operators
	Macro extended function for copying a macro
	Macro extended functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro extended functions

	References
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	putexcel
	Description
	Menu
	Syntax
	cellexplist types

	Options
	Remarks and examples
	Video example

	References
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Printing
	Bringing forward
	Closing
	Renaming

	Commands to manage Viewer windows
	Printing
	Bringing forward
	Closing

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	[PSS] Power and Sample Size
	Contents
	intro
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example with PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Contingency tables
	Survival analysis
	Tables of results
	Power curves

	Stored results
	Methods and formulas
	References
	Also see

	power, graph
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	Computing power

	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using a log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary

	[R] Base Reference
	Contents
	Introduction
	intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	adoupdate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adoupdate
	Possible problem the first time you run adoupdate and the solution
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	asclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	asclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Methods and formulas
	Also see

	asmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Variance structures

	Stored results
	Methods and formulas
	Simulated likelihood

	References
	Also see

	asmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics
	Obtaining marginal effects

	Stored results
	Methods and formulas
	Marginal effects

	Also see

	asroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	asroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	BIC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary confidence intervals
	Binomial confidence intervals
	Poisson confidence intervals
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	Ordinary
	Binomial
	Poisson

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log-log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	copyright apache
	Description
	Also see

	copyright boost
	Description
	Also see

	copyright icd10
	Description
	Also see

	copyright icu
	Description
	Also see

	copyright lapack
	Description
	Also see

	copyright libharu
	Description
	Also see

	copyright libpng
	Description
	Also see

	copyright mersennetwister
	Description
	Also see

	copyright miglayout
	Description
	Also see

	copyright scintilla
	Description
	Also see

	copyright ttf2pt1
	Description
	Also see

	copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimation options
	Description
	Syntax
	Options
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options for fp
	Options for fp generate
	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	References
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins

	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Reference
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases
	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	inequality
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	limits
	Description
	Remarks and examples
	Maximum size limits
	Matrix size
	Determining which flavor of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	matsize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	maximize
	Description
	Syntax
	Maximization options
	Option for set maxiter
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	Remarks and examples
	Reference
	Also see

	meta
	Remarks and examples
	References

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	mkspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Linear splines
	Restricted cubic splines

	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	Reference
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	References
	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	References
	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	news
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	pk
	Description
	Remarks and examples
	References

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and significance levels
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	qc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R2

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Instrumental variables and two-stage least-squares regression
	Video example

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	Reference

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of rologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state
	Random-number generators in Stata

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables
	Video example

	Methods and formulas
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	References
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	intro 1
	Description
	Remarks and examples
	Also see

	intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes

	Reference
	Also see

	intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables
	Inconsistency between gsem and other estimation commands

	Also see

	intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models

	References
	Also see

	intro 6
	Description
	Remarks and examples
	The generic SEM model
	Fitting the model for different groups of the data
	Which parameters vary by default, and which do not
	Specifying which parameters are allowed to vary in broad, sweeping terms
	Adding constraints for path coefficients across groups
	Adding constraints for means, variances, or covariances across groups
	Adding constraints for some groups but not others
	Adding paths for some groups but not others
	Relaxing constraints

	Reference
	Also see

	intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	intro 8
	Description
	Options
	Remarks and examples
	Also see

	intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	intro 10
	Description
	Remarks and examples
	Also see

	intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	example 4
	Description
	Remarks and examples
	Reference
	Also see

	example 5
	Description
	Remarks and examples
	Reference
	Also see

	example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	example 11
	Description
	Remarks and examples
	Also see

	example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	example 13
	Description
	Remarks and examples
	Also see

	example 14
	Description
	Remarks and examples
	Also see

	example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 19
	Description
	Remarks and examples
	Reference
	Also see

	example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	example 21
	Description
	Remarks and examples
	Also see

	example 22
	Description
	Remarks and examples
	Also see

	example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying family and link

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability

	Link functions
	The logit link
	The probit link
	The complementary log-log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	The likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation

	Survey data
	Postestimation
	Empirical Bayes
	Other predictions

	References
	Also see

	methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Reference
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	intro
	Description
	Also see

	survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	discrete
	Description
	Acknowledgment
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Reference
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options for strate
	Options for stmh and stmc
	Remarks and examples
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Stored results
	Acknowledgments
	References
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Adjusted estimates
	Counting the number lost due to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	Glossary

	[SVY] Survey Data
	Contents
	intro
	Description
	Also see

	survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	poststratification
	Description
	Remarks and examples
	Overview
	Video example

	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TE] Treatment Effects
	Contents
	intro
	Description
	Also see

	treatment effects
	Description
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and trade-offs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Inverse-probability-weighted regression adjustment
	Augmented inverse-probability weighting
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	Reference
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects overlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[TS] Time Series
	Contents
	intro
	Description
	Also see

	time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series
	Multivariate time series
	Forecasting models

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	Remarks and examples
	Methods and formulas
	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Glossary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

