
STATA BAYESIAN ANALYSIS
REFERENCE MANUAL

RELEASE 14

®

A Stata Press Publication
StataCorp LP
College Station, Texas

® Copyright c© 1985–2015 StataCorp LP
All rights reserved
Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-149-8
ISBN-13: 978-1-59718-149-5

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright c© 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14 . Statistical Software. College Station, TX: StataCorp LP.

Contents

intro . Introduction to Bayesian analysis 1

bayes . Introduction to commands for Bayesian analysis 24

bayesmh . Bayesian regression using Metropolis–Hastings algorithm 40

bayesmh evaluators . User-defined evaluators with bayesmh 148

bayesmh postestimation . Postestimation tools for bayesmh 169

bayesgraph . Graphical summaries and convergence diagnostics 173

bayesstats . Bayesian statistics after bayesmh 192
bayesstats ess . Effective sample sizes and related statistics 193
bayesstats ic . Bayesian information criteria and Bayes factors 199
bayesstats summary . Bayesian summary statistics 208

bayestest . Bayesian hypothesis testing 219
bayestest interval . Interval hypothesis testing 220
bayestest model Hypothesis testing using model posterior probabilities 231

set clevel . Set default credible level 243

Glossary . 247

Subject and author index . 255

i

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[D] Stata Data Management Reference Manual
[FN] Stata Functions Reference Manual
[G] Stata Graphics Reference Manual
[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[I] Stata Glossary and Index

[M] Mata Reference Manual

iii

Title

intro — Introduction to Bayesian analysis

Description Remarks and examples References Also see

Description
This entry provides a software-free introduction to Bayesian analysis. See [BAYES] bayes for an

overview of the software for performing Bayesian analysis and for an overview example.

Remarks and examples
Remarks are presented under the following headings:

What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics

Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction

Bayesian computation
Markov chain Monte Carlo methods

Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC

Summary

The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.

What is Bayesian analysis?

Bayesian analysis is a statistical analysis that answers research questions about unknown parameters
of statistical models by using probability statements. Bayesian analysis rests on the assumption that all
model parameters are random quantities and thus can incorporate prior knowledge. This assumption
is in sharp contrast with the more traditional, also called frequentist, statistical inference where all
parameters are considered unknown but fixed quantities. Bayesian analysis follows a simple rule
of probability, the Bayes rule, which provides a formalism for combining prior information with
evidence from the data at hand. The Bayes rule is used to form the so called posterior distribution of
model parameters. The posterior distribution results from updating the prior knowledge about model
parameters with evidence from the observed data. Bayesian analysis uses the posterior distribution to
form various summaries for the model parameters including point estimates such as posterior means,
medians, percentiles, and interval estimates such as credible intervals. Moreover, all statistical tests
about model parameters can be expressed as probability statements based on the estimated posterior
distribution.

1

2 intro — Introduction to Bayesian analysis

As a quick introduction to Bayesian analysis, we use an example, described in Hoff (2009, 3),
of estimating the prevalence of a rare infectious disease in a small city. A small random sample of
20 subjects from the city will be checked for infection. The parameter of interest θ ∈ [0, 1] is the
fraction of infected individuals in the city. Outcome y records the number of infected individuals in
the sample. A reasonable sampling model for y is a binomial model: y|θ ∼ Binomial(20, θ). Based
on the studies from other comparable cities, the infection rate ranged between 0.05 and 0.20, with
an average prevalence of 0.10. To use this information, we must conduct Bayesian analysis. This
information can be incorporated into a Bayesian model with a prior distribution for θ, which assigns
a large probability between 0.05 and 0.20, with the expected value of θ close to 0.10. One potential
prior that satisfies this condition is a Beta(2, 20) prior with the expected value of 2/(2 + 20) = 0.09.
So, let’s assume this prior for the infection rate θ, that is, θ ∼ Beta(2, 20). We sample individuals
and observe none who have an infection, that is, y = 0. This value is not that uncommon for a small
sample and a rare disease. For example, for a true rate θ = 0.05, the probability of observing 0
infections in a sample of 20 individuals is about 36% according to the binomial distribution. So, our
Bayesian model can be defined as follows:

y|θ ∼ Binomial(20, θ)

θ ∼ Beta(2, 20)

For this Bayesian model, we can actually compute the posterior distribution of θ|y, which is
θ|y ∼ Beta(2 + 0, 20 + 20− 0) = Beta(2, 40). The prior and posterior distributions of θ are depicted
below.

0
5

1
0

1
5

0 .2 .4 .6 .8 1
Proportion infected in the population, θ

p(θ) p(θ|y)

Prior and posterior distributions of θ

The posterior density (shown in red) is more peaked and shifted to the left compared with the prior
distribution (shown in blue). The posterior distribution combined the prior information about θ with

intro — Introduction to Bayesian analysis 3

the information from the data, from which y = 0 provided evidence for a low value of θ and shifted
the prior density to the left to form the posterior density. Based on this posterior distribution, the
posterior mean estimate of θ is 2/(2 + 40) = 0.048 and the posterior probability that, for example,
θ < 0.10 is about 93%.

If we compute a standard frequentist estimate of a population proportion θ as a fraction of the
infected subjects in the sample, y = y/n, we will obtain 0 with the corresponding 95% confidence
interval (y − 1.96

√
y (1− y)/n, y + 1.96

√
y (1− y)/n) reducing to 0 as well. It may be difficult

to convince a health policy maker that the prevalence of the disease in that city is indeed 0, given
the small sample size and the prior information available from comparable cities about a nonzero
prevalence of this disease.

We used a beta prior distribution in this example, but we could have chosen another prior distribution
that supports our prior knowledge. For the final analysis, it is important to consider a range of different
prior distributions and investigate the sensitivity of the results to the chosen priors.

For more details about this example, see Hoff (2009). Also see Beta-binomial model in
[BAYES] bayesmh for how to fit this model using bayesmh.

Bayesian versus frequentist analysis, or why Bayesian analysis?

Why use Bayesian analysis? Perhaps a better question is when to use Bayesian analysis and when
to use frequentist analysis. The answer to this question mainly lies in your research problem. You
should choose an analysis that answers your specific research questions. For example, if you are
interested in estimating the probability that the parameter of interest belongs to some prespecified
interval, you will need the Bayesian framework, because this probability cannot be estimated within
the frequentist framework. If you are interested in a repeated-sampling inference about your parameter,
the frequentist framework provides that.

Bayesian and frequentist approaches have very different philosophies about what is considered fixed
and, therefore, have very different interpretations of the results. The Bayesian approach assumes that
the observed data sample is fixed and that model parameters are random. The posterior distribution
of parameters is estimated based on the observed data and the prior distribution of parameters and is
used for inference. The frequentist approach assumes that the observed data are a repeatable random
sample and that parameters are unknown but fixed and constant across the repeated samples. The
inference is based on the sampling distribution of the data or of the data characteristics (statistics). In
other words, Bayesian analysis answers questions based on the distribution of parameters conditional
on the observed sample, whereas frequentist analysis answers questions based on the distribution of
statistics obtained from repeated hypothetical samples, which would be generated by the same process
that produced the observed sample given that parameters are unknown but fixed. Frequentist analysis
consequently requires that the process that generated the observed data is repeatable. This assumption
may not always be feasible. For example, in meta-analysis, where the observed sample represents the
collected studies of interest, one may argue that the collection of studies is a one-time experiment.

Frequentist analysis is entirely data-driven and strongly depends on whether or not the data
assumptions required by the model are met. On the other hand, Bayesian analysis provides a more
robust estimation approach by using not only the data at hand but also some existing information or
knowledge about model parameters.

In frequentist statistics, estimators are used to approximate the true values of the unknown parameters,
whereas Bayesian statistics provides an entire distribution of the parameters. In our example of a
prevalence of an infectious disease from What is Bayesian analysis?, frequentist analysis produced one
point estimate for the prevalence, whereas Bayesian analysis estimated the entire posterior distribution
of the prevalence based on a given sample.

4 intro — Introduction to Bayesian analysis

Frequentist inference is based on the sampling distributions of estimators of parameters and provides
parameter point estimates and their standard errors as well as confidence intervals. The exact sampling
distributions are rarely known and are often approximated by a large-sample normal distribution.
Bayesian inference is based on the posterior distribution of the parameters and provides summaries of
this distribution including posterior means and their MCMC standard errors (MCSE) as well as credible
intervals. Although exact posterior distributions are known only in a number of cases, general posterior
distributions can be estimated via, for example, Markov chain Monte Carlo (MCMC) sampling without
any large-sample approximation.

Frequentist confidence intervals do not have straightforward probabilistic interpretations as do
Bayesian credible intervals. For example, the interpretation of a 95% confidence interval is that if
we repeat the same experiment many times and compute confidence intervals for each experiment,
then 95% of those intervals will contain the true value of the parameter. For any given confidence
interval, the probability that the true value is in that interval is either zero or one, and we do not
know which. We may only infer that any given confidence interval provides a plausible range for the
true value of the parameter. A 95% Bayesian credible interval, on the other hand, provides a range
for a parameter such that the probability that the parameter lies in that range is 95%.

Frequentist hypothesis testing is based on a deterministic decision using a prespecified significance
level of whether to accept or reject the null hypothesis based on the observed data, assuming that
the null hypothesis is actually true. The decision is based on a p-value computed from the observed
data. The interpretation of the p-value is that if we repeat the same experiment and use the same
testing procedure many times, then given our null hypothesis is true, we will observe the result (test
statistic) as extreme or more extreme than the one observed in the sample (100× p-value)% of the
times. The p-value cannot be interpreted as a probability of the null hypothesis, which is a common
misinterpretation. In fact, it answers the question of how likely are our data given that the null
hypothesis is true, and not how likely is the null hypothesis given our data. The latter question can
be answered by Bayesian hypothesis testing, where we can compute the probability of any hypothesis
of interest.

How to do Bayesian analysis

Bayesian analysis starts with the specification of a posterior model. The posterior model describes
the probability distribution of all model parameters conditional on the observed data and some prior
knowledge. The posterior distribution has two components: a likelihood, which includes information
about model parameters based on the observed data, and a prior, which includes prior information
(before observing the data) about model parameters. The likelihood and prior models are combined
using the Bayes rule to produce the posterior distribution:

Posterior ∝ Likelihood× Prior

If the posterior distribution can be derived in a closed form, we may proceed directly to the
inference stage of Bayesian analysis. Unfortunately, except for some special models, the posterior
distribution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling
can be used to simulate potentially very complex posterior models with an arbitrary level of precision.
MCMC methods for simulating Bayesian models are often demanding in terms of specifying an efficient
sampling algorithm and verifying the convergence of the algorithm to the desired posterior distribution.

Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the
posterior distribution, the convergence of MCMC must be established before proceeding to inference.
Point and interval estimators are either derived from the theoretical posterior distribution or estimated
from a sample simulated from the posterior distribution. Many Bayesian estimators, such as posterior

intro — Introduction to Bayesian analysis 5

mean and posterior standard deviation, involve integration. If the integration cannot be performed
analytically to obtain a closed-form solution, sampling techniques such as Monte Carlo integration
and MCMC and numerical integration are commonly used.

Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing
and model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or
a set of parameters belongs to a particular interval or intervals is computed. In model hypothesis
testing, the probability of a Bayesian model of interest given the observed data is computed.

Model comparison is another common step of Bayesian analysis. The Bayesian framework provides
a systematic and consistent approach to model comparison using the notion of posterior odds and
related to them Bayes factors. See [BAYES] bayesstats ic for details.

Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis.
The prediction of a new data point is performed conditional on the observed data using the so-called
posterior predictive distribution, which involves integrating out all parameters from the model with
respect to their posterior distribution. Again, Monte Carlo integration is often the only feasible option
for obtaining predictions. Prediction can also be helpful in estimating the goodness of fit of a model.

Advantages and disadvantages of Bayesian analysis

Bayesian analysis is a powerful analytical tool for statistical modeling, interpretation of results,
and prediction of data. It can be used when there are no standard frequentist methods available or
the existing frequentist methods fail. However, one should be aware of both the advantages and
disadvantages of Bayesian analysis before applying it to a specific problem.

The universality of the Bayesian approach is probably its main methodological advantage to the
traditional frequentist approach. Bayesian inference is based on a single rule of probability, the Bayes
rule, which is applied to all parametric models. This makes the Bayesian approach universal and
greatly facilitates its application and interpretation. The frequentist approach, however, relies on a
variety of estimation methods designed for specific statistical problems and models. Often, inferential
methods designed for one class of problems cannot be applied to another class of models.

In Bayesian analysis, we can use previous information, either belief or experimental evidence, in
a data model to acquire more balanced results for a particular problem. For example, incorporating
prior information can mitigate the effect of a small sample size. Importantly, the use of the prior
evidence is achieved in a theoretically sound and principled way.

By using the knowledge of the entire posterior distribution of model parameters, Bayesian inference
is far more comprehensive and flexible than the traditional inference.

Bayesian inference is exact, in the sense that estimation and prediction are based on the posterior
distribution. The latter is either known analytically or can be estimated numerically with an arbitrary
precision. In contrast, many frequentist estimation procedures such as maximum likelihood rely on
the assumption of asymptotic normality for inference.

Bayesian inference provides a straightforward and more intuitive interpretation of the results in
terms of probabilities. For example, credible intervals are interpreted as intervals to which parameters
belong with a certain probability, unlike the less straightforward repeated-sampling interpretation of
the confidence intervals.

Bayesian models satisfy the likelihood principle (Berger and Wolpert 1988) that the information in
a sample is fully represented by the likelihood function. This principle requires that if the likelihood
function of one model is proportional to the likelihood function of another model, then inferences
from the two models should give the same results. Some researchers argue that frequentist methods
that depend on the experimental design may violate the likelihood principle.

6 intro — Introduction to Bayesian analysis

Finally, as we briefly mentioned earlier, the estimation precision in Bayesian analysis is not limited
by the sample size—Bayesian simulation methods may provide an arbitrary degree of precision.

Despite the conceptual and methodological advantages of the Bayesian approach, its application in
practice is still considered controversial sometimes. There are two main reasons for this—the presumed
subjectivity in specifying prior information and the computational challenges in implementing Bayesian
methods. Along with the objectivity that comes from the data, the Bayesian approach uses potentially
subjective prior distribution. That is, different individuals may specify different prior distributions.
Proponents of frequentist statistics argue that for this reason, Bayesian methods lack objectivity and
should be avoided. Indeed, there are settings such as clinical trial cases when the researchers want to
minimize a potential bias coming from preexisting beliefs and achieve more objective conclusions.
Even in such cases, however, a balanced and reliable Bayesian approach is possible. The trend in
using noninformative priors in Bayesian models is an attempt to address the issue of subjectivity. On
the other hand, some Bayesian proponents argue that the classical methods of statistical inference
have built-in subjectivity such as a choice for a sampling procedure, whereas the subjectivity is made
explicit in Bayesian analysis.

Building a reliable Bayesian model requires extensive experience from the researchers, which leads
to the second difficulty in Bayesian analysis—setting up a Bayesian model and performing analysis
is a demanding and involving task. This is true, however, to an extent for any statistical modeling
procedure.

Lastly, one of the main disadvantages of Bayesian analysis is the computational cost. As a rule,
Bayesian analysis involves intractable integrals that can only be computed using intensive numerical
methods. Most of these methods such as MCMC are stochastic by nature and do not comply with
the natural expectation from a user of obtaining deterministic results. Using simulation methods does
not compromise the discussed advantages of Bayesian approach, but unquestionably adds to the
complexity of its application in practice.

For more discussion about advantages and disadvantages of Bayesian analysis, see, for example,
Thompson (2012), Bernardo and Smith (2000), and Berger and Wolpert (1988).

Brief background and literature review

The principles of Bayesian analysis date back to the work of Thomas Bayes, who was a Presbyterian
minister in Tunbridge Wells and Pierre Laplace, a French mathematician, astronomer, and physicist in
the 18th century. Bayesian analysis started as a simple intuitive rule, named after Bayes, for updating
beliefs on account of some evidence. For the next 200 years, however, Bayes’s rule was just an
obscure idea. Along with the rapid development of the standard or frequentist statistics in 20th century,
Bayesian methodology was also developing, although with less attention and at a slower pace. One
of the obstacles for the progress of Bayesian ideas has been the lasting opinion among mainstream
statisticians of it being subjective. Another more-tangible problem for adopting Bayesian models in
practice has been the lack of adequate computational resources. Nowadays, Bayesian statistics is
widely accepted by researchers and practitioners as a valuable and feasible alternative.

Bayesian analysis proliferates in diverse areas including industry and government, but its application
in sciences and engineering is particularly visible. Bayesian statistical inference is used in econometrics
(Poirier [1995]; Chernozhukov and Hong [2003]; Kim, Shephard, and Chib [1998], Zellner [1997]);
education (Johnson 1997); epidemiology (Greenland 1998); engineering (Godsill and Rayner 1998);
genetics (Iversen, Parmigiani, and Berry 1999); social sciences (Pollard 1986); hydrology (Parent
et al. 1998); quality management (Rios Insua 1990); atmospheric sciences (Berliner et al. 1999); and
law (DeGroot, Fienberg, and Kadane 1986), to name a few.

intro — Introduction to Bayesian analysis 7

The subject of general statistics has been greatly influenced by the development of Bayesian
ideas. Bayesian methodologies are now present in biostatistics (Carlin and Louis [2000]; Berry and
Stangl [1996]); generalized linear models (Dey, Ghosh, and Mallick 2000); hierarchical modeling
(Hobert 2000); statistical design (Chaloner and Verdinelli 1995); classification and discrimination (Neal
[1996]; Neal [1999]); graphical models (Pearl 1998); nonparametric estimation (Müller and Vidakovic
[1999]; Dey, Müller, and Sinha [1998]); survival analysis (Barlow, Clarotti, and Spizzichino 1993);
sequential analysis (Carlin, Kadane, and Gelfand 1998); predictive inference (Aitchison and Dun-
smore 1975); spatial statistics (Wolpert and Ickstadt [1998]; Besag and Higdon [1999]); testing and
model selection (Kass and Raftery [1995]; Berger and Pericchi [1996]; Berger [2006]); and time
series (Pole, West, and Harrison [1994]; West and Harrison [1997]).

Recent advances in computing allowed practitioners to perform Bayesian analysis using simulations.
The simulation tools came from outside the statistics field—Metropolis et al. (1953) developed what is
now known as a random-walk Metropolis algorithm to solve problems in statistical physics. Another
landmark discovery was the Gibbs sampling algorithm (Geman and Geman 1984), initially used
in image processing, which showed that exact sampling from a complex and otherwise intractable
probability distribution is possible. These ideas were the seeds that led to the development of Markov
chain Monte Carlo (MCMC)—a class of iterative simulation methods proved to be indispensable
tools for Bayesian computations. Starting from the early 1990s, MCMC-based techniques slowly
emerged in the mainstream statistical practice. More powerful and specialized methods appeared,
such as perfect sampling (Propp and Wilson 1996), reversible-jump MCMC (Green 1995) for traversing
variable dimension state spaces, and particle systems (Gordon, Salmond, and Smith 1993). Consequent
widespread application of MCMC was imminent (Berger 2000) and influenced various specialized fields.
For example, Gelman and Rubin (1992) investigated MCMC for the purpose of exploring posterior
distributions; Geweke (1999) surveyed simulation methods for Bayesian inference in econometrics;
Kim, Shephard, and Chib (1998) used MCMC simulations to fit stochastic volatility models; Carlin,
Kadane, and Gelfand (1998) implemented Monte Carlo methods for identifying optimal strategies in
clinical trials; Chib and Greenberg (1995) provided Bayesian formulation of a number of important
econometrics models; and Chernozhukov and Hong (2003) reviewed some econometrics models
involving Laplace-type estimators from an MCMC perspective. For more comprehensive exposition of
MCMC, see, for example, Robert and Casella (2004); Tanner (1996); Gamerman and Lopes (2006);
Chen, Shao, and Ibrahim (2000); and Brooks et al. (2011).

Bayesian statistics

Posterior distribution

To formulate the principles of Bayesian statistics, we start with a simple case when one is concerned
with the interaction of two random variables, A and B. Let p(·) denote either a probability mass
function or a density, depending on whether the variables are discrete or continuous. The rule of
conditional probability,

p(A|B) =
p(A,B)

p(B)

can be used to derive the so-called Bayes’s rule:

p(B|A) =
p(A|B)p(B)

p(A)
(1)

This rule also holds in the more general case when A and B are random vectors.

8 intro — Introduction to Bayesian analysis

In a typical statistical problem, we have a data vector y, which is assumed to be a sample from a
probability model with an unknown parameter vector θ. We represent this model using the likelihood
function L(θ;y) = f(y; θ) =

∏n
i=1 f(yi|θ), where f(yi|θ) denotes the probability density function

of yi given θ. We want to infer some properties of θ based on the data y. In Bayesian statistics,
model parameters θ is a random vector. We assume that θ has a probability distribution p(θ) = π(θ),
which is referred to as a prior distribution. Because both y and θ are random, we can apply Bayes’s
rule (1) to derive the posterior distribution of θ given data y,

p(θ|y) =
p(y|θ)p(θ)

p(y)
=
f(y; θ)π(θ)

m(y)
(2)

where m(y) ≡ p(y), known as the marginal distribution of y, is defined by

m(y) =

∫
f(y; θ)π(θ)dθ (3)

The marginal distribution m(y) in (3) does not depend on the parameter of interest θ, and we
can, therefore, reduce (2) to

p(θ|y) ∝ L(θ;y)π(θ) (4)

Equation (4) is fundamental in Bayesian analysis and states that the posterior distribution of model
parameters is proportional to their likelihood and prior probability distributions. We will often use
(4) in the computationally more-convenient log-scale form

ln{p(θ|y)} = l(θ;y) + ln{π(θ)} − c (5)

where l(·; ·) denotes the log likelihood of the model. Depending on the analytical procedure involving
the log-posterior ln{p(θ|y)}, the actual value of the constant c = ln{m(y)} may or may not be
relevant. For valid statistical analysis, however, we will always assume that c is finite.

Selecting priors

In Bayesian analysis, we seek a balance between prior information in a form of expert knowledge
or belief and evidence from data at hand. Achieving the right balance is one of the difficulties in
Bayesian modeling and inference. In general, we should not allow the prior information to overwhelm
the evidence from the data, especially when we have a large data sample. A famous theoretical
result, the Bernstein–von Mises theorem, states that in large data samples, the posterior distribution is
independent of the prior distribution and, therefore, Bayesian and likelihood-based inferences should
yield essentially the same results. On the other hand, we need a strong enough prior to support weak
evidence that usually comes from insufficient data. It is always good practice to perform sensitivity
analysis to check the dependence of the results on the choice of a prior.

The flexibility of choosing the prior freely is one of the main controversial issues associated with
Bayesian analysis and the reason why some practitioners view the latter as subjective. It is also the
reason why the Bayesian practice, especially in the early days, was dominated by noninformative priors.
Noninformative priors, also called flat or vague priors, assign equal probabilities to all possible states
of the parameter space with the aim of rectifying the subjectivity problem. One of the disadvantages
of flat priors is that they are often improper; that is, they do not specify a legitimate probability
distribution. For example, a uniform prior for a continuous parameter over an unbounded domain does

intro — Introduction to Bayesian analysis 9

not integrate to a finite number. However, this is not necessarily a problem because the corresponding
posterior distribution may still be proper. Although Bayesian inference based on improper priors is
possible, this is equivalent to discarding the terms log π(θ) and c in (5), which nullifies the benefit
of Bayesian analysis because it reduces the latter to an inference based only on the likelihood.
This is why there is a strong objection to the practice of noninformative priors. In recent years, an
increasing number of researchers have advocated the use of sound informative priors, for example,
Thompson (2014). For example, using informative priors is mandatory in areas such as genetics,
where prior distributions have a physical basis and reflect scientific knowledge.

Another convenient preference for priors is to use conjugate priors. Their choice is desirable from
technical and computational standpoints but may not necessarily provide a realistic representation of
the model parameters. Because of the limited arsenal of conjugate priors, an inclination to overuse
them severely limits the flexibility of Bayesian modeling.

Point and interval estimation

In Bayesian statistics, inference about parameters θ is based on the posterior distribution p(θ|y) and
various ways of summarizing this distribution. Point and interval estimates can be used to summarize
this distribution.

Commonly used point estimators are the posterior mean,

E(θ|y) =

∫
θp(θ|y)dθ

and the posterior median, q0.5(θ), which is the 0.5 quantile of the posterior; that is,

P{θ ≤ q0.5(θ)} = 0.5

Another point estimator is the posterior mode, which is the value of θ that maximizes p(θ|y).

Interval estimation is performed by constructing so-called credible intervals (CRIs). CRIs are
special cases of credible regions. Let 1 − α ∈ (0, 1) be some predefined credible level. Then, an
{(1− α)× 100}% credible set R of θ is such that

Pr(θ ∈ R|y) =

∫
R

p(θ|y)dθ = 1− α

We consider two types of CRIs. The first one is based on quantiles. The second one is the highest
posterior density (HPD) interval.

An {(1 − α) × 100}% quantile-based, or also known as an equal-tailed CRI, is defined as
(qα/2, q1−α/2), where qa denotes the ath quantile of the posterior distribution. A commonly reported
equal-tailed CRI is (q0.025, q0.975).

HPD interval is defined as an {(1− α)× 100}% CRI of the shortest width. As its name implies,
this interval corresponds to the region of the posterior density with the highest concentration. For a
unimodal posterior distribution, HPD is unique, but for a multimodal distribution it may not be unique.
Computational approaches for calculating HPD are described in Chen and Shao (1999) and Eberly
and Casella (2003).

10 intro — Introduction to Bayesian analysis

Comparing Bayesian models

Model comparison is another important aspect of Bayesian statistics. We are often interested in
comparing two or more plausible models for our data.

Let’s assume that we have models Mj parameterized by vectors θj , j = 1, . . . , r. We may have
varying degree of belief in each of these models given by prior probabilities p(Mj), such that∑r
j=1 p(Mj) = 1. By applying Bayes’s rule, we find the posterior model probabilities

p(Mj |y) =
p(y|Mj)p(Mj)

p(y)

where p(y|Mj) = mj(y) is the marginal likelihood of Mj with respect to y. Because of the difficulty
in calculating p(y), it is a common practice to compare two models, say, Mj and Mk, using the
posterior odds ratio

POjk =
p(Mj |y)

p(Mk|y)
=
p(y|Mj)p(Mj)

p(y|Mk)p(Mk)

If all models are equally plausible, that is, p(Mj) = 1/r, the posterior odds ratio reduces to the
so-called Bayes factors (BF) (Jeffreys 1935),

BFjk =
p(y|Mj)

p(y|Mk)
=
mj(y)

mk(y)

which are simply ratios of marginal likelihoods.

Jeffreys (1961) recommended an interpretation of BFjk based on half-units of the log scale. The
following table provides some rules of thumb:

log10(BFjk) BFjk Evidence against Mk

0 to 1/2 1 to 3.2 Bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

The Schwarz criterion BIC (Schwarz 1978) is an approximation of BF in case of arbitrary but
proper priors. Kass and Raftery (1995) and Berger (2006) provide a detailed exposition of Bayes
factors, their calculation, and their role in model building and testing.

Posterior prediction

Prediction is another essential part of statistical analysis. In Bayesian statistics, prediction is
performed using the posterior distribution. The probability of observing some future data y∗ given
the observed one can be obtained by the marginalization of

p(y∗|y) =

∫
p(y∗|y, θ)p(θ|y)dθ

which, assuming that y∗ is independent of y, can be simplified to

intro — Introduction to Bayesian analysis 11

p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ (6)

Equation (6) is called a posterior predictive distribution and is used for Bayesian prediction.

Bayesian computation

An unavoidable difficulty in performing Bayesian analysis is the need to compute integrals such
as those expressing marginal distributions and posterior moments. The integrals involved in Bayesian
inference are of the form E{g(θ)} =

∫
g(θ)p(θ|y)dθ for some function g(·) of the random vector

θ. With the exception of a few cases for which analytical integration is possible, the integration is
performed via simulations.

Given a sample from the posterior distribution, we can use Monte Carlo integration to approximate
the integrals. Let θ1, θ2, . . . , θT be an independent sample from p(θ|y).

The original integral of interest E{g(θ)} can be approximated by

ĝ =
1

T

T∑
t=1

g(θt)

Moreover, if g is a scalar function, under some mild conditions, the central limit theorem holds

ĝ ≈ N
[
E{g(θ)}, σ2/T

]
where σ2 = Cov{g(θi)} can be approximated by the sample variance

∑T
t=1{g(θt)− ĝ}2/T . If the

sample is not independent, then ĝ still approximates E{g(θ)} but the variance σ2 is given by

σ2 = Var{g(θt)}+ 2

∞∑
k=1

Cov{g(θt), g(θt+k)} (7)

and needs to be approximated. Moreover, the conditions needed for the central limit theorem to hold
involve the convergence rate of the chain and can be difficult to check in practice (Tierney 1994).

The Monte Carlo integration method solves the problem of Bayesian computation of computing a
posterior distribution by sampling from that posterior distribution. The latter has been an important
problem in computational statistics and a focus of intense research. Rejection sampling techniques
serve as basic tools for generating samples from a general probability distribution (von Neumann 1951).
They are based on the idea that samples from the target distribution can be obtained from another,
easy-to-sample distribution according to some acceptance–rejection rule for the samples from this
distribution. It was soon recognized, however, that the acceptance–rejection methods did not scale
well with the increase of dimensions, a problem known as the “curse of dimensionality”, essentially
reducing the acceptance probability to zero. An alternative solution was to use the Markov chains to
generate sequences of correlated sample points from the domain of the target distribution and keeping
a reasonable rate of acceptance. It was not long before Markov chain Monte Carlo methods were
accepted as effective tools for approximate sampling from general posterior distributions (Tanner and
Wong 1987).

12 intro — Introduction to Bayesian analysis

Markov chain Monte Carlo methods
Every MCMC method is designed to generate values from a transition kernel such that the draws

from that kernel converge to a prespecified target distribution. It simulates a Markov chain with the
target distribution as the stationary or equilibrium distribution of the chain. By definition, a Markov
chain is any sequence of values or states from the domain of the target distribution, such that each
value depends on its immediate predecessor only. For a well-designed MCMC, the longer the chain, the
closer the samples to the stationary distribution. MCMC methods differ substantially in their simulation
efficiency and computational complexity.

The Metropolis algorithm proposed in Metropolis and Ulam (1949) and Metropolis et al. (1953)
appears to be the earliest version of MCMC. The algorithm generates a sequence of states, each
obtained from the previous one, according to a Gaussian proposal distribution centered at that state.
Hastings (1970) described a more-general version of the algorithm, now known as a Metropolis–
Hastings (MH) algorithm, which allows any distribution to be used as a proposal distribution. Below
we review the general MH algorithm and some of its special cases.

Metropolis–Hastings algorithm

Here we present the MH algorithm for sampling from a posterior distribution in a general formulation.
It requires the specification of a proposal probability distribution q(·) and a starting state θ0 within
the domain of the posterior, that is, p(θ0|y) > 0. The algorithm generates a Markov chain {θt}T−1

t=0
such that at each step t 1) a proposal state θ∗ is generated conditional on the current state, and 2) θ∗
is accepted or rejected according to the suitably defined acceptance probability.

For t = 1, . . . , T − 1:

1. Generate a proposal state: θ∗ ∼ q(·|θt−1).

2. Calculate the acceptance probability

α(θ∗|θt−1) =
p(θ∗|y)q(θt−1|θ∗)
p(θt−1|y)q(θ∗|θt−1)

3. Draw u ∼ Uniform(0, 1).

4. Set θt = θ∗ if u < min{α(θ∗|θt−1), 1}, and θt = θt−1 otherwise.

We refer to the iteration steps 1 through 4 as an MH update. By design, any Markov chain simulated
using this MH algorithm is guaranteed to have p(θ|y) as its stationary distribution.

Two important criteria measuring the efficiency of MCMC are the acceptance rate of the chain and
the degree of autocorrelation in the generated sample. When the acceptance rate is close to 0, then
most of the proposals are rejected, which means that the chain failed to explore regions of appreciable
posterior probability. The other extreme is when the acceptance probability is close to 1, in which
case the chain stays in a small region and fails to explore the whole posterior domain. An efficient
MCMC has an acceptance rate that is neither too small nor too large and also has small autocorrelation.
Gelman, Gilks, and Roberts (1997) showed that in the case of a multivariate posterior and proposal
distributions, an acceptance rate of 0.234 is asymptotically optimal and, in the case of a univariate
posterior, the optimal value is 0.45.

A special case of MH employs a Metropolis update with q(·) being a symmetric distribution. Then,
the acceptance probability reduces to a ratio of posterior probabilities,

α(θ∗|θt−1) =
p(θ∗|y)

p(θt−1|y)

intro — Introduction to Bayesian analysis 13

The symmetric Gaussian distribution is a common choice for a proposal distribution q(·), and this is
the one used in the original Metropolis algorithm.

Another important MCMC method that can be viewed as a special case of MH is Gibbs sampling
(Gelfand et al. 1990), where the updates are the full conditional distributions of each parameter
given the rest of the parameters. Gibbs updates are always accepted. If θ = (θ1, . . . , θd) and, for
j = 1 . . . , d, qj is the conditional distribution of θj given the rest θ{−j}, then the Gibbs algorithm
is the following. For t = 1, . . . , T − 1 and for j = 1, . . . , d: θjt ∼ qj(·|θ

{−j}
t−1). This step is referred

to as a Gibbs update.

All MCMC methods share some limitations and potential problems. First, any simulated chain is
influenced by its starting values, especially for short MCMC runs. It is required that the starting point
has a positive posterior probability, but even when this condition is satisfied, if we start somewhere
in a remote tail of the target distribution, it may take many iterations to reach a region of appreciable
probability. Second, because there is no obvious stopping criterion, it is not easy to decide for how long
to run the MCMC algorithm to achieve convergence to the target distribution. Third, the observations
in MCMC samples are strongly dependent and this must be taken into account in any subsequent
statistical inference. For example, the errors associated with the Monte Carlo integration should be
calculated according to (7), which accounts for autocorrelation.

Adaptive random-walk Metropolis–Hastings

The choice of a proposal distribution q(·) in the MH algorithm is crucial for the mixing properties
of the resulting Markov chain. The problem of determining an optimal proposal for a particular target
posterior distribution is difficult and is still being researched actively. All proposed solutions are based
on some form of an adaptation of the proposal distribution as the Markov chain progresses, which is
carefully designed to preserve the ergodicity of the chain, that is, its tendency to converge to the target
distribution. These methods are known as adaptive MCMC methods (Haario, Saksman, and Tamminen
[2001]; Giordani and Kohn [2010]; and Roberts and Rosenthal [2009]).

The majority of adaptive MCMC methods are random-walk MH algorithms with updates of the
form: θ∗ = θt−1 + Zt, where Zt follows some symmetric distribution. Specifically, we consider a
Gaussian random-walk MH algorithm with Zt ∼ N(0, ρ2Σ), where ρ is a scalar controlling the scale
of random jumps for generating updates and Σ is a d-dimensional covariance matrix. One of the first
important results regarding adaptation is from Gelman, Gilks, and Roberts (1997), where the authors
derive the optimal scaling factor ρ = 2.38/

√
d and note that the optimal Σ is the true covariance

matrix of the target distribution.

Haario, Saksman, and Tamminen (2001) proposes Σ to be estimated by the empirical covariance
matrix plus a small diagonal matrix ε× Id to prevent zero covariance matrices. Alternatively, Roberts
and Rosenthal (2009) proposed a mixture of the two covariance matrices,

Σt = βΣ̂ + (1− β)Σ0

for some fixed covariance matrix Σ0 and β ∈ [0, 1].

Because the proposal distribution of an adaptive MH algorithm changes at each step, the ergodicity
of the chain is not necessarily preserved. However, under certain assumptions about the adaptation
procedure, the ergodicity does hold; see Roberts and Rosenthal (2007), Andrieu and Moulines (2006),
Atchadé and Rosenthal (2005), and Giordani and Kohn (2010) for details.

14 intro — Introduction to Bayesian analysis

Blocking of parameters

In the original MH algorithm, the update steps of generating proposals and applying the acceptance–
rejection rule are performed for all model parameters simultaneously. For high-dimensional models,
this may result in a poor mixing—the Markov chain may stay in the tails of the posterior distribution for
long periods of time and traverse the posterior domain very slowly. Suboptimal mixing is manifested
by either very high or very low acceptance rates. Adaptive MH algorithms are also prone to this
problem, especially when model parameters have very different scales. An effective solution to this
problem is called blocking—model parameters are separated into two or more subsets or blocks and
MH updates are applied to each block separately in the order that the blocks are specified.

Let’s separate a vector of parameters into B blocks: θ = {θ1, . . . , θB}. The version of the
Gaussian random-walk MH algorithm with blocking is as follows.

Let T0 be the number of burn-in iterations, T be the number of MCMC samples, and ρ2
bΣ

b,
b = 1, . . . , B, be block-specific proposal covariance matrices. Let θ0 be the starting point within the
domain of the posterior, that is, p(θ0|y) > 0.

1. At iteration t, let θt = θt−1.

2. For a block of parameters θbt :

2.1. Let θ∗ = θt. Generate a proposal for the bth block: θb∗ = θbt−1 + ε, where ε ∼ N(0, ρ2
bΣ

b).

2.2. Calculate the acceptance probability,

r =
p(θ∗|y)

p(θt|y)

where θ∗ = (θ1
t , θ

2
t , . . . , θ

b−1
t , θb∗, θ

b+1
t , . . . , θBt).

2.3. Draw u ∼ Uniform(0, 1).

2.4. Let θbt = θb∗ if u < min{r, 1}.
3. Repeat step 2 for b = 1, . . . , B.

4. Repeat steps 1 through 3 for t = 1, . . . , T + T0 − 1.

5. The final sequence is {θt}T+T0−1
t=T0

.

Blocking may not always improve efficiency. For example, separating all parameters in individual
blocks (the so-called one-at-a-time update regime) can lead to slow mixing when some parameters are
highly correlated. A Markov chain may explore the posterior domain very slowly if highly correlated
parameters are updated independently. There are no theoretical results about optimal blocking, so
you will need to use your judgment when determining the best set of blocks for your model. As
a rule, parameters that are expected to be highly correlated are specified in one block. This will
generally improve mixing of the chain unless the proposal correlation matrix does not capture the
actual correlation structure of the block. For example, if there are two parameters in the block that
have very different scales, adaptive MH algorithms that use the identity matrix for the initial proposal
covariance may take a long time to approximate the optimal proposal correlation matrix. The user
should, therefore, consider not only the probabilistic relationship between the parameters in the model,
but also their scales to determine an optimal set of blocks.

intro — Introduction to Bayesian analysis 15

Metropolis–Hastings with Gibbs updates

The original Gibbs sampler updates each model parameter one at a time according to its full
conditional distribution. We have already noted that Gibbs is a special case of the MH algorithm.
Some of the advantages of Gibbs sampling include its high efficiency, because all proposals are
automatically accepted, and that it does not require any additional tuning for proposal distributions
in MH algorithms. Unfortunately, for most posterior distributions in practice, the full conditionals are
either not available or are very difficult to sample from. It may be the case, however, that for some
model parameters or groups of parameters, the full conditionals are available and are easy to generate
samples from. This is done in a hybrid MH algorithm, which implements Gibbs updates for only
some blocks of parameters. A hybrid MH algorithm combines Gaussian random-walk updates with
Gibbs updates to improve the mixing of the chain.

The MH algorithm with blocking allows different samplers to be used for updating different blocks.
If there is a group of model parameters with a conjugate prior (or semiconjugate prior), we can place
this group of parameters in a separate block and use Gibbs sampling for it. This can greatly improve
the overall sampling efficiency of the algorithm.

For example, suppose that the data are normally distributed with a known mean µ and that we
specify an inverse-gamma prior for σ2 with shape α and scale β, which are some fixed constants.

y ∼ N(µ, σ2), σ2 ∼ InvGamma(α, β)

The full conditional distribution for σ2 in this case is also an inverse-gamma distribution, but with
different shape and scale parameters,

σ2 ∼ InvGamma

{
α̃ = α+

n

2
, β̃ = β +

1

2

n∑
i=1

(yi − µ)2

}

where n is the data sample size. So, an inverse-gamma prior for the variance is a conjugate prior in
this model. We can thus place σ2 in a separate block and set up a Gibbs sampling for it using the
above full conditional distribution.

See Methods and formulas in [BAYES] bayesmh for details.

Convergence diagnostics of MCMC

Checking convergence of MCMC is an essential step in any MCMC simulation. Bayesian inference
based on an MCMC sample is valid only if the Markov chain has converged and the sample is
drawn from the desired posterior distribution. It is important that we verify the convergence for all
model parameters and not only for a subset of parameters of interest. One difficulty with assessing
convergence of MCMC is that there is no single conclusive convergence criterion. The diagnostic usually
involves checking for several necessary (but not necessarily sufficient) conditions for convergence. In
general, the more aspects of the MCMC sample you inspect, the more reliable your results are.

The most extensive review of the methods for assessing convergence is Cowles and Carlin (1996).
Other discussions about monitoring convergence can be found in Gelman et al. (2014) and Brooks
et al. (2011).

There are at least two general approaches for detecting convergence issues. The first one is to
inspect the mixing and time trends within the chains of individual parameters. The second one is to
examine the mixing and time trends of multiple chains for each parameter. The lack of convergence
in a Markov chain can be especially difficult to detect in a case of pseudoconvergence, which often

16 intro — Introduction to Bayesian analysis

occurs with multimodal posterior distributions. Pseudoconvergence occurs when the chain appears to
have converged but it actually explored only a portion of the domain of a posterior distribution. To
check for pseudoconvergence, Gelman and Rubin (1992) recommend running multiple chains from
different starting states and comparing them.

Trace plots are the most accessible convergence diagnostics and are easy to inspect visually. The
trace plot of a parameter plots the simulated values for this parameter versus the iteration number.
The trace plot of a well-mixing parameter should traverse the posterior domain rapidly and should
have nearly constant mean and variance.

In the next figure, we show examples of trace plots for four parameters: var1, var2, var3,
and var4. The first two parameters, var1 and var2, have well-mixing chains, and the other two
have poorly mixing chains. The chain for the parameter var1 has a moderate acceptance rate, about
35%, and efficiency between 10% and 20%. This is a typical result for a Gaussian random-walk MH
algorithm that has achieved convergence. The trace plot of var2 in the top right panel shows almost
perfect mixing—this is a typical example of Gibbs sampling with an acceptance rate close to 1 and
efficiency above 95%. Although both chains traverse their marginal posterior domains, the right one
does it more rapidly. On the downside, more efficient MCMC algorithms such as Gibbs sampling are
usually associated with a higher computational cost.

6
8

1
0

1
2

1
4

1
6

0 1000 2000 3000 4000 5000

Iteration number

Trace of var1

5
1

0
1

5
2

0

0 1000 2000 3000 4000 5000

Iteration number

Trace of var2

0
2

4
6

8
1

0

0 1000 2000 3000 4000 5000

Iteration number

Trace of var3

5
1

0
1

5
2

0
2

5

0 1000 2000 3000 4000 5000

Iteration number

Trace of var4

The bottom two trace plots illustrate cases of bad mixing and a lack of convergence. On the left, the
chain for var3 exhibits high acceptance rate but poor coverage of the posterior domain manifested
by random drifting in isolated regions. This chain was produced by a Gaussian random-walk MH
algorithm with a proposal distribution with a very small variance. On the right, the chain for the
parameter var4 has a very low acceptance rate, below 3%, because the used proposal distribution
had a very large variance. In both cases, the chains do not converge; the simulation results do not
represent the posterior distribution and should thus be discarded.

intro — Introduction to Bayesian analysis 17

As we stated before, samples simulated using MCMC methods are correlated. The smaller the
correlation, the more efficient the sampling process. Most of the MH algorithms typically generate
highly correlated draws, whereas the Gibbs algorithm typically generates less-correlated draws.
Below we show autocorrelation plots for the same four parameters using the same MCMC samples.
The autocorrelation of var1, the one that comes from a well-mixing MH chain, becomes negligible
fairly quickly, after about 10 lags. On the other hand, the autocorrelation of var2 simulated using
Gibbs sampling is essentially negligible for all positive lags. In the case of a poor mixing because
of a small proposal variance (parameter var3), we observe very high positive correlation for at least
100 lags. The autocorrelation of var4 is high but is lower than that of var3.

0.00

0.20

0.40

0.60

0.80

0 20 40 60 80 100
Lag

Autocorrelation of var1

−0.04
−0.02

0.00
0.02
0.04

0 20 40 60 80 100
Lag

Autocorrelation of var2

−0.50

0.00

0.50

1.00

0 20 40 60 80 100
Lag

Autocorrelation of var3

−0.50

0.00

0.50

1.00

0 20 40 60 80 100
Lag

Autocorrelation of var4

Yu and Mykland (1998) proposed a graphical procedure for assessing the convergence of individual
parameters based on cumulative sums, also known as a cusum plot. By definition, any cusum plot
starts at 0 and ends at 0. Cusum plots are useful for detecting drifts in the chain. For a chain without
trend, the cusum plot should cross the x axis. For example, early drifts may indicate dependence on
starting values. If we detect an early drift, we should discard an initial part of the chain and run
it longer. Below, we show the trace plot of a poorly mixing parameter tau and its corresponding
cusum plot on the right. There is an apparent positive drift for approximately the first half of the
chain followed by the drift in the negative direction. As a result, the cusum plot has a distinctive
mountain-like shape and never crosses the x axis.

18 intro — Introduction to Bayesian analysis

.1
.2

.3
.4

.5
.6

0 2000 4000 6000 8000 10000

Iteration

Trace of tau

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

0 2000 4000 6000 8000 10000

Iteration

Cusum of tau

Cusum plots can be also used for assessing how fast the chain is mixing. The slower the mixing
of the chain, the smoother the cusum plots. Conversely, the faster the mixing of the chain, the more
jagged the cusum plots. Below, we demonstrate the cusum plots for the four variables considered
previously. We can clearly see the contrast between the jagged lines of the fast mixing parameters
var1 and var2 and the very smooth cusum line of the poorly mixing parameter var3.

−
1

0
0

−
5

0
0

5
0

1
0

0
1

5
0

0 1000 2000 3000 4000 5000

Iteration number

Cusum of var1

−
1

0
0

−
5

0
0

5
0

0 1000 2000 3000 4000 5000

Iteration number

Cusum of var2

−
2

5
0

0
−

2
0

0
0

−
1

5
0

0
−

1
0

0
0

−
5

0
0

0

0 1000 2000 3000 4000 5000

Iteration number

Cusum of var3

−
2

0
0

0
−

1
5

0
0

−
1

0
0

0
−

5
0

0
0

0 1000 2000 3000 4000 5000

Iteration number

Cusum of var4

Besides graphical convergence diagnostics, there are some formal convergence tests (Geweke
[1992]; Gelman and Rubin [1992]; Heidelberger and Welch [1983]; Raftery and Lewis [1992];
Zellner and Min [1995]).

intro — Introduction to Bayesian analysis 19

Summary

Bayesian analysis is a statistical procedure that answers research questions by expressing uncertainty
about unknown parameters using probabilities. Bayesian inference is based on the posterior distribution
of model parameters conditional on the observed data. The posterior distribution is composed of a
likelihood distribution of the data and the prior distribution of the model parameters. The likelihood
model is specified in the same way it is specified with any standard likelihood-based analysis. The
prior distribution is constructed based on the prior (before observing the data) scientific knowledge
and results from previous studies. Sensitivity analysis is typically performed to evaluate the influence
of different competing priors on the results.

Many posterior distributions do not have a closed form and must be simulated using MCMC methods
such as MH methods or the Gibbs method or sometimes their combination. The convergence of MCMC
must be verified before any inference can be made.

Marginal posterior distributions of the parameters are used for inference. These are summarized
using point estimators such as posterior mean and median and interval estimators such as equal-
tailed credible intervals and highest posterior density intervals. Credible intervals have an intuitive
interpretation as fixed ranges to which a parameter is known to belong with a prespecified probability.
Hypothesis testing provides a way to assign an actual probability to any hypothesis of interest. A
number of criteria are available for comparing models of interest. Predictions are also available based
on the posterior predictive distribution.

Bayesian analysis provides many advantages over the standard frequentist analysis, such as an ability
to incorporate prior information in the analysis, higher robustness to sparse data, more-comprehensive
inference based on the knowledge of the entire posterior distribution, and more intuitive and direct
interpretations of results by using probability statements about parameters.

� �
Thomas Bayes (1701(?)–1761) was a Presbyterian minister with an interest in calculus, geometry,
and probability theory. He was born in Hertfordshire, England. The son of a Nonconformist
minister, Bayes was banned from English universities and so studied at Edinburgh University
before becoming a clergyman himself. Only two works are attributed to Bayes during his lifetime,
both published anonymously. He was admitted to the Royal Society in 1742 and never published
thereafter.

The paper that gives us “Bayes’s Theorem” was published posthumously by Richard Price.
The theorem has become an important concept for frequentist and Bayesian statisticians alike.
However, the paper indicates that Bayes considered the theorem as relatively unimportant. His
main interest appears to have been that probabilities were not fixed but instead followed some
distribution. The notion, now foundational to Bayesian statistics, was largely ignored at the time.

Whether Bayes’s theorem is appropriately named is the subject of much debate. Price acknowl-
edged that he had written the paper based on information he found in Bayes’s notebook, yet
he never said how much he added beyond the introduction. Some scholars have also questioned
whether Bayes’s notes represent original work or are the result of correspondence with other
mathematicians of the time.� �

20 intro — Introduction to Bayesian analysis� �
Andrey Markov (1856–1922) was a Russian mathematician who made many contributions to
mathematics and statistics. He was born in Ryazan, Russia. In primary school, he was known
as a poor student in all areas except mathematics. Markov attended St. Petersburg University,
where he studied under Pafnuty Chebyshev and later joined the physicomathematical faculty. He
was a member of the Russian Academy of the Sciences.

Markov’s first interest was in calculus. He did not start his work in probability theory until
1883 when Chebyshev left the university and Markov took over his teaching duties. A large and
influential body of work followed, including applications of the weak law of large numbers and
what are now known as Markov processes and Markov chains. His work on processes and chains
would later influence the development of a variety of disciplines such as biology, chemistry,
economics, physics, and statistics.

Known in the Russian press as the “militant academician” for his frequent written protests about
the czarist government’s interference in academic affairs, Markov spent much of his adult life
at odds with Russian authorities. In 1908, he resigned from his teaching position in response
to a government requirement that professors report on students’ efforts to organize protests in
the wake of the student riots earlier that year. He did not resume his university teaching duties
until 1917, after the Russian Revolution. His trouble with Russian authorities also extended to
the Russian Orthodox Church. In 1912, he was excommunicated at his own request in protest
over the Church’s excommunication of Leo Tolstoy.� �

References
Aitchison, J., and I. R. Dunsmore. 1975. Statistical Prediction Analysis. Cambridge: Cambridge University Press.

Andrieu, C., and É. Moulines. 2006. On the ergodicity properties of some adaptive MCMC algorithms. Annals of
Applied Probability 16: 1462–1505.

Atchadé, Y. F., and J. S. Rosenthal. 2005. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11: 815–828.

Barlow, R. E., C. A. Clarotti, and F. Spizzichino, ed. 1993. Reliability and Decision Making. Cambridge: Chapman
& Hall.

Berger, J. O. 2000. Bayesian analysis: A look at today and thoughts of tomorrow. Journal of the American Statistical
Association 95: 1269–1276.

. 2006. “Bayes factors.” In Encyclopedia of Statistical Sciences, edited by Kotz, S., C. B. Read, N. Balakrishnan,
and B. Vidakovic. Wiley. http://onlinelibrary.wiley.com/doi/10.1002/0471667196.ess0985.pub2/abstract.

Berger, J. O., and L. R. Pericchi. 1996. The intrinsic Bayes factor for model selection and prediction. Journal of the
American Statistical Association 91: 109–122.

Berger, J. O., and R. L. Wolpert. 1988. The Likelihood Principle: A Review, Generalizations, and Statistical Implications.
Hayward, CA: Institute of Mathematical Statistics.

Berliner, L. M., J. A. Royle, C. K. Wikle, and R. F. Milliff. 1999. Bayesian methods in atmospheric sciences. In
Vol. 6 of Bayesian Statistics: Proceedings of the Sixth Valencia International Meeting, ed. J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, 83–100. Oxford: Oxford University Press.

Bernardo, J. M., and A. F. M. Smith. 2000. Bayesian Theory. Chichester, UK: Wiley.

Berry, D. A., and D. K. Stangl, ed. 1996. Bayesian Biostatistics. New York: Dekker.

Besag, J., and D. Higdon. 1999. Bayesian analysis for agricultural field experiments. Journal of the Royal Statistical
Society, Series B 61: 691–746.

Brooks, S., A. Gelman, G. L. Jones, and X.-L. Meng, ed. 2011. Handbook of Markov Chain Monte Carlo. Boca
Raton, FL: Chapman & Hall/CRC.

Carlin, B. P., J. B. Kadane, and A. E. Gelfand. 1998. Approaches for optimal sequential decision analysis in clinical
trials. Biometrics 54: 964–975.

intro — Introduction to Bayesian analysis 21

Carlin, B. P., and T. A. Louis. 2000. Bayes and Empirical Bayes Methods for Data Analysis. 2nd ed. Boca Raton,
FL: Chapman & Hall/CRC.

Chaloner, K., and I. Verdinelli. 1995. Bayesian experimental design: A review. Statistical Science 10: 273–304.

Chen, M.-H., and Q.-M. Shao. 1999. Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of
Computational and Graphical Statistics 8: 69–92.

Chen, M.-H., Q.-M. Shao, and J. G. Ibrahim. 2000. Monte Carlo Methods in Bayesian Computation. New York:
Springer.

Chernozhukov, V., and H. Hong. 2003. An MCMC approach to classical estimation. Journal of Econometrics 115:
293–346.

Chib, S., and E. Greenberg. 1995. Understanding the Metropolis–Hastings algorithm. American Statistician 49:
327–335.

Cowles, M. K., and B. P. Carlin. 1996. Markov chain Monte Carlo convergence diagnostic: A comparative review.
Journal of the American Statistical Association 91: 883–904.

DeGroot, M. H., S. E. Fienberg, and J. B. Kadane. 1986. Statistics and the Law. New York: Wiley.

Dey, D. D., P. Müller, and D. Sinha, ed. 1998. Practical Nonparametric and Semiparametric Bayesian Statistics. New
York: Springer.

Dey, D. K., S. K. Ghosh, and B. K. Mallick. 2000. Generalized Linear Models: A Bayesian Perspective. New York:
Dekker.

Eberly, L. E., and G. Casella. 2003. Estimating Bayesian credible intervals. Journal of Statistical Planning and
Inference 112: 115–132.

Gamerman, D., and H. F. Lopes. 2006. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference.
2nd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. Illustration of Bayesian inference in normal
data models using Gibbs sampling. Journal of the American Statistical Association 85: 972–985.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., W. R. Gilks, and G. O. Roberts. 1997. Weak convergence and optimal scaling of random walk Metropolis
algorithms. Annals of Applied Probability 7: 110–120.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science
7: 457–472.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741.

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In
Vol. 4 of Bayesian Statistics: Proceedings of the Fourth Valencia International Meeting, April 15–20, 1991, ed.
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, 169–193. Oxford: Clarendon Press.

. 1999. Using simulation methods for Bayesian econometric models: Inference, development, and communication.
Econometric Reviews 18: 1–73.

Giordani, P., and R. J. Kohn. 2010. Adaptive independent Metropolis–Hastings by fast estimation of mixtures of
normals. Journal of Computational and Graphical Statistics 19: 243–259.

Godsill, S. J., and P. J. W. Rayner. 1998. Digital Audio Restoration. Berlin: Springer.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith. 1993. novel approach to nonlinear/non-Gaussian Bayesian state
estimation. IEE Proceedings on Radar and Signal Processing 140: 107–113.

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
Biometrika 82: 711–732.

Greenland, S. 1998. Probability logic and probabilistic induction. Epidemiology 9: 322–332.

Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223–242.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:
97–109.

Heidelberger, P., and P. D. Welch. 1983. Simulation run length control in the presence of an initial transient. Operations
Research 31: 1109–1144.

22 intro — Introduction to Bayesian analysis

Hobert, J. P. 2000. Hierarchical models: A current computational perspective. Journal of the American Statistical
Association 95: 1312–1316.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

Iversen, E., Jr, G. Parmigiani, and D. A. Berry. 1999. Validating Bayesian Prediction Models: a Case Study in Genetic
Susceptibility to Breast Cancer. In Case Studies in Bayesian Statistics, ed. J. M. Bernardo, J. O. Berger, A. P.
Dawid, and A. F. M. Smith, vol. IV, 321–338. New York: Springer.

Jeffreys, H. 1935. Some tests of significance, treated by the theory of probability. Mathematical Proceedings of the
Cambridge Philosophical Society 31: 203–222.

. 1961. Theory of Probability. 3rd ed. Oxford: Oxford University Press.

Johnson, V. E. 1997. An alternative to traditional GPA for evaluating student performance. Statistical Science 12:
251–269.

Kass, R. E., and A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.

Kim, S., N. Shephard, and S. Chib. 1998. Stochastic volatility: Likelihood inference and comparison with ARCH
models. The Reviews of Economic Studies 65: 361–393.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. Journal of Chemical Physics 21: 1087–1092.

Metropolis, N., and S. Ulam. 1949. The Monte Carlo method. Journal of the American Statistical Association 44:
335–341.

Müller, P., and B. Vidakovic, ed. 1999. Bayesian Inference in Wavelet-Based Models. New York: Springer.

Neal, R. M. 1996. Bayesian Learning for Neural Networks. New York: Springer.

. 1999. Regression and classification using gaussian process priors. In Vol. 6 of Bayesian Statistics: Proceedings
of the Sixth Valencia International Meeting, ed. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith,
475–501. Oxford: Oxford University Press.

Parent, E., P. Hubert, B. Bobee, and J. Miquel. 1998. Statistical and Bayesian Methods in Hydrological Sciences.
Paris: UNESCO Press.

Pearl, J. 1998. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA:
Morgan Kaufmann.

Poirier, D. J. 1995. Intermediate Statistics and Econometrics: A Comparative Approach. Cambridge, MA: MIT Press.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian Forecasting and Time Series Analysis. Boca Raton, FL:
Chapman and Hall.

Pollard, W. E. 1986. Bayesian Statistics for Evaluation Research: An Introduction. Newbury Park, CA: Sage.

Propp, J. G., and D. B. Wilson. 1996. Exact sampling with coupled Markov chains and applications to statistical
mechanics. Random Structures and Algorithms 9: 223–252.

Raftery, A. E., and S. M. Lewis. 1992. How many iterations in the Gibbs sampler? In Vol. 4 of Bayesian Statistics:
Proceedings of the Fourth Valencia International Meeting, April 15–20, 1991, ed. J. M. Bernardo, J. O. Berger,
A. P. Dawid, and A. F. M. Smith, 763–773. Oxford: Clarendon Press.

Rios Insua, D. 1990. Sensitivity Analysis in Multi-Objective Decision Making. New York: Springer.

Robert, C. P., and G. Casella. 2004. Monte Carlo Statistical Methods. 2nd ed. New York: Springer.

Roberts, G. O., and J. S. Rosenthal. 2007. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms.
Journal of Applied Probability 44: 458–475.

. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18: 349–367.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461–464.

Tanner, M. A. 1996. Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and
Likelihood Functions. 3rd ed. New York: Springer.

Tanner, M. A., and W. H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion).
Journal of the American Statistical Association 82: 528–550.

Thompson, J. 2014. Bayesian Analysis with Stata. College Station, TX: Stata Press.

Thompson, S. K. 2012. Sampling. 3rd ed. Hoboken, NJ: Wiley.

http://www.stata-press.com/books/bayesian-analysis-with-stata/

intro — Introduction to Bayesian analysis 23

Tierney, L. 1994. Markov chains for exploring posterior distributions. Annals of Statistics 22: 1701–1728.

von Neumann, J. 1951. Various techniques used in connection with random digits. Monte Carlo methods. Journal of
Research of the National Bureau of Standards 12: 36–38.

West, M., and J. Harrison. 1997. Bayesian Forecasting and Dynamic Models. 2nd ed. New York: Springer.

Wolpert, R. L., and K. Ickstadt. 1998. Poisson/gamma random field models for spatial statistics. Biometrika 85:
251–267.

Yu, B., and P. Mykland. 1998. Looking at Markov samplers through cusum path plots: A simple diagnostic idea.
Statistics and Computing 8: 275–286.

Zellner, A. 1997. Bayesian Analysis in Econometrics and Statistics: The Zellner View and Papers. Northampton, MA:
Edward Elgar.

Zellner, A., and C.-K. Min. 1995. Gibbs sampler convergence criteria. Journal of the American Statistical Association
90: 921–927.

Also see
[BAYES] bayes — Introduction to commands for Bayesian analysis

[BAYES] Glossary

Title

bayes — Introduction to commands for Bayesian analysis

Description Remarks and examples Acknowledgments References
Also see

Description

This entry describes commands to perform Bayesian analysis. Bayesian analysis is a statistical
procedure that answers research questions by expressing uncertainty about unknown parameters using
probabilities. It is based on the fundamental assumption that not only the outcome of interest but
also all the unknown parameters in a statistical model are essentially random and are subject to prior
beliefs.

Estimation
bayesmh Bayesian regression using MH
bayesmh evaluators User-written Bayesian models using MH

Convergence tests and graphical summaries
bayesgraph Graphical summaries

Postestimation statistics
bayesstats ess Effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics
bayesstats ic Bayesian information criteria and Bayes factors

Hypothesis testing
bayestest model Hypothesis testing using model posterior probabilities
bayestest interval Interval hypothesis testing

Remarks and examples
This entry describes commands to perform Bayesian analysis. See [BAYES] intro for an introduction

to the topic of Bayesian analysis.

The bayesmh command is the main command of the Bayesian suite of commands. It fits a variety
of Bayesian regression models and estimates parameters using an adaptive MH Markov chain Monte
Carlo (MCMC) method. You can choose from a variety of supported Bayesian models by specifying the
likelihood() and prior() options. Or you can program your own Bayesian models by supplying
a program evaluator for the posterior distributions of model parameters in the evaluator() option;
see [BAYES] bayesmh evaluators for details.

24

bayes — Introduction to commands for Bayesian analysis 25

After estimation, you can use bayesgraph to check convergence of MCMC visually. You can also
use bayesstats ess to compute effective sample sizes and related statistics for model parameters and
functions of model parameters to assess the efficiency of the sampling algorithm and autocorrelation
in the obtained MCMC sample. Once convergence is established, you can use bayesstats summary
to obtain Bayesian summaries such as posterior means and standard deviations of model parameters
and functions of model parameters and bayesstats ic to compute Bayesian information criteria and
Bayes factors for models. You can use bayestest model to test hypotheses by comparing posterior
probabilities of models. You can also use bayestest interval to test interval hypotheses about
parameters and functions of parameters.

Below we provide an overview example demonstrating the Bayesian suite of commands. For more
examples, see Remarks and examples in [BAYES] bayesmh.

Overview example

Consider an example from Kuehl (2000, 551) about the effects of exercise on oxygen uptake. The
research objective is to compare the impact of the two exercise programs—12 weeks of step aerobic
training and 12 weeks of outdoor running on flat terrain—on maximal oxygen uptake. Twelve healthy
men were randomly assigned to one of the two groups, the “aerobic” group or the “running” group.
Their changes in maximal ventilation (liters/minute) of oxygen for the 12-week period were recorded.

oxygen.dta contains 12 observations of changes in maximal ventilation of oxygen, recorded
in variable change, from two groups, recorded in variable group. Additionally, ages of subjects
are recorded in variable age, and an interaction between age and group is stored in variable
interaction.

. use http://www.stata-press.com/data/r14/oxygen
(Oxygen Uptake Data)

. describe

Contains data from http://www.stata-press.com/data/r14/oxygen.dta
obs: 12 Oxygen Uptake Data

vars: 4 20 Jan 2015 15:56
size: 84 (_dta has notes)

storage display value
variable name type format label variable label

change float %9.0g Change in maximal oxygen uptake
(liters/minute)

group byte %8.0g grouplab Exercise group (0: Running, 1:
Aerobic)

age byte %8.0g Age (years)
ageXgr byte %9.0g Interaction between age and group

Sorted by:

Kuehl (2000) uses analysis of covariance to analyze these data. We use linear regression instead,

change = β0 + βgroupgroup + βageage + ε

where ε is a random error with zero mean and variance σ2. Also see Hoff (2009) for Bayesian
analysis of these data.

26 bayes — Introduction to commands for Bayesian analysis

Example 1: OLS

Let’s fit OLS regression to our data first.

. regress change group age

Source SS df MS Number of obs = 12
F(2, 9) = 41.42

Model 647.874893 2 323.937446 Prob > F = 0.0000
Residual 70.388768 9 7.82097423 R-squared = 0.9020

Adj R-squared = 0.8802
Total 718.263661 11 65.2966964 Root MSE = 2.7966

change Coef. Std. Err. t P>|t| [95% Conf. Interval]

group 5.442621 1.796453 3.03 0.014 1.378763 9.506479
age 1.885892 .295335 6.39 0.000 1.217798 2.553986

_cons -46.4565 6.936531 -6.70 0.000 -62.14803 -30.76498

From the table, both group and age are significant predictors of the outcome in this model.

For example, we reject the hypothesis of H0: βgroup = 0 at a 5% level based on the p-value of
0.014. The actual interpretation of the reported p-value is that if we repeat the same experiment and
use the same testing procedure many times, then given our null hypothesis of no effect of group, we
will observe the result (test statistic) as extreme or more extreme than the one observed in this sample
(t = 3.03) only 1.4% of the times. The p-value cannot be interpreted as a probability of the null
hypothesis, which is a common misinterpretation. In fact, it answers the question of how likely our
data are, given that the null hypothesis is true, and not how likely the null hypothesis is, given our
data. The latter question can be answered using Bayesian hypothesis testing, which we demonstrate
in example 8.

Confidence intervals are popular alternatives to p-values that eliminate some of the p-value
shortcomings. For example, the 95% confidence interval for the coefficient for group is [1.38, 9.51]
and does not contain the value of 0, so we consider group to be a significant predictor of change.
The interpretation of a 95% confidence interval is that if we repeat the same experiment many times
and compute confidence intervals for each experiment, then 95% of those intervals will contain the
true value of the parameter. Thus we cannot conclude that the true coefficient for group lies between
1.38 and 9.51 with a probability of 0.95—a common misinterpretation of a confidence interval. This
probability is either 0 or 1, and we do not know which for any particular confidence interval. All we
know is that [1.38, 9.51] is a plausible range for the true value of the coefficient for group. Intervals
that can actually be interpreted as probabilistic ranges for a parameter of interest may be constructed
within the Bayesian paradigm; see example 8.

Example 2: Bayesian normal linear regression with noninformative prior

In example 1, we stated that frequentist methods cannot provide probabilistic summaries for the
parameters of interest. This is because in frequentist statistics, parameters are viewed as unknown but
fixed quantities. The only random quantity in a frequentist model is an outcome of interest. Bayesian
statistics, on the other hand, in addition to the outcome of interest, also treats all model parameters as
random quantities. This is what sets Bayesian statistics apart from frequentist statistics and enables
one to make probability statements about the likely values of parameters and to assign probabilities
to hypotheses of interest.

bayes — Introduction to commands for Bayesian analysis 27

Bayesian statistics focuses on the estimation of various aspects of the posterior distribution of a
parameter of interest, an initial or a prior distribution that has been updated with information about
a parameter contained in the observed data. A posterior distribution is thus described by the prior
distribution of a parameter and the likelihood function of the data given the parameter.

Let’s now fit a Bayesian linear regression to oxygen.dta. To fit a Bayesian parametric model,
we need to specify the likelihood function or the distribution of the data and prior distributions for all
model parameters. Our Bayesian linear model has four parameters: three regression coefficients and
the variance of the data. We assume a normal distribution for our outcome, change, and start with a
noninformative Jeffreys prior for the parameters. Under the Jeffreys prior, the joint prior distribution
of the coefficients and the variance is proportional to the inverse of the variance.

We can write our model as follows,

change ∼ N(Xβ, σ2)

(β, σ2) ∼ 1

σ2

where X is our design matrix, and β = (β0, βgroup, βage)′, which is a vector of coefficients.

We use the bayesmh command to fit our Bayesian model. Let’s consider the specification of the
model first.

bayesmh change group age, likelihood(normal({var})) ///
prior({change:}, flat) prior({var}, jeffreys)

The specification of the regression function in bayesmh is the same as in any other Stata regression
command—the name of the dependent variable follows the command, and the covariates of interest
are specified next. Likelihood or outcome distribution is specified in the likelihood() option, and
prior distributions are specified in the prior() options, which are repeated options.

All model parameters must be specified in curly braces, {}. bayesmh automatically creates
parameters associated with the regression function—regression coefficients—but it is your responsibility
to define the remaining model parameters. In our example, the only parameter we need to define is the
variance parameter, which we define as {var}. The three regression coefficients {change:group},
{change:age}, and {change: cons} are automatically created by bayesmh.

The last step is to specify the likelihood and the prior distributions. bayesmh provides several
different built-in distributions for the likelihood and priors. If a certain distribution is not available or
you have a particularly complicated Bayesian model, you may consider writing your own evaluator
for the posterior distribution; see [BAYES] bayesmh evaluators for details. In our example, we specify
distribution normal({var}) in option likelihood() to request the likelihood function of the normal
model with the variance parameter {var}. This specification together with the regression specification
defines the likelihood model for our outcome change. We assign the flat prior, a prior with a
density of 1, to all regression coefficients with prior({change:}, flat), where {change:} is
a shortcut for referring to all parameters with equation name change, our regression coefficients.
Finally, we specify prior jeffreys for the variance parameter {var} to request the density 1/σ2.

Let’s now run our command. bayesmh uses MCMC sampling, specifically, an adaptive random-walk
MH MCMC method, to estimate marginal posterior distributions of parameters. Because bayesmh is
using an MCMC method, which is stochastic, we must specify a random-number seed for reproducibility
of our results. For consistency and simplicity, we use the same random seed of 14 in all of our
examples throughout the manual.

28 bayes — Introduction to commands for Bayesian analysis

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1371
Efficiency: min = .02687

avg = .03765
Log marginal likelihood = -24.703776 max = .05724

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 5.429677 2.007889 .083928 5.533821 1.157584 9.249262

age 1.8873 .3514983 .019534 1.887856 1.184714 2.567883
_cons -46.49866 8.32077 .450432 -46.8483 -62.48236 -30.22105

var 10.27946 5.541467 .338079 9.023905 3.980325 25.43771

First, bayesmh provides a summary for the specified model. It is particularly useful for complicated
models with many parameters and hyperparameters. In fact, we recommend that you first specify
the dryrun option, which provides only the summary of the model without estimation, to verify the
specification of your model and then proceed with estimation. You can then use the nomodelsummary
option during estimation to suppress the model summary, which may be rather long.

Next, bayesmh provides a header with various model summaries on the right-hand side. It reports
the total number of MCMC iterations, 12,500, including the default 2,500 burn-in iterations, which
are discarded from the analysis MCMC sample, and the number of iterations retained in the MCMC
sample, or MCMC sample size, which is 10,000 by default. These default values should be viewed
as initial estimates and further adjusted for the problem at hand to ensure convergence of the MCMC;
see example 5.

An acceptance rate and a summary of the parameter-specific efficiencies are also part of the output
header. An acceptance rate specifies the proportion of proposed parameter values that was accepted
by the algorithm. An acceptance rate of 0.14 in our example means that 14% out of 10,000 proposal
parameter values were accepted by the algorithm. For the MH algorithm, this number rarely exceeds
50% and is typically below 30%. A low acceptance rate (for example, below 10%) may indicate
convergence problems. In our example, the acceptance rate is a bit low, so we may need to investigate
this further. In general, MH tends to have lower efficiencies compared with other MCMC methods.
For example, efficiencies of 10% and higher are considered good. Efficiencies below 1% may be a
source of concern. The efficiencies are somewhat low in our example, so we may consider tuning
our MCMC sampler; see Improving efficiency of the MH algorithm—blocking of parameters.

bayes — Introduction to commands for Bayesian analysis 29

Finally, bayesmh reports a table with a summary of the results. The Mean column reports the
estimates of posterior means, which are means of the marginal posterior distributions of the parameters.
The posterior mean estimates are pretty close to the OLS estimates obtained in example 1. This is
expected, provided MCMC converged, because we used a noninformative prior. That is, we did not
provide any additional information about parameters beyond that contained in the data.

The next column reports estimates of posterior standard deviations, which are standard deviations
of the marginal posterior distribution. These values describe the variability in the posterior distribution
of the parameter and are comparable to our OLS standard errors.

The precision of the posterior mean estimates is described by their Monte Carlo standard errors.
These numbers should be small, relative to the scales of the parameters. Increasing the MCMC sample
size should decrease these numbers.

The Median column provides estimates of the median of the posterior distribution and can be used
to assess the symmetries of the posterior distribution. At a quick glance, the estimates of posterior
means and medians are pretty close for the regression coefficients, so we suspect that their posterior
distributions may be symmetric.

The last two columns provide credible intervals for the parameters. Unlike confidence intervals,
as discussed in example 1, these intervals have a straightforward probabilistic interpretation. For
example, the probability that the coefficient for group is between 1.16 and 9.25 is about 0.95. The
lower bound of the interval is greater than 0, so we conclude that there is an effect of the exercise
program on the change in oxygen uptake. We can also use Bayesian hypothesis testing to test effects
of parameters; see example 8.

Before any interpretation of the results, however, it is important to verify the convergence of
MCMC; see example 5.

Example 3: Bayesian linear regression with informative prior

In example 2, we considered a noninformative prior for the model parameters. The strength (as
well as the weakness) of Bayesian modeling is specifying an informative prior distribution, which
may improve results. The strength is that if we have reliable prior knowledge about the distribution
of a parameter, incorporating this in our model will improve results and potentially make certain
analysis that would not be possible to perform in the frequentist domain feasible. The weakness is
that a strong incorrect prior may lead to results that are not supported by the observed data. As with
any modeling task, Bayesian or frequentist, a substantive research of the process generating the data
and its parameters will be necessary for you to find appropriate models.

Let’s consider an informative conjugate prior distribution for our normal regression model.

(β|σ2) ∼ i.i.d. N(0, σ2)

σ2 ∼ InvGamma(2.5, 2.5)

Here, for simplicity, all coefficients are assumed to be independently and identically distributed as
normal with zero mean and variance σ2, and the variance parameter is distributed according to the
above inverse gamma distribution. In practice, a better prior would be to allow each parameter to
have a different variance, at least for parameters with different scales.

Let’s fit this model using bayesmh. Following the model above, we specify the normal(0,{var})
prior for the coefficients and the igamma(2.5,2.5) prior for the variance.

30 bayes — Introduction to commands for Bayesian analysis

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, normal(0, {var}))
> prior({var}, igamma(2.5, 2.5))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ normal(0,{var}) (1)

{var} ~ igamma(2.5,2.5)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1984
Efficiency: min = .03732

avg = .04997
Log marginal likelihood = -49.744054 max = .06264

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 6.510807 2.812828 .129931 6.50829 .9605561 12.23164

age .2710499 .2167863 .009413 .2657002 -.1556194 .7173697
_cons -6.838302 4.780343 .191005 -6.683556 -16.53356 2.495631

var 28.83438 10.53573 .545382 26.81462 14.75695 54.1965

The results from this model are substantially different from the results we obtained in example 2.
Considering that we used this simple prior for demonstration purposes only and did not use any
external information about model parameters based on prior studies, we would be reluctant to trust
the results from this model.

Example 4: Bayesian normal linear regression with multivariate prior

Continuing with informative priors, we will consider Zellner’s g-prior (Zellner 1986), which is
one of the more commonly used priors for the regression coefficients in a normal linear regression.
Hoff (2009) provides more details about this example, and he includes the interaction between age and
group as in example 7. Here we concentrate on demonstrating how to fit our model using bayesmh.

The mathematical formulation of the priors is the following,

(β|σ2) ∼ MVN(0, gσ2(X ′X)−1)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where g reflects prior sample size, ν0 is the prior degrees of freedom for the inverse gamma distribution,
and σ2

0 is the prior variance for the inverse gamma distribution. This prior incorporates dependencies
between coefficients. We use values of the parameters similar to those in Hoff (2009): g = 12, ν0 = 1,
and σ2

0 = 8.

bayes — Introduction to commands for Bayesian analysis 31

bayesmh provides the zellnersg0() prior to accommodate the above prior. The first argument is
the dimension of the distribution, which is 3 in our example, the second argument is the prior degrees
of freedom, which is 12 in our example, and the last argument is the variance parameter, which is
{var} in our example. The mean is assumed to be a zero vector of the corresponding dimension.
(You can use zellnersg() if you want to specify a nonzero mean vector; see [BAYES] bayesmh.)

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

These results are more in agreement with results from example 2 than with results of example 3, but
our acceptance rate and efficiencies are low and require further investigation.

Technical note
We can reproduce what zellnersg0() does above manually. First, we must compute (X ′X)−1.

We can use Stata’s matrix functions to do that.
. matrix accum xTx = group age
(obs=12)

. matrix S = syminv(xTx)

We now specify the desired multivariate normal prior for the coefficients, mvnor-
mal0(3,12*{var}*S). The first argument of mvnormal0() specifies the dimension of the distribution,
and the second argument specifies the variance–covariance matrix. A mean of zero is assumed for
all dimensions. One interesting feature of this specification is that the variance–covariance matrix is
specified as a function of {var}.

32 bayes — Introduction to commands for Bayesian analysis

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, mvnormal0(3,12*{var}*S))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ mvnormal(3,0,12*{var}*S) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

Example 5: Checking convergence

We can use the bayesgraph command to visually check convergence of MCMC of parameter
estimates. bayesgraph provides a variety of graphs. For several commonly used visual diagnostics
displayed in a compact form, use bayesgraph diagnostics.

bayes — Introduction to commands for Bayesian analysis 33

For example, we can look at graphical diagnostics for the coefficient for group.

. bayesgraph diagnostics {change:group}

−5

0

5

10

15

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

.4

−5 0 5 10 15

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

−5 0 5 10 15

all

1−half

2−half

Density

change:group

The displayed diagnostics include a trace plot, an autocorrelation plot, a histogram, and a kernel
density estimate overlaid with densities estimated using the first and the second halves of the MCMC
sample. Both the trace plot and the autocorrelation plot demonstrate high autocorrelation. The shape
of the histogram is not unimodal. We definitely have some convergence issues in this example.

Similarly, we can look at diagnostics for other model parameters. To see all graphs at once, type

bayesgraph diagnostics _all

Other useful summaries are effective sample sizes and statistics related to them. These can be
obtained by using the bayesstats ess command.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

change
group 215.93 46.31 0.0216

age 214.39 46.64 0.0214
_cons 212.01 47.17 0.0212

var 165.04 60.59 0.0165

34 bayes — Introduction to commands for Bayesian analysis

The closer ESS estimates are to the MCMC sample size, the less correlated the MCMC sample is, and
the more precise our estimates of parameters are. Do not expect to see values close to the MCMC
sample size with the MH algorithm, but values below 1% of the MCMC sample size are certainly red
flags. In our example, ESS for {var} is somewhat low, so we may need to look into improving its
sampling efficiency. For example, blocking on {var} should improve the efficiency for the variance;
see Improving efficiency of the MH algorithm—blocking of parameters. It is usually a good idea to
sample regression coefficients and the variance in two separate blocks.

Correlation times may be viewed as estimates of autocorrelation lags in the MCMC samples. For
example, correlation times of the coefficients range between 46 and 47, and the correlation time for
the variance parameter is higher, 61. Consequently, the efficiency for the variance is lower than for
the regression coefficients. More investigation of the MCMC for {var} is needed.

Indeed, the MCMC for the variance has very poor mixing and very high autocorrelation.

. bayesgraph diagnostics {var}

0

20

40

60

80

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

5
.1

.1
5

0 20 40 60 80

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation

0
.0

5
.1

.1
5

0 20 40 60 80

all

1−half

2−half

Density

var

One remedy is to update the variance parameter separately from the regression coefficients by
putting the variance parameter in a separate block; see Improving efficiency of the MH algorithm—
blocking of parameters for details about this procedure. In bayesmh, this can be done by specifying
the block() option.

bayes — Introduction to commands for Bayesian analysis 35

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(agegroup_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3232
Efficiency: min = .06694

avg = .1056
Log marginal likelihood = -35.460606 max = .1443

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 5.080653 2.110911 .080507 5.039834 .8564619 9.399672

age 1.748516 .3347172 .008875 1.753897 1.128348 2.400989
_cons -43.12425 7.865979 .207051 -43.2883 -58.64107 -27.79122

var 12.09916 5.971454 .230798 10.67555 5.375774 27.32451

file agegroup_simdata.dta saved

. estimates store agegroup

Our acceptance rate and efficiencies are now higher.

In this example, we also used estimates store agegroup to store current estimation results as
agegroup for future use. To use estimates store after bayesmh, we had to specify the saving()
option with bayesmh to save the bayesmh simulation results to a permanent Stata dataset; see Storing
estimation results after bayesmh.

36 bayes — Introduction to commands for Bayesian analysis

The MCMC chains are now mixing much better. We may consider increasing the default MCMC
sample size to achieve even lower autocorrelation.

. bayesgraph diagnostics {change:group} {var}

−5

0

5

10

15

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

5
.1

.1
5

.2
.2

5

−5 0 5 10 15

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

5
.1

.1
5

.2
.2

5

−5 0 5 10 15

all

1−half

2−half

Density

change:group

0

20

40

60

80

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

2
.0

4
.0

6
.0

8
.1

0 20 40 60

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

5
.1

0 20 40 60 80

all

1−half

2−half

Density

var

Example 6: Postestimation summaries

We can use the bayesstats summary command to compute postestimation summaries for model
parameters and functions of model parameters. For example, we can compute an estimate of the
standardized coefficient for change, which is β̂group×σx/σy , where σx and σy are sample standard
deviations of group and change, respectively.

We use summarize (see [R] summarize) to compute sample standard deviations and store them
in respective scalars.

. summarize group

Variable Obs Mean Std. Dev. Min Max

group 12 .5 .522233 0 1

. scalar sd_x = r(sd)

. summarize change

Variable Obs Mean Std. Dev. Min Max

change 12 2.469167 8.080637 -10.74 17.05

. scalar sd_y = r(sd)

The standardized coefficient is an expression of the model parameter {change:group}, so we
specify it in parentheses.

. bayesstats summary (group_std:{change:group}*sd_x/sd_y)

Posterior summary statistics MCMC sample size = 10,000

group_std : {change:group}*sd_x/sd_y

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

group_std .3283509 .1364233 .005203 .3257128 .0553512 .6074792

The posterior mean estimate of the standardized group coefficient is 0.33 with a 95% credible interval
of [0.055, 0.61].

bayes — Introduction to commands for Bayesian analysis 37

Example 7: Model comparison

As we can with frequentist analysis, we can use various information criteria to compare different
models. There is great flexibility in which model can be compared: you can compare models with
different distributions for the outcome, you can compare models with different priors, you can
compare models with different forms for the regression function, and more. The only requirement is
that the same data are used to fit the models. Comparisons using Bayes factors additionally require
that parameters be sampled from the complete posterior distribution, which includes the normalizing
constant.

Let’s compare our reduced model with the full model including an interaction term. We again use
a multivariate Zellners-g prior for the coefficients and an inverse gamma prior for the variance. We
use the same values as in example 4 for prior parameters. (We use the interaction variable in this
example for notational simplicity. We could have used the factor-variable notation c.age#i.group
to include this interaction directly in our model; see [U] 11.4.3 Factor variables.)

. set seed 14

. bayesmh change group age ageXgr, likelihood(normal({var}))
> prior({change:}, zellnersg0(4,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(full_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age ageXgr _cons} ~ zellnersg(4,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3113
Efficiency: min = .0562

avg = .06425
Log marginal likelihood = -36.738363 max = .08478

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

change
group 11.94079 16.74992 .706542 12.13983 -22.31056 45.11963

age 1.939266 .5802772 .023359 1.938756 .7998007 3.091072
ageXgr -.2838718 .6985226 .028732 -.285647 -1.671354 1.159183
_cons -47.57742 13.4779 .55275 -47.44761 -74.64672 -20.78989

var 11.72886 5.08428 .174612 10.68098 5.302265 24.89543

file full_simdata.dta saved

. estimates store full

38 bayes — Introduction to commands for Bayesian analysis

We can use the bayesstats ic command to compare the models. We list the names of the
corresponding estimation results following the command name.

. bayesstats ic full agegroup

Bayesian information criteria

DIC log(ML) log(BF)

full 65.03326 -36.73836 .
agegroup 63.5884 -35.46061 1.277756

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

The smaller that DIC is and the larger that log(ML) is, the better. The model without interaction,
agegroup, is preferred according to these statistics. The log Bayes-factor for the agegroup model
relative to the full model is 1.28. Kass and Raftery (1995) provide a table of values for Bayes
factors; see, for example, Bayes factors in [BAYES] bayesstats ic. According to their scale, because
2 × 1.28 = 2.56 is greater than 2 (slightly), there is some mild evidence that model agegroup is
better than model full.

Example 8: Hypothesis testing

Continuing with example 7, we can compute the actual probability associated with each of the
models. We can use the bayestest model command to do this.

Similar to bayesstats ic, this command requires the names of estimation results corresponding
to the models of interest.

. bayestest model full agegroup

Bayesian model tests

log(ML) P(M) P(M|y)

full -36.7384 0.5000 0.2179
agegroup -35.4606 0.5000 0.7821

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Under the assumption that both models are equally probable a priori, the model without interaction,
agegroup, has the probability of 0.78, whereas the full model has the probability of only 0.22.
Despite the drastic disparity in the probabilities, according to the results from example 7, model
agegroup is only slightly preferable to model full. To have stronger evidence against full, we
would expect to see higher probabilities (above 0.9) for agegroup.

We may be interested in testing an interval hypothesis about the parameter of interest. For example,
for a model without interaction, let’s compute the probability that the coefficient for group is between
4 and 8. We use estimates restore (see [R] estimates store) to load the results of the agegroup
model back into memory.

bayes — Introduction to commands for Bayesian analysis 39

. estimates restore agegroup
(results agegroup are active now)

. bayestest interval {change:group}, lower(4) upper(8)

Interval tests MCMC sample size = 10,000

prob1 : 4 < {change:group} < 8

Mean Std. Dev. MCSE

prob1 .6159 0.48641 .0155788

The estimated probability or, technically, its posterior mean estimate is 0.62 with a standard deviation
of 0.49 and Monte Carlo standard errors of 0.016.

Example 9: Erasing simulation datasets

After you are done with your analysis, remember to erase any simulation datasets that you created
using bayesmh and no longer need. If you want to save your estimation results to disk for future
reference, use estimates save; see [R] estimates save.

We are done with our analysis, and we do not need the datasets for future reference, so we remove
both simulation files we created using bayesmh.

. erase agegroup_simdata.dta

. erase full_simdata.dta

Acknowledgments
We thank John Thompson of the Department of Health Sciences at the University of Leicester,

UK, and author of Bayesian Analysis with Stata, and Matthew J. Baker of Hunter College and the
Graduate Center, CUNY for their software and contributions to Bayesian analysis in Stata.

References
Baker, M. J. 2014. Adaptive Markov chain Monte Carlo sampling and estimation in Mata. Stata Journal 14: 623–661.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

Kass, R. E., and A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.

Kuehl, R. O. 2000. Design of Experiments: Statistical Principles of Research Design and Analysis. 2nd ed. Belmont,
CA: Duxbury.

Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In
Vol. 6 of Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti (Studies in Bayesian
Econometrics and Statistics), ed. P. K. Goel and A. Zellner, 233–343. Amsterdam: North-Holland.

Also see
[BAYES] intro — Introduction to Bayesian analysis

[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] Glossary

http://www.stata-press.com/books/bayesian-analysis-with-stata/
http://www.stata-journal.com/article.html?article=st0354

Title

bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesmh fits a variety of Bayesian models using Metropolis–Hastings (MH) algorithm. It pro-
vides various likelihood models and prior distributions for you to choose from. Likelihood models
include univariate normal linear and nonlinear regressions, multivariate normal linear and nonlinear
regressions, generalized linear models such as logit and Poisson regressions, and multiple-equations
linear models. Prior distributions include continuous distributions such as uniform, Jeffreys, normal,
gamma, multivariate normal, and Wishart and discrete distributions such as Bernoulli and Poisson.
You can also program your own Bayesian models; see [BAYES] bayesmh evaluators.

Quick start
Bayesian normal linear regression of y1 on x1 with flat priors for coefficient on x1 and the intercept

and with a Jeffreys prior on the variance parameter {var}
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1: x1 _cons}, flat) prior({var}, jeffreys)

Add binary variable a using factor-variable notation
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1: x1 i.a _cons}, flat) prior({var}, jeffreys)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys)

Specify a different prior for a = 1
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:x1 _cons}, flat) prior({y1: 1.a}, normal(0,100)) ///
prior({var}, jeffreys)

Specify a starting value of 1 for parameter {var}
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys) initial({var} 1)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var=1})) ///

prior({y1:}, flat) prior({var}, jeffreys)

A normal prior with µ = 2 and σ2 = 0.5 for the coefficient on x1, a normal prior with µ = −40 and
σ2 = 100 for the intercept, and an inverse-gamma prior with shape parameter of 0.1 and scale
parameter of 1 for {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1))

40

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 41

Place {var} into a separate block
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var})

Zellner’s g prior to allow {y1:x1} and {y1: cons} to be correlated, specifying 2 dimensions,
df = 30, µ = 2 for {y1:x1}, µ = −40 for {y1: cons}, and variance parameter {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({var}, igamma(0.1,1)) ///
prior({y1:}, zellnersg(2,30,2,-40,{var}))

Model for dichotomous dependent variable y2 regressed on x1 with a logit likelihood
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

As above, and save model results to simdata.dta, and store estimates in memory as m1

bayesmh y2 x1, likelihood(logit) prior({y2:}, ///
normal(0,100)) saving(simdata.dta)

estimates store m1

As above, but save the results on replay
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))
bayesmh, saving(simdata.dta)
estimates store m1

Show model summary without performing estimation
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) dryrun

Fit model without showing model summary
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

nomodelsummary

As above, and set the random-number seed for reproducibility
set seed 1234
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

rseed(1234)

Specify 20,000 MCMC samples, and set length of the burn-in period to 5,000
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

mcmcsize(20000) burnin(5000)

Specify that only observations 1 + 5k, for k = 0, 1, . . . , be saved to the MCMC sample
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

thinning(5)

Set the maximum number of adaptive iterations of the MCMC procedure to 30, and specify that
adaptation of the MCMC procedure be attempted every 25 iterations

bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///
adaptation(maxiter(30) every(25))

42 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Request that a dot be displayed every 100 simulations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100)

Also request that an iteration number be displayed every 1,000 iterations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100, every(1000))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots

Request that the 90% equal-tailed credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

clevel(90)

Request that the default 95% highest posterior density credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) hpd

Use the batch-means estimator of MCSE with the length of the block of 5
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

batch(5)

Multivariate normal regression of y1 and y3 on x1 and x2, using normal priors with µ = 0 and
σ2 = 100 for the regression coefficients and intercepts, an inverse-Wishart prior for the covariance
matrix parameter {S, matrix} of dimension 2, df = 100, and an identity scale matrix

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S, matrix})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S, matrix}, iwishart(2,100,I(2)))

As above, but use abbreviated declaration for the covariance matrix
bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

As above, and specify starting values for matrix {S,m} using previously defined matrix W

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2))) initial({S,m} W)

Multivariate normal regression with outcome-specific regressors
bayesmh (y1 x1 x2) (y3 x1 x3), likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Linear multiple-equation model of y1 on x1 and of y3 on y1, x1, and x2 with separate variance
parameters for each equation

bayesmh (y1 x1, likelihood(normal({var1}))) ///
(y3 y1 x1 x2, likelihood(normal({var2}))), ///
prior({y1:} {y3:}, flat) ///
prior({var1}, jeffreys) prior({var2}, jeffreys)

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 43

Nonlinear model with parameters {a}, {b}, {c}, and {var} specified using a substitutable expression
bayesmh y1 = ({a}+{b}*x1^{c}), likelihood(normal({var})) ///

prior({a b}, normal(0,100)) prior({c}, normal(0,2)) ///
prior({var}, igamma(0.1,1))

Multivariate nonlinear model with distinct parameters in each equation
bayesmh (y1 = ({a1} + {b1}*x1^{c1})) ///

(y3 = ({a2} + {b2}*x1^{c2})), likelihood(mvnormal({S,m})) ///
prior({a1 a2 b1 b2}, normal(0,100)) ///
prior({c1 c2}, normal(0,2)) prior({S,m}, iwishart(2,100,I(2)))

Menu
Statistics > Bayesian analysis > Estimation

44 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Syntax
Univariate linear models

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate linear models

Multivariate normal linear regression with common regressors

bayesmh depvars =
[

indepvars
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multivariate normal regression with outcome-specific regressors

bayesmh (
[

eqname1:
]
depvar1

[
indepvars1

]
)

(
[

eqname2:
]
depvar2

[
indepvars2

]
)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multiple-equation linear models

bayesmh (eqspec)
[
(eqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
, prior(priorspec)

[
options

]

Nonlinear models

Univariate nonlinear regression

bayesmh depvar = (subexpr)
[

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal nonlinear regression

bayesmh (depvars1 = (subexpr1))
(depvars2 = (subexpr2))

[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 45

The syntax of eqspec is

varspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

[
noconstant

]
The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvars

]
for multiple outcomes with common regressors

depvars =
[

indepvars
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvars1

]
) (

[
eqname2:

]
depvar2

[
indepvars2

]
)
[
. . .
]

subexpr, subexpr1, subexpr2, and so on are substitutable expressions; see Substitutable expressions
for details.

The syntax of modelspec is

model
[
, modelopts

]
model Description

Continuous

normal(var) normal regression with variance var
lognormal(var) lognormal regression with variance var
lnormal(var) synonym for lognormal()
exponential exponential regression
mvnormal(Sigma) multivariate normal regression with covariance matrix Sigma

Discrete

probit probit regression
logit logistic regression
logistic logistic regression; synonym for logit
binlogit(n) binomial regression with logit link
oprobit ordered probit regression
ologit ordered logistic regression
poisson Poisson regression

Generic

llf(subexpr) substitutable expression for observation-level log-likelihood
function

A distribution argument is a number for scalar arguments such as var; a variable name, varname (except for matrix
arguments); a matrix for matrix arguments such as Sigma; a model parameter, paramspec; an expression, expr; or
a substitutable expression, subexpr. See Specifying arguments of likelihood models and prior distributions.

46 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

modelopts Description

offset(varnameo) include varnameo in model with coefficient constrained to 1;
not allowed with normal() and mvnormal()

exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1;
allowed only with poisson

noglmtransform do not apply GLM-type transformation to the linear predictor or
nonlinear specification; allowed only with exponential,
poisson, or binlogit()

The syntax of priorspec is

paramref, priordist

where the simplest specification of paramref is

paramspec
[

paramspec
[
...

]]
Also see Referring to model parameters for other specifications.

The syntax of paramspec is

{
[
eqname:

]
param

[
, matrix

]
}

where the parameter label eqname and parameter name param are valid Stata names. Model parameters
are either scalars such as {var}, {mean}, and {shape:alpha}, or matrices such as {Sigma,
matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} to specify an
initial value. For example, you can specify, {var=1}, {mean=1.267}, or {shape:alpha=3}.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 47

priordist Description

Univariate continuous

normal(mu,var) normal with mean mu and variance var
lognormal(mu,var) lognormal with mean mu and variance var
lnormal(mu,var) synonym for lognormal()
uniform(a,b) uniform on (a, b)
gamma(alpha,beta) gamma with shape alpha and scale beta
igamma(alpha,beta) inverse gamma with shape alpha and scale beta
exponential(beta) exponential with scale beta
beta(a,b) beta with shape parameters a and b
chi2(df) central χ2 with degrees of freedom df
jeffreys Jeffreys prior for variance of a normal distribution

Multivariate continuous

mvnormal(d,mean,Sigma) multivariate normal of dimension d with mean vector mean and
covariance matrix Sigma; mean can be a matrix name or a list
of d means separated by comma: mu1, mu2, . . ., mud

mvnormal0(d,Sigma) multivariate normal of dimension d with zero mean vector and
covariance matrix Sigma

mvn0(d,Sigma) synonym for mvnormal0()
zellnersg(d,g,mean,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,

mean vector mean, and variance parameter {var}; mean can be
a matrix name or a list of d means separated by comma:
mu1, mu2, . . ., mud

zellnersg0(d,g,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
zero mean vector, and variance parameter {var}

wishart(d,df,V) Wishart of dimension d with degrees of freedom df and scale
matrix V

iwishart(d,df,V) inverse Wishart of dimension d with degrees of freedom df and
scale matrix V

jeffreys(d) Jeffreys prior for covariance of a multivariate normal distribution
of dimension d

Discrete

bernoulli(p) Bernoulli with success probability p
index(p1,. . .,pk) discrete indices 1, 2, . . . , k with probabilities p1, p2, . . ., pk
poisson(mu) Poisson with mean mu

Generic

flat flat prior; equivalent to density(1) or logdensity(0)
density(f) generic density f
logdensity(logf) generic log density logf

Dimension d is a positive number #.
A distribution argument is a number for scalar arguments such as var, alpha, beta; a Stata matrix for matrix arguments

such as Sigma and V; a model parameter, paramspec; an expression, expr; or a substitutable expression, subexpr.
See Specifying arguments of likelihood models and prior distributions.

f is a nonnegative number, #; an expression, expr; or a substitutable expression, subexpr.
logf is a number, #; an expression, expr; or a substitutable expression, subexpr.

48 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

options Description

Model

noconstant suppress constant term; not allowed with ordered and nonlinear
models

∗likelihood(modelspec) distribution for the likelihood model
∗prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Model 2

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

initial(initspec) initial values for model parameters
nomleinitial suppress the use of maximum likelihood estimates as starting

values

Simulation

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

batch(#) specify length of block for batch-means calculations;
default is batch(0)

nomodelsummary suppress model summary
noexpression suppress output of expressions from model summary
blocksummary display block summary
dots display dots every 100 iterations and iteration numbers

every 1,000 iterations
dots(#

[
, every(#)

]
) display dots as simulation is performed

noshow(paramref) specify model parameters to be excluded from the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
saving(filename

[
, replace

]
) save simulation results to filename.dta

display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 49

∗Options likelihood() and prior() are required. prior() must be specified for all model parameters.
Options prior() and block() can be repeated.
indepvars and paramref may contain factor variables; see [U] 11.4.3 Factor variables.
With multiple-equations specifications, a local if specified within an equation is applied together with the global if

specified with the command.
Only fweights are allowed; see [U] 11.1.6 weight.
With multiple-equations specifications, local weights or (weights specified within an equation) override global weights

(weights specified with the command).
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

blockopts Description

gibbs requests Gibbs sampling; available for selected models only and
not allowed with scale(), covariance(), or adaptation()

split requests that all parameters in a block be treated as separate blocks
scale(#) initial multiplier for scale factor for current block; default is

scale(2.38); not allowed
with gibbs

covariance(cov) initial proposal covariance for the current block; default is the
identity matrix; not allowed with gibbs

adaptation(adaptopts) control the adaptive MCMC procedure of the current block;
not allowed with gibbs

Only tarate() and tolerance() may be specified in the adaptation() option.

adaptopts Description

every(#) adaptation interval; default is every(100)

maxiter(#) maximum number of adaptation loops; default is maxiter(25) or
max{25, floor(burnin()/every())} whenever default values of these
options are modified

miniter(#) minimum number of adaptation loops; default is miniter(5)

alpha(#) parameter controlling acceptance rate (AR); default is alpha(0.75)

beta(#) parameter controlling proposal covariance; default is beta(0.8)

gamma(#) parameter controlling adaptation rate; default is gamma(0)
∗tarate(#) target acceptance rate (TAR); default is parameter specific
∗tolerance(#) tolerance for AR; default is tolerance(0.01)

∗Only starred options may be specified in the adaptation() option specified within block().

Options

� � �
Model �

noconstant suppresses the constant term (intercept) from the regression model. By default, bayesmh
automatically includes a model parameter {depname: cons} in all regression models except ordered
and nonlinear models. Excluding the constant term may be desirable when there is a factor variable,
the base level of which absorbs the constant term in the linear combination.

likelihood(modelspec) specifies the distribution of the data in the regression model. This option
specifies the likelihood portion of the Bayesian model. This option is required. modelspec specifies

50 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

one of the supported likelihood distributions. A location parameter of these distributions is auto-
matically parameterized as a linear combination of the specified independent variables and needs
not be specified. Other parameters may be specified as arguments to the distribution separated by
commas. Each argument may be a real number (#), a variable name (except for matrix parameters),
a predefined matrix, a model parameter specified in {}, a Stata expression, or a substitutable ex-
pression containing model parameters; see Declaring model parameters and Specifying arguments
of likelihood models and prior distributions.

For some likelihood models, option likelihood() provides suboptions subopts in
likelihood(. . . , subopts). subopts is offset(), exposure(), and baseoutcome().

offset(varnameo) specifies that varnameo be included in the regression model with the coefficient
constrained to be 1. This option is available with probit, logit, binlogit(), oprobit,
ologit, and poisson.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the
depvar events were observed for each observation; ln(varnamee) with coefficient constrained
to be 1 is entered into the log-link function. This option is available with poisson.

noglmtransform requests that the GLM-type transformation not be applied to linear and nonlinear
predictors of Poisson, exponential, and binomial logistic regression models. If this option is
not specified, Poisson, exponential, and binomial logistic regressions are assumed, which apply
the corresponding GLM transformation to the linear predictor to model the mean function.
The GLM transformation is µ = E(Y |X) = h(X ′β), where h(·) is an inverse link function.
For example, for Poisson and exponential regression models, h(x) = exp(x). For generalized
nonlinear models, µ = h{f(X,β)}, where f(·) is a nonlinear function of predictors. If this
option is specified, the linear and nonlinear specifications are assumed to directly model the
mean µ of the Poisson distribution, the scale parameter b = 1/µ of the exponential distribution,
and the probability of success µ/n of the binomial distribution. This option is useful with
constant-only models for modeling outcome distributions directly; see Beta-binomial model.

prior(priorspec) specifies a prior distribution for model parameters. This option is required and
may be repeated. A prior must be specified for each model parameter. Model parameters may
be scalars or matrices but both types may not be combined in one prior statement. If multiple
scalar parameters are assigned a single univariate prior, they are considered independent, and the
specified prior is used for each parameter. You may assign a multivariate prior of dimension d to d
scalar parameters. Also see Referring to model parameters and Specifying arguments of likelihood
models and prior distributions.

All likelihood() and prior() combinations are allowed, but they are not guaranteed to correspond
to proper posterior distributions. You need to think carefully about the model you are building and
evaluate its convergence thoroughly.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model.

� � �
Model 2 �

block(paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, all parameters except matrices are treated as one block, and each matrix parameter
is viewed as a separate block. You can use the block() option to separate scalar parameters in
multiple blocks. Technically, you can also use block() to combine matrix parameters in one block,
but this is not recommended. The block() option may be repeated to define multiple blocks.
Different types of model parameters, such as scalars and matrices, may not be specified in one
block(). Parameters within one block are updated simultaneously, and each block of parameters

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 51

is updated in the order it is specified; the first specified block is updated first, the second is updated
second, and so on. See Improving efficiency of the MH algorithm—blocking of parameters.

blockopts include gibbs, split, scale(), covariance(), and adaptation().

gibbs option specifies to use Gibbs sampling to update parameters in the block. This option is
allowed only for specific combinations of likelihood models and prior distributions; see Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations. For more information,
see Gibbs and hybrid MH sampling. gibbsmay not be combined with scale(), covariance(),
or adaptation().

split specifies that all parameters in a block are treated as separate blocks. This may be useful
for levels of factor variables.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for

discrete parameters, where np is the number of parameters in the block. By default, # is equal
to 2.38 (that is, scale(2.38)) is the default. If specified, this option overrides the respective
setting from the scale() option specified with the bayesmh command. scale() may not be
combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from
the covariance() option specified with the bayesmh command. covariance() may not be
combined with gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the bayesmh command. adaptation() may not be combined with gibbs.

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
You can specify a parameter name, its initial value, another parameter name, its initial value, and
so on. For example, to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the
identity matrix I(2), you can type

bayesmh . . . , initial({alpha} 0.5 {Sigma,m} I(2)) . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters. For example, to initialize all regression coefficients from equations y1 and y2
to zero, you can type

bayesmh . . . , initial({y1:} {y2:} 0) . . .

The general specification of initspec is

paramref #
[

paramref #
[
. . .
]]

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Specifying initial values
for details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) starting values for regression
coefficients. By default, when no initial values are specified, MLE values (when available) are used
as initial values. If nomleinitial is specified and no initial values are provided, bayesmh uses
ones for positive scalar parameters, zeros for other scalar parameters, and identity matrices for

52 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

matrix parameters. nomleinitial may be useful for providing an alternative starting state when
checking convergence of MCMC.

� � �
Simulation �

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in
iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The MCMC
sample size determines the precision of posterior summaries, which may be different for different
model parameters and will depend on the efficiency of the Markov chain. Also see Burn-in period
and MCMC sample size.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. Also see Burn-in period and MCMC sample size and Convergence of MCMC.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#)
is equivalent to typing set seed # prior to calling bayesmh; see [R] set seed and Reproducing
results.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features will not be available for these parameters. This option is useful for suppressing nuisance
model parameters. For example, if you have a factor predictor variable with many levels but you
are only interested in the variability of the coefficients associated with its levels, not their actual
values, then you may wish to exclude this factor variable from the simulation results. If you simply
want to omit some model parameters from the output, see the noshow() option.� � �

Adaptation �
adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every

prespecified number of MCMC iterations and consists of tuning the proposal scale factor and
proposal covariance for each block of model parameters. Adaptation is used to improve sampling
efficiency. Provided defaults are based on theoretical results and may not be sufficient for all
applications. See Adaptation of the MH algorithm for details about adaptation and its parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 53

maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you set
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
and TARs is less than tolerance(). The default is tolerance(0.01).

scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. By default, # is equal to 2.38; that is, scale(2.38) is the
default.

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.
The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd specifies the display of HPD credible intervals instead of the default equal-tailed credible intervals.

batch(#) specifies the length of the block for calculating batch means, batch standard deviation, and
MCSE using batch means. The default is batch(0), which means no batch calculations. When
batch() is not specified, MCSE is computed using effective sample sizes instead of batch means.
Option batch() may not be combined with corrlag() or corrtol().

nomodelsummary suppresses the detailed summary of the specified model. Model summary is reported
by default.

noexpression suppresses the output of expressions from the model summary. Expressions (when
specified) are reported by default.

54 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified and may not be combined with dryrun.

dots and dots(#) specify to display dots as simulation is performed. dots(#) displays a dot every
iterations. During the adaptation period, a symbol a is displayed instead of a dot. If dots(. . .,
every(#)) is specified, then an iteration number is displayed every #th iteration instead of a
dot or a. dots(, every(#)) is equivalent to dots(1, every(#)). dots displays dots every
100 iterations and iteration numbers every 1,000 iterations; it is a synonym for dots(100),
every(1000). By default, no dots are displayed (dots(0)).

noshow(paramref) specifies a list of model parameters to be excluded from the output. Do not
confuse this option with exclude(), which excludes the specified parameters from the MCMC
sample.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, bayesmh
saves simulation results in a temporary file for later access by postestimation commands. This
temporary file will be overridden every time bayesmh is run and will also be erased if the current
estimation results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variance index records iteration numbers. bayesmh
saves only states (sets of parameter values) that are different from one iteration to another and
the frequency of each state in variable frequency. (Some states may be repeated for discrete
parameters.) As such, index may not necessarily contain consecutive integers. Remember to use
frequency as a frequency weight if you need to obtain any summaries of this dataset. Values

for each parameter are saved in a separate variable in the dataset. Variables containing values of
parameters without equation names are named as eq0 p#, following the order in which parameters
are declared in bayesmh. Variables containing values of parameters with equation names are named
as eq# p#, again following the order in which parameters are defined. Parameters with the same
equation names will have the same variable prefix eq#. For example,

. bayesmh y x1, likelihood(normal({var})) saving(mcmc) . . .

will create a dataset mcmc.dta with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.

In addition, bayesmh saves variable loglikelihood to contain values of the log likelihood from
each iteration and variable logposterior to contain values of log posterior from each iteration.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] estimation options.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 55

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial
values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents bayesmh from searching for feasible initial values. We do not recommend
specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples
Remarks are presented under the following headings:

Using bayesmh
Setting up a posterior model

Likelihood model
Prior distributions
Declaring model parameters
Referring to model parameters
Specifying arguments of likelihood models and prior distributions
Substitutable expressions
Checking model specification

Specifying MCMC sampling procedure
Reproducing results
Burn-in period and MCMC sample size
Improving efficiency of the MH algorithm—blocking of parameters
Gibbs and hybrid MH sampling
Adaptation of the MH algorithm
Specifying initial values

Summarizing and reporting results
Posterior summaries and credible intervals
Saving MCMC results

Convergence of MCMC

Examples are presented under the following headings:

Getting started examples
Mean of a normal distribution with a known variance
Mean of a normal distribution with an unknown variance
Simple linear regression
Multiple linear regression
Improving efficiency of MH sampling

56 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Logistic regression model: a case of nonidentifiable parameters
Ordered probit regression
Beta-binomial model
Multivariate regression
Panel-data and multilevel models

Two-level random-intercept model or panel-data model
Linear growth curve model—a random-coefficient model

Bayesian analysis of change-point problem
Bioequivalence in a crossover trial
Random-effects meta-analysis of clinical trials

For a quick overview example of all Bayesian commands, see Overview example in [BAYES] bayes.

Using bayesmh

The bayesmh command for Bayesian analysis includes three functional components: setting up
a posterior model, performing MCMC simulation, and summarizing and reporting results. The first
component, the model-building step, requires some experience in the practice of Bayesian statistics
and, as any modeling task, is probably the most demanding. You should specify a posterior model
that is statistically correct and that represents the observed data. Another important aspect is the
computational feasibility of the model in the context of the MH MCMC procedure implemented in
bayesmh. The provided MH algorithm is adaptive and, to a degree, can accommodate various statistical
models and data structures. However, careful model parameterization and well-specified initial values
and MCMC sampling scheme are crucial for achieving a fast-converging Markov chain and consequently
good results. Simulation of MCMC must be followed by a thorough investigation of the convergence
of the MCMC algorithm. Once you are satisfied with the convergence of the simulated chains, you
may proceed with posterior summaries of the results and their interpretation. Below we discuss the
three major steps of using bayesmh and provide recommendations.

Setting up a posterior model

Any posterior model includes a likelihood model that specifies the conditional distribution of the
data given model parameters and prior distributions for all model parameters. The prior distribution of
a parameter can itself be specified conditional on other parameters, also referred to as hyperparameters.
We will refer to their prior distributions as hyperpriors.

Likelihood model

The likelihood model describes the data. You build your likelihood model the same way you do
this in frequentist likelihood-based analysis.

The bayesmh command provides various likelihood models, which are specified in the like-
lihood() option. For a univariate response, there are normal models, generalized linear models
for binary and count response, and more. For a multivariate model, you may choose between a
multivariate normal model with covariates common to all variables and with covariates specific to
each variable. You can also build likelihood models for multiple variables by specifying a distribution
and a regression function for each variable by using bayesmh’s multiple-equation specification.

bayesmh is designed for fitting regression models. As we said above, you specify the likelihood
or outcome distribution in the likelihood() option. The regression specification of the model is
the same as for other regression commands. For a univariate response, you specify the dependent and
all independent variables following the command name. (Here we also include the prior() option
that specifies prior distributions to emphasize that it is required in addition to likelihood(). See
the next subsection for details about this option.)

. bayesmh y x1 x2, likelihood() prior() . . .

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 57

For a multivariate response, you separate the dependent variables from the independent variables
with the equal sign.

. bayesmh y1 y2 = x1 x2, likelihood(mvnormal(. . .)) prior() . . .

With the multiple-equation specification, you follow the syntax for the univariate response, but
you specify each equation in parentheses and you specify the likelihood() option within each
equation.

. bayesmh (y1 x1, likelihood()) (y2 x2, likelihood()), prior() . . .

In the above models, the regression function is modeled using a linear combination of the specified
independent variables and regression coefficients. The constant is included by default, but you can
specify the noconstant option to omit it from the linear predictor.

bayesmh also allows you to model the regression function as a nonlinear function of independent
variables and regression parameters. In this case, you must use the equal sign to separate the dependent
variable from the expression and specify the expression in parentheses:

. bayesmh y = ({a}+{b}*x^{c}), likelihood(normal()) prior() . . .

. bayesmh (y1 = ({a1}+{b1}*x^{c1}) ///
(y2 = ({a2}+{b2}*x^{c2}), likelihood(mvnormal()) prior() . . .

For a not-supported or nonstandard likelihood, you can use the llf() option within likeli-
hood() to specify a generic expression for the observation-level likelihood function; see Substitutable
expressions. When you use the llf() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For more complicated Bayesian models, you may consider
writing your own likelihood or posterior function evaluators; see [BAYES] bayesmh evaluators.

Prior distributions

In addition to the likelihood, you must also specify prior distributions for all model parameters in
a Bayesian model. Prior distributions or priors are key components in a Bayesian model specification
and should be chosen carefully. They are used to quantify some expert knowledge or existing
information about model parameters. For example, priors can be used for constraining the domain
of some parameters to localize values that we think are more probable for reasons that are not
considered in the likelihood specification. Improper priors (priors with densities that do not integrate
to finite numbers) are also allowed, as long as they yield valid posterior distributions. Priors are
often categorized as informative (subjective) or noninformative (objective). Noninformative priors
are also known as vague priors. Uniform distributions are often used as noninformative priors and
can even be applied to parameters with unbounded domains, in which case they become improper
priors. Normal and gamma distributions with very large variances relative to the expected values
of the parameters are also used as noninformative priors. Another family of noninformative priors,
often chosen for their invariance under reparameterization, are so-called Jeffreys priors, named after
Harold Jeffreys (Jeffreys 1946). For example, the bayesmh command provides built-in Jeffreys priors
for the normal family of distributions. Jeffreys priors are usually improper. As discussed by many
researchers, however, the overuse of noninformative priors contradicts the principles of Bayesian
approach—analysis of a posterior model with noninformative priors would be close to one based on
the likelihood only. Noninformative priors may also negatively influence the MCMC convergence. It
is thus important to find good priors based on earlier studies and use them in the model as well as
perform sensitivity analysis for competing priors. A good choice of prior should minimize the MCMC
standard errors of the parameter estimates.

58 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

As for likelihoods, the bayesmh command provides several priors you can choose from by
specifying the prior() options. For example, continuous univariate priors include normal, lognormal,
uniform, inverse gamma, and exponential; discrete priors include Bernoulli and Poisson; multivariate
priors include multivariate normal and inverse Wishart. There are also special priors: jeffreys and
jeffreys(#), which specify Jeffreys priors for the variance of the normal and multivariate normal
distributions, and zellnersg() and zellnersg0(), which specify multivariate priors for regression
coefficients (Zellner and Revankar 1969).

The prior() option is required and can be repeated. You can use the prior() option for each
parameter or you can combine multiple parameters in one prior() specification.

For example, we can specify different priors for parameters {y:x} and {y: cons} by

. bayesmh y x, . . . prior({y:x}, normal(10,100)) prior({y: cons}, normal(20,200)) . . .

or the same univariate prior using one prior() statement, using

. bayesmh y x, . . . prior({y:x _cons}, normal(10,100)) . . .

or a multivariate prior with zero mean and fixed variance–covariance S, as follows:

. bayesmh y x, . . . prior({y:x _cons}, mvnormal0(2,S)) . . .

In the prior() option, we list model parameters following any of the specifications described in
Referring to model parameters and then, following the comma, we specify one of the prior distributions
priordist.

If you want to specify a nonstandard prior or if the prior you need is not supported, you can use
the density() or logdensity() option within the prior() option to specify an expression for
a generic density or log density of the prior distribution; see Substitutable expressions. When you
use the density() or logdensity() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For a complicated Bayesian model, you may consider
writing your own posterior function evaluator; see [BAYES] bayesmh evaluators.

Sometimes, you may need to specify a flat prior (a prior with the density equal to one) for some
of the parameters. This is often needed when specifying a noninformative prior. You can specify the
flat option instead of the prior distribution in the prior() option to request the flat prior. This
option is equivalent to specifying density(1) or logdensity(0) in prior().

The specified likelihood model for the data and prior distributions for the parameters are not
guaranteed to result in proper posterior distributions of the parameters. Therefore, unless you are
using one of the standard Bayesian models, you should always check the validity of the posterior
model you specified.

Declaring model parameters

Model parameters are typically declared, meaning first introduced, in the arguments of distributions
specified in options likelihood() and prior(). We will refer to model parameters that are declared
in the prior distributions (and not the likelihood distributions) as hyperparameters. Model parameters
may also be declared within the parameter specification of the prior() option, but this is more rare.

bayesmh distinguishes between two types of model parameters: scalar and matrix. All parameters
must be specified in curly braces, {}. There are two ways for declaring a scalar parameter: {param}
and {eqname:param}, where param and eqname are valid Stata names.

The specification of a matrix parameter is similar, but you must use the matrix suboptions:
{param, matrix} and {eqname:param, matrix}. The most common application of matrix model
parameters is for specifying the variance–covariance matrix of a multivariate normal distribution.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 59

All matrices are assumed to be symmetric and only the elements in the lower diagonal are reported in
the output. Only a few multivariate prior distributions are available for matrix parameters: wishart(),
iwishart(), and jeffreys(). In addition to being symmetric, these distributions require that the
matrices be positive definite.

It is your responsibility to declare all parameters of your model, except regression coefficients in
linear models. For a linear model, bayesmh automatically creates a regression coefficient with the
name {depvar:indepvar} for each independent variable indepvar in the model and, if noconstant is
not specified, an intercept parameter {depvar: cons}. In the presence of factor variables, bayesmh
will create a parameter {depvar:level} for each level indicator level and a parameter {depvar:inter}
for each interaction indicator inter; see [U] 11.4.3 Factor variables. (It is still your responsibility,
however, to specify prior distributions for the regression parameters.)

For example,
. bayesmh y x, . . .

will automatically have two regression parameters: {y:x} and {y: cons}, whereas
. bayesmh y x, noconstant . . .

will have only one: {y:x}.

For a univariate normal linear regression, we may want to additionally declare the scalar variance
parameter by

. bayesmh y x, likelihood(normal({sig2})) . . .

We can label the variance parameter, as follows:
. bayesmh y x, likelihood(normal({var:sig2})) . . .

We can declare a hyperparameter for {sig2} using
. bayesmh y x, likelihood(normal({sig2})) prior({sig2}, igamma({df},2)) . . .

where the hyperparameter {df} is declared in the inverse-gamma prior distribution for {sig2}.

For a multivariate normal linear regression, in addition to four regression parameters declared
automatically by bayesmh: {y1:x}, {y1: cons}, {y2:x}, and {y2: cons}, we may also declare
a parameter for the variance–covariance matrix:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, matrix})) . . .

or abbreviate matrix to m for short:
. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, m})) . . .

Referring to model parameters

After a model parameter is declared, we may need to refer to it in our further model specification.
We will definitely need to refer to it when we specify its prior distribution. We may also need to use
it as an argument in the prior distributions of other parameters or need to specify it in the block()
option for blocking of model parameters; see Improving efficiency of the MH algorithm—blocking
of parameters.

To refer to one parameter, we simply use its definition: {param}, {eqname:param}, {param,
matrix}, or {eqname:param, matrix}. There are several ways in which you can refer to multiple
parameters. You can refer to multiple model parameters in the parameter specification paramref of the
prior(paramref, . . .) option, of the block(paramref, . . .) option, or of the initial(paramref
#) option.

60 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The most straightforward way to refer to multiple scalar model parameters is to simply list them
individually, as follows:

{param1} {param2} . . .

but there are shortcuts.

For example, the alternative to the above is

{param1 param2} . . .

where we simply list the names of all parameters inside one set of curly braces.

If parameters have the same equation name, you can refer to all of the parameters with that equation
name as follows. Suppose that we have three parameters with the same equation name eqname, then
the specification

{eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

{eqname:}

or the specification

{eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same
equation name. For example, in the above, if we wanted to refer to only param1 and param2, we
could type

{eqname:param1 param2}

If a factor variable is used in the specification of the regression function, you can use the same
factor-variable specification within paramref to refer to the coefficients associated with the levels of
that factor variable; see [U] 11.4.3 Factor variables.

For example, factor variables are useful for constructing multilevel Bayesian models. Suppose that
variable id defines the second level of hierarchy in a two-level random-effects model. We can fit a
Bayesian random-intercept model as follows.

. bayesmh y x i.id, likelihood(normal({var})) prior({y:i.id}, normal(0,{tau})) . . .

Here we used {y:i.id} in the prior specification to refer to all levels of id.

Similarly, we can add a random coefficient for a continuous covariate x by typing

. bayesmh y c.x##i.id, likelihood(normal({var}))
> prior({y:i.id}, normal(0,{tau1}))
> prior({y:c.x#i.id}, normal(0,{tau2})) . . .

You can mix and match all of the specifications above in one parameter specification, paramref.

To refer to multiple matrix model parameters, you can use {paramlist, matrix} to refer to matrix
parameters with names paramlist and {eqname:paramlist, matrix} to refer to matrix parameters
with names in paramlist and with equation name eqname.

For example, the specification

{eqname:Sigma1,m} {eqname:Sigma2,m} {Sigma3,m} {Sigma4,m}

is the same as the specification

{eqname:Sigma1 Sigma2,m} {Sigma3 Sigma4,m}

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 61

You cannot refer to both scalar and matrix parameters in one paramref specification.

For referring to model parameters in postestimation commands, see Different ways of specifying
model parameters in [BAYES] bayesmh postestimation.

Specifying arguments of likelihood models and prior distributions

As previously mentioned, likelihood distributions (or more precisely, likelihood models), modelspec,
are specified in the likelihood(modelspec) option and prior distributions priordist are specified
following the comma in the prior(paramref, priordist) option. For a list of supported models and
distributions, see the corresponding tables in the syntax diagram.

In a likelihood model, mean and location parameters are determined by the specified regression
function and thus need not be specified in the likelihood distributions. For example, for a normal linear
regression, we use likelihood(normal(var)), where we specify only the variance parameter—the
mean is already parameterized as a linear combination of the specified independent variables. In the
prior distributions, we must specify all parameters of the distribution. For example, for a normal prior
specification, we use prior(paramref, normal(mu, var)), where we must specify both mean mu
and variance var. In addition, all multivariate prior distributions require that you specify the dimension
d as the first argument.

Scalar arguments of the distributions may be specified as a number or as a scalar expression exp.
Matrix arguments of the distributions may be specified as a matrix or as a matrix expression exp.
Both types of arguments may be specified as a parameter (see Declaring model parameters) or as
a substitutable expression, subexp (see Substitutable expressions). All distribution arguments, except
the dimension d of multivariate prior distributions, support the above specifications. For likelihood
models, arguments of the distributions may also contain variable names.

For example, in a normal linear regression, we can specify the variance as a known value of 25,

. bayesmh y x, likelihood(normal(25)) . . .

or as a squared standard deviation of 5 (scalar expression),

. bayesmh y x, likelihood(normal(5^2)) . . .

or as an unknown variance parameter {var},

. bayesmh y x, likelihood(normal({var})) . . .

or as a function of an unknown standard-deviation parameter {sd} (substitutable expression),

. bayesmh y x, likelihood(normal({sd}^2)) . . .

In a multivariate normal linear regression, we can specify the variance–covariance matrix as a
known matrix S,

. bayesmh y1 y2 = x, likelihood(mvnormal(S)) . . .

or as a matrix function S = R*R’ using its Cholesky decomposition,

. bayesmh y1 y2 = x, likelihood(mvnormal(R*R’)) . . .

or as an unknown matrix parameter {Sigma,m},

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma,m})) . . .

or as a function of an unknown variance parameter {var} (substitutable expression),

. bayesmh y1 y2 = x, likelihood(mvnormal({var}*S)) . . .

62 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Substitutable expressions

You may use substitutable expressions in bayesmh to define nonlinear expressions subexpr,
arguments of outcome distributions in option likelihood(), observation-level log likelihood in
option llf(), arguments of prior distributions in option prior(), and generic prior distributions in
prior()’s suboptions density() and logdensity(). Substitutable expressions are just like any
other mathematical expression in Stata, except that they may include model parameters.

To specify a substitutable expression in your bayesmh model, you must comply with the following
rules:

1. Model parameters are bound in braces: {mu}, {var:sigma2}, {Sigma, matrix}, and
{Cov:Sigma, matrix}.

2. Linear combinations can be specified using the notation {eqname:varlist}. For example,

{xb:mpg price weight} is equivalent to

{xb_mpg}*mpg + {xb_price}*price + {xb_weight}*weight

3. There is a small caveat with using the {eqname:name} specification 2 when name corresponds
to both one of the variables in the dataset and a parameter in the model. The linear-combination
specification takes precedence in this case. For example, {eq:var} will be expanded to
{eq var}*var, where var is the variable in a dataset and eq var is the coefficient
corresponding to this variable. To refer directly to the coefficient, you must use {eq var}.

4. Initial values are given by including an equal sign and the initial value inside the braces,
for example, {b1=1.267}, {gamma=3}, etc. If you do not specify an initial value, that
parameter is initialized to one for positive scalar parameters and to zero for other scalar
parameters, or it is initialized to its MLE, if available. The initial() option overrides initial
values provided in substitutable expressions. Initial values for matrices must be specified in
the initial() option. By default, matrix parameters are initialized with identity matrices.

Specifying linear combinations. We can use substitutable expressions to specify linear combinations.

For example, a normal linear regression,

. bayesmh y x1 x2, likelihood(normal(1)) noconstant prior({y:x1 x2}, normal(0,100))

may be equivalently (but less efficiently) fit using a nonlinear regression,

. bayesmh y = ({y:x1 x2}), likelihood(normal(1)) prior({y:x1 x2}, normal(0,100))

The above nonlinear specification is essentially,

. bayesmh y = ({y_x1}*x1+{y_x2}*x2), likelihood(normal(1))
> prior({y:x1 x2}, normal(0,100))

Notice that the specification {y:x1 x2} in the prior() option is not a substitutable expression, but
it is one way of referring to model parameters described in Referring to model parameters. Substitutable
expressions are not allowed in the parameter specification paramref of prior(paramref, . . .).

Specifying nonstandard densities. We can use substitutable expressions to define nonstandard or
not-supported probability distributions.

For example, suppose we want to specify a Cauchy distribution with location a and scale b. We
can specify the expression for the observation-level likelihood function in the llf() option within
likelihood().

. bayesmh y, likelihood(llf(ln({b})-ln({b}^2+(y-{a})^2)-ln(_pi))) noconstant . . .

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 63

You can also use substitutable expressions to define nonstandard or not-supported prior distributions.
For example, as suggested by Gelman et al. (2014), we can specify a Cauchy prior with location a = 0
and scale b = 2.5 for logistic regression coefficients, where continuous covariate x is standardized to
have mean 0 and standard deviation 0.5.

. bayesmh y x, likelihood(logit) prior({y:},
> logdensity(ln(2.5)-ln(2.5^2+(y)^2)-ln(_pi)))

Checking model specification

Specifying a Bayesian model may be a tedious task when there are many model parameters and
possibly hyperparameters. It is thus essential to verify model specification before starting a potentially
time-consuming estimation.

bayesmh displays the summary of the specified model as a part of its standard output. You can
use the dryrun option to obtain the model summary without estimation or simulation. Once you are
satisfied with the specified model, you can use the nomodelsummary option to suppress a potentially
long model summary during estimation. Even if you specify nomodelsummary during estimation,
you will still be able to see the model summary, if desired, by simply replaying the results:

. bayesmh

Specifying MCMC sampling procedure

Once you specify a correct posterior model, bayesmh uses an adaptive random-walk MH algorithm
to obtain MCMC samples of model parameters from their posterior distribution.

Reproducing results

Because bayesmh uses MCMC simulation—a stochastic procedure for sampling from a complicated
and possibly nontractable distribution—it will produce different results each time you run the command.
If the MCMC algorithm converged, the results should not change drastically. To obtain reproducible
results, you must specify the random-number seed.

To specify a random-number seed, you can use set seed # prior to calling bayesmh (see [R] set
seed) or you can specify the seed in bayesmh’s option rseed(). For simplicity and consistency, we
use set seed 14 in all of our examples throughout the documentation.

If you forgot to specify the random-number seed before calling bayesmh, you can retrieve the
random-number state used by the command from e(rngstate) and use it later with set rngstate.

Burn-in period and MCMC sample size

bayesmh has the default burn-in period of 2,500 iterations and the default MCMC sample size of
10,000 iterations. That is, the first 2,500 iterations of the MCMC sampler are discarded and the next
10,000 iterations are used to form the MCMC samples of values of model parameters. You can change
these numbers by specifying options burnin() and mcmcsize().

The burn-in period must be long enough for the algorithm to reach convergence or, in other words,
for the Markov chain to reach its stationary distribution or the desired posterior distribution of model
parameters. The sample size for the MCMC sample is typically determined based on the autocorrelation
present in the MCMC sample. The higher the autocorrelation, the larger the MCMC sample should be
to achieve the same precision of the parameter estimates as obtained from the chain with low or
negligible autocorrelation. Because of the nature of the sampling algorithm, all MCMC exhibit some
autocorrelation and thus MCMC samples tend to have large sizes.

64 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The defaults provided by bayesmh may not be sufficient for all Bayesian models and data types.
You will need to explore the convergence of the MCMC algorithm for your particular data problem
and modify the settings, if needed.

After the burn-in period, bayesmh includes every iteration in the MCMC sample. You can specify
the thinning(#) option to store results from a subset of iterations. This option is useful if you want
to subsample the chain to decrease autocorrelation in the final MCMC sample. If you use this option,
bayesmh will perform a total of thinning()× (mcmcsize()− 1) + 1 iterations, excluding burn-in
iterations, to obtain MCMC sample of size mcmcsize().

Improving efficiency of the MH algorithm—blocking of parameters

Although the MH algorithm is very general and can be applied to any Bayesian model, it is not
the most optimal sampler and may require tuning to achieve higher efficiency.

Efficiency describes mixing properties of the Markov chain. High efficiency means good mixing
(low autocorrelation) in the MCMC sample, and low efficiency means bad mixing (high autocorrelation)
in the MCMC sample.

An AR is the number of accepted proposals of model parameters relative to the total number of
proposals. It should not be confused with sampling efficiency. High AR does not mean high efficiency.

An efficient MH sampler has an AR between 15% and 50% (Roberts and Rosenthal 2001) and low
autocorrelation and thus relatively large effective sample size (ESS) for all model parameters.

One way to improve efficiency of the MH algorithm is by blocking of model parameters. Blocking
of model parameters is an important functional aspect of the MH sampler. By default, all parameters
are used as one block and their covariance matrix is used to adapt the proposal distribution. With
many parameters, estimation of this covariance matrix becomes difficult and imprecise and may lead
to the loss of efficiency of the MH algorithm. In many cases, this matrix has a block diagonal structure
because of independence of some blocks or sets of model parameters and its estimation may be
replaced with estimation of the corresponding blocks, which are typically of smaller dimension. This
may improve the efficiency of the sampler. To achieve optimal blocking, you need to identify the sets
of approximately independent (a posteriori) model parameters and specify them in separate blocks.

To achieve an optimal blocking, you need to know or have some idea about the dependence between
the parameters as determined by the posterior distribution. To improve efficiency, follow this principle:
correlated parameters should be specified together, while independent groups of parameters should
be specified in separate blocks. Because the posterior is usually defined indirectly, the relationship
between the parameters is generally unknown. Often, however, we have some knowledge, either
deduced from the model specification or based on prior experience with the model, about which
parameters are highly correlated. In the worst case, you may need to run some preliminary simulations
and determine an optimal blocking by using trial and error.

An ideal case for the MH algorithm is when all model parameters are independent with respect
to the posterior distribution and are thus placed in separate blocks and sampled independently. In
practice, this is not a realistic or interesting case, but it gives us an idea that we should always try to
parameterize the model in such a way that the correlation between model parameters is minimized.

With bayesmh, you can use options block() to perform blocking. You specify one block()
option for each set of independent model parameters. Model parameters that are dependent with each
other are specified in the same block() option.

To illustrate a typical case, consider the following simple linear regression model:

y = {a} + {b}× x + ε, ε ∼ N(0, {var})

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 65

Even when {a} and {b} have independent prior specifications, the location parameters {a} and {b}
are expected to be correlated a posteriori because of their common dependence on y. Alternatively, if
the variance parameter {var} is independent of {a} and {b} a priori, it is generally less correlated
with the location parameters a posteriori. A good blocking scheme is to use options block({a} {b})
and block({var}) with bayesmh. We can also reparameterize our model to reduce the correlation
between {a} and {b} by recentering. To center the slope parameter, we replace {b} with {b}− #,
where # is a constant close to the mean of {b}. Now {a} and {b}− # can also be placed in separate
blocks. See, for example, Thompson (2014) for more discussion related to model parameterization.

Other options that control MCMC sampling efficiency are scale(), covariance(), and adap-
tation(); see Adaptation of the MH algorithm for details.

Gibbs and hybrid MH sampling

In Improving efficiency of the MH algorithm—blocking of parameters, we discussed blocking of
model parameters as a way of improving efficiency of the MH algorithm. For certain Bayesian models,
further improvement is possible by using Gibbs sampling for certain blocks of parameters. This leads
to what we call a hybrid MH sampling with Gibbs updates.

Gibbs sampling is the most effective sampling procedure with the maximum possible AR of one and
with often very high efficiency. Using Gibbs sampling for some blocks of parameters will typically
lead to higher efficiency of the hybrid MH sampling compared with the simple MH sampling.

To apply Gibbs sampling to a set of parameters, we need to know the full conditional distribution
for each parameter and be able to generate random samples from it. Usually, the full conditionals are
known in various special cases but are not available for general posterior distributions. Thus, Gibbs
sampling is not available for all likelihood and prior combinations. bayesmh provides Gibbs sampling
for Bayesian models with conjugate, or more specifically, semiconjugate prior distributions. See Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations for a list of supported models.

For a supported semiconjugate model, you can request Gibbs sampling for a block of parameters
by specifying the gibbs suboption within option block(). In some cases, the gibbs suboption may
be used in all parameter blocks, in which case we will have full Gibbs sampling.

To use Gibbs sampling for a set of parameters, you must first place them in separate prior()
statements and specify semiconjugate prior distributions and then place them in a separate block and
include the gibbs suboption, block(. . ., gibbs).

Here is a standard application of a full Gibbs sampling to a normal mean-only model. Under the
normal–inverse-gamma prior, the conditional posterior distributions of the mean parameter is normal
and of the variance parameter is inverse gamma.

. bayesmh y, likelihood(normal({var}))
> prior({y: cons}, normal(1,10))
> prior({var}, igamma(10,1))
> block({y: cons}, gibbs)
> block({var}, gibbs)

Because {y: cons} and {var} are approximately independent a posteriori, we specified them in
separate blocks.

Gibbs sampling can be applied to hyperparameters, which are not directly involved in the likelihood
specification of the model. For example, we can use Gibbs sampling for the covariance matrix of
regression coefficients.

66 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. bayesmh y x, likelihood(normal(var))
> prior(var, igamma(10,1))
> prior({y:_cons x}, mvnormal(2,1,0,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In the next example, the matrix parameter {Sigma,m} specifies the covariance matrix in the
multivariate normal prior for a pair of model parameters, {y:1.cat} and {y:2.cat}. {Sigma,m} is
a hyperparameter—it is not a model parameter of the likelihood but a parameter of a prior distribution,
and it has an inverse-Wishart hyperprior distribution, which is a semiconjugate prior with respect to
the multivariate normal prior distribution. Therefore, we can request a Gibbs sampler for {Sigma,m}.

bayesmh y x i.cat, likelihood(probit)
> prior(y:x _cons, normal(0, 1000))
> prior(y:1.cat 2.cat, mvnormal0(2,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In general, Gibbs sampling, when available, is useful for covariance matrices because MH sam-
pling has low efficiency for sampling positive-definite symmetric matrices. In a multivariate normal
regression, the inverse Wishart distribution is a conjugate prior for the covariance matrix and thus
inverse Wishart is the most common prior specification for a covariance matrix parameter. If an
inverse-Wishart prior (iwishart()) is used for a covariance matrix, you can specify Gibbs sampling
for the covariance matrix. You can do so by placing the matrix in a separate block and specifying
the gibbs suboption in that block, as we showed above. Using Gibbs sampling for the covariance
matrix usually greatly improves the sampling efficiency.

Adaptation of the MH algorithm

The MH algorithm simulates Markov chains by generating small moves or jumps from the current
parameter values (or current state) according to the proposal distribution. At each iteration of the
algorithm, the proposed new state is accepted with a probability that is calculated based on the
newly proposed state and the current state. The choice of a proposal distribution is crucial for the
mixing properties of the Markov chain, that is, the rate at which the chain explores its stationary
distribution. (In a Bayesian context, a Markov chain state is a vector of model parameters, and a
stationary distribution is the target posterior distribution.) If the jumps are too small, almost all moves
will be accepted. If the jumps are too large, almost all moves will be rejected. Either case will cause
the chain to explore the entire posterior domain slowly and will thus lead to poor mixing. Adaptive
MH algorithms try to tune the proposal distribution so that some optimal AR is achieved (Haario,
Saksman, and Tamminen [2001]; Roberts and Rosenthal [2009]; Andrieu and Thoms [2008]).

In the random-walk MH algorithm, the proposal distribution is a Gaussian distribution with a zero
mean and is completely determined by its covariance matrix. It is useful to represent the proposal
covariance matrix as a product of a (scalar) scale factor and a positive-definite scale matrix. Gelman,
Gilks, and Roberts (1997) show that the optimal scale matrix is the true covariance matrix of the
target distribution, and the optimal scale factor is inversely proportional to the number of parameters.
Therefore, in the ideal case when the true covariance matrix is available, it can be used as a proposal
covariance and an MCMC adaptation can be avoided altogether. In practice, the true covariance is
rarely known and the adaptation is thus unavoidable.

In the bayesmh command, the scale factor and the scale matrix that form the proposal covariance
are constantly tuned during the adaptation phase of an MCMC so that the current AR approaches some
predefined value.

You can use scale(), covariance(), and adaptation() options to control adaptation of the MH
algorithm. The TAR is controlled by option adaptation(tarate()). The initial scale factor and scale

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 67

matrix can be modified using the scale() and covariance() options. In the presence of blocks of
parameters, these options can be specified separately for each block within the block() option. At each
adaptation step, a new scale matrix is formed as a mixture (a linear combination) of the previous scale
matrix and the current empirical covariance matrix of model parameters. The mixture of the two matrices
is controlled by option adaptation(beta()). A positive adaptation(beta()) is recommended to
have a more stable scale matrix between adaptation periods. The adaptation lasts until the maximum
number adaptation(every())×adaptation(maxiter()) of adaptive iterations is reached or
until adaptation(tarate()) is reached within the adaptation(tolerance()) limit. The default
for maxiter() depends on the specified burn-in and adaptation(every()) and is computed as
max{25, floor(burnin()/adaptation(every()))}. The default for adaptation(every()) is
100. If you change the default values of these parameters, you may want to increase the burnin()
to be as long as the specified adaptation period so that adaptation is finished before the final
simulated sample is obtained. (There are adaptation regimes in which adaptation is performed during
the simulation phase as well, such as continuous adaptation.) Two additional adaptation options,
adaptation(alpha()) and adaptation(gamma()) control the AR and the adaptation rate. For
a detailed description of the adaptation process, see Adaptive random-walk Metropolis–Hastings in
[BAYES] intro and Adaptive MH algorithm in Methods and formulas.

Specifying initial values

When exploring convergence of MCMC, it may be useful to try different initial values to verify
that the convergence is unaffected by starting values.

There are two different ways to specify initial values of model parameters in bayesmh. First is
by specifying an initial value when declaring a model parameter. Second is by specifying an initial
value in the initial() option. Initial values for matrix model parameters may be specified only in
the initial() option.

For example, below we initialize variance parameter {var} with value of 1 using two equivalent
ways, as follows:

. bayesmh y x, likelihood(normal({var=1})) . . .

or

. bayesmh y x, likelihood(normal({var})) initial({var} 1) . . .

If both initial-value specifications are used, initial values specified in the initial() option override
any initial values specified during parameter declaration for the corresponding parameters.

You can initialize multiple parameters with the same value by supplying a list of parameters
by using any of the specifications described in Referring to model parameters to initial(). For
example, to initialize all regression coefficients from equations y1 and y2 to zero, you can type

. bayesmh . . ., initial({y1:} {y2:} 0) . . .

By default, if no initial value is specified and option nomleinitial is not used, bayesmh uses
MLEs, whenever available, as starting values for model parameters.

For example, for the previous regression model, bayesmh uses regression coefficients and mean
squared error from linear regression regress y x as the respective starting values for the regression
model parameters and variance parameter {var}.

If MLE is not available and an initial value is not provided, then a scalar model parameter is
initialized with 1 for positive parameters and 0 for other parameters, and a matrix model parameter is
initialized with an identity matrix. Note, however, that this default initialization is not guaranteed to
correspond to the feasible state for the specified posterior model; that is, posterior probability of the

68 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

initial state can be 0. When initial values are not feasible, bayesmh makes 500 random attempts to
find a feasible initial-value vector. An initial-value vector is feasible if it corresponds to a state with
positive posterior probability. If feasible initial values are not found after 500 attempts, bayesmh will
issue the following error:

could not find feasible initial state
r(498);

You may use the search() option to modify the default settings for finding feasible initial values.

Summarizing and reporting results

As we discussed in Checking model specification, it is useful to verify the details about your
model specification before estimation. The dryrun model will display the model summary without
estimation. Once you are satisfied with the model specification, you can use the nomodelsummary
option during estimation to suppress a potentially long model summary from the final output.

In the presence of blocking, you may also display the information about specified blocks by using
the blocksummary option.

Simulation may be time consuming for large datasets and for models with many parameters. You
can specify one of dots or dots(#) option to display a dot every # iterations to see the simulation
progress.

Posterior summaries and credible intervals

After simulation, bayesmh reports various summaries about the model parameters in the output
table. The summaries include posterior mean and median estimates, estimates of posterior standard
deviation and MCSE, and credible intervals. By default, 95% equal-tailed credible intervals are reported.
You can use the hpd option to request HPD intervals instead. You can also use the clevel() option
to change the default credible level.

bayesmh provides two estimators for MCSE: one using ESS and one using batch means. The ESS-
based estimator is the default. You can request the batch-means estimator by specifying the batch()
option. Options corrlag() and corrtol() affect how ESS is estimated when computing MCSE; see
Methods and formulas in [BAYES] bayesstats summary for details.

Saving MCMC results

In addition to postestimation summaries, bayesmh saves simulation results containing MCMC
samples for all model parameters to a temporary Stata dataset. You can use the saving() option to
save simulation results to a permanent dataset. In fact, if you want to store your estimation results
in memory or save them to a disk, you must specify the saving() option with bayesmh; see
Storing estimation results after bayesmh in [BAYES] bayesmh postestimation. You can also specify
the saving() option on replay.

. bayesmh, saving(. . .)

By default, all model parameters are saved in the dataset. If desired, you can exclude some of the
parameters from the dataset by specifying the exclude() option. Beware that you will not be able
to obtain posterior summaries for these parameters or use them in any way in your analysis, because
no simulation results will be available for them.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 69

Convergence of MCMC

As we discuss in Convergence diagnostics of MCMC in [BAYES] intro, checking convergence is an
essential step of any MCMC simulation. Bayesian inference based on an MCMC sample is only valid
if the Markov chain has converged and the sample is drawn from the desired posterior distribution.
It is important to emphasize that we need to verify the convergence for all model parameters and
not only for a subset of parameters of interest. Another difficulty in accessing convergence of MCMC
is the lack of a single conclusive convergence criterion. The diagnostic usually involves checking
for several necessary (but not necessarily sufficient) conditions for convergence. In general, the more
aspects of the MCMC sample you inspect, the more reliable your results are.

An MCMC is said to have converged if it reached its stationary distribution. In the Bayesian context,
the stationary distribution is the true posterior distribution of model parameters. Provided that the
considered Bayesian model is well specified (that is, it defines a proper posterior distribution of model
parameters), the convergence of MCMC is determined by the properties of its sampling algorithm.

The main component of the MH algorithm, or any MCMC algorithm, is the number of iterations
it takes for the chain to approach its stationary distribution or for the MCMC sample to become
representative of a sample from the true posterior distribution of model parameters. The period during
which the chain is converging to its stationary distribution from its initial state is called the burn-in
period. The iterations of the burn-in period are discarded from the MCMC sample used for analysis.
Another complication is that adjacent observations from the MCMC sample tend to be positively
correlated; that is, autocorrelation is typically present in MCMC samples. In theory, this should not be
a problem provided that the MCMC sample size is sufficiently large. In practice, the autocorrelation in
the MCMC sample may be so high that obtaining a sample of the necessary size becomes infeasible
and finding ways to reduce autocorrelation becomes important.

Two aspects of the MH algorithm that affect the length of the burn-in (and convergence) are the
starting values of model parameters or, in other words, a starting state and a proposal distribution.
bayesmh has the default burn-in of 2,500 iterations, but you can change it by specifying the burnin()
option. bayesmh uses a Gaussian normal distribution with a zero mean and a covariance matrix that
is updated with current sample values during the adaptation period. You can control the proposal
distribution by changing the initial scale factor in option scale() and an initial scale matrix in option
covariance(); see Adaptation of the MH algorithm.

For the starting values, bayesmh uses MLEs whenever available, but you can specify your own
initial values in option initial(); see Specifying initial values. Good initial values help to achieve
fast convergence of MCMC and bad initial values may slow convergence down. A common approach
for eliminating the dependence of the chain on the initial values is to discard an initial part of
the simulated sample: a burn-in period. The burn-in period must be sufficiently large for a chain to
“forget” its initial state and approach its stationary distribution or the desired posterior distribution.

There are some researchers (for example, Geyer [2011]) who advocate that any starting point in
the posterior domain is equally good and there should be no burn-in. While this is a sensible approach
for a fixed, nonadaptive MH algorithm, it may not be as sensible for an adaptive MH algorithm because
the proposal distribution is changing (possibly drastically) during the adaptation period. Therefore,
adaptive iterations are better discarded from the analysis MCMC sample and thus it is recommended
that the burn-in period is at least as long as the adaptation period. (There are adaptive regimes such
as continuous adaptation in which adaptation continues after the burn-in period as well.)

In addition to fast convergence, an “ideal” MCMC chain will also have good mixing (or low
autocorrelation). A good mixing can be viewed as a rapid movement of the chain around the parameter
space. High autocorrelation in MCMC and consequently low efficiencies are usually indications of bad
mixing. To improve the mixing of the chain, you may need to improve the efficiency of the algorithm
(see Improving efficiency of the MH algorithm—blocking of parameters) or sometimes reparameterize

70 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

your model. In the presence of high autocorrelation, you may also consider subsampling or thinning
the chain, option thinning(), to reduce autocorrelation, but this may not always be the best approach.

Even when the chain appears to have converged and has good mixing, you may still have a case
of pseudoconvergence, which is common for multimodal posterior distributions. Specifying different
sets of initial values may help detect pseudoconvergence.

For more information about convergence of MCMC and its diagnostics, see Convergence diagnostics
of MCMC in [BAYES] intro, [BAYES] bayesgraph, and [BAYES] bayesstats ess.

In what follows, we concentrate on demonstrating various specifications of bayesmh, which may
not always correspond to the optimal Bayesian analysis for the considered problem. In addition,
although we skip checking convergence for some of our models to keep the exposition short, it is
important that you always check the convergence of all parameters in your model in your analysis
before you make any inferential conclusions. If you are also interested in any functions of model
parameters, you must check convergence of those functions as well.

Getting started examples

We will use the familiar auto.dta for our introductory examples. This dataset contains information
about 74 automobiles, including their make and model, price, and mileage (variable mpg). In our
examples, we are interested in estimating the average fuel efficiency as measured by the mpg variable
and its relationship with other automobile characteristics such as weight.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. describe mpg weight length

storage display value
variable name type format label variable label

mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)

Mean of a normal distribution with a known variance

We start with an example of estimating the mean of a normal distribution with known variance.
This corresponds to a constant-only normal linear regression with an unknown constant (or intercept)
and a known error variance.

Suppose we are interested in estimating the average fuel efficiency as measured by the mpg variable.
For illustration purposes, let’s assume that mpg is normally distributed. We are interested in estimating
its mean. Let’s also assume that we know the variance of mpg and it is 36.

Example 1: Noninformative prior for the mean when variance is known

To fit a Bayesian model, we must specify the likelihood model and priors for all model parameters.
We have only one parameter in this model—the constant (or the mean) of mpg. We first consider a
noninformative prior for the constant: the prior distribution with a density equal to one.

To specify this model in bayesmh, we use the likelihood specification mpg, likeli-
hood(normal(36)) and the prior specification prior({mpg: cons}, flat), where suboption
flat requests a flat prior distribution with the density equal to one. This prior is an improper prior

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 71

for the constant—the prior distribution does not integrate to one. {mpg: cons}, the constant or the
mean of mpg, is the only model parameter and is declared automatically by bayesmh as a part of
the regression function. (For this reason, we also did not need to specify the mean of the normal()
distribution in the likelihood specification.) All other simulation and reporting options are left at
default.

Because bayesmh uses MCMC sampling, a stochastic procedure, to obtain results, we specify a
random-number seed (for example, 14) for reproducibility of results.

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal likelihood = -233.96144 Efficiency = .2292

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.29812 .703431 .014693 21.28049 19.93155 22.69867

bayesmh first reports the summary of the model. The likelihood model specified for mpg is normal
with mean {mpg: cons} and fixed variance of 36. The prior for {mpg: cons} is flat or completely
noninformative.

Our model is very simple, so its summary is very short. For other models, the model summary
may get very long. You can use the nomodelsummary option to suppress it from the output.
It is useful, however, to review the model summary before estimation for models with many
parameters and complicated specifications. You can use the dryrun option to see the model summary
without estimation. Once you verified the correctness of your model specification, you can specify
nomodelsummary during estimation.

Next, bayesmh reports the header including the title for the fitted model, the used MCMC
algorithm, and various numerical summaries of the sampling procedure. bayesmh performed 12,500
MCMC iterations, of which 2,500 were discarded as burn-in iterations and the next 10,000 iterations
were kept in the final MCMC sample. An overall AR is 0.42, meaning that 42% out of 10,000 proposal
parameter values were excepted by the algorithm. This is a good AR for the MH algorithm. Values
below 10% may be a cause for concern and may indicate problems with convergence of MCMC. Very
low ARs may also mean high autocorrelation. The efficiency is 0.23 and is also considered good for
the MH algorithm. Efficiencies below 1% should be investigated further and would require further
tuning of the algorithm and possibly revisiting the considered model.

Finally, bayesmh reports an estimation table that includes the posterior mean, posterior standard
deviation, MCMC standard error (MCSE), posterior median, and the 95% credible interval.

72 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The estimated posterior mean for {mpg: cons} is 21.298 with a posterior standard deviation of
0.70. The efficiency of the estimator of the posterior mean is about 23%, which is relatively high
for the random-walk MH sampling. In general, you should expect to see lower efficiencies from this
algorithm for models with more parameters. The MCSE, which is an approximation of the error in
estimating the true posterior mean, is about 0.015. Therefore, provided that the MCMC simulation has
converged, the posterior mean of the constant is accurate to 1 decimal position, 21.3. If you want an
estimation precision of, say, 2 decimal positions, you may need to increase the MCMC sample size
101 times; that is, use mcmcsize(100000).

The estimated posterior mean and medians are very close, suggesting that the posterior distribution
of {mpg: cons} may be symmetric. In fact, the posterior distribution of a mean in this model is
known to be a normal distribution.

According to the reported 95% credible interval, the probability that the mean of mpg is between
19.9 and 22.7 is about 0.95. You can use the clevel() option to change the default credible level;
also see [BAYES] set clevel.

Because we used a completely noninformative prior, our results should be the same as frequentist
results. In this Bayesian model, the posterior distribution of the constant parameter is known to be
normal with a mean equal to the sample average. In the frequentist domain, the MLE of the constant
is also the sample average, so the posterior mean estimate and the MLE should be the same in this
model.

The sample average of mpg is 21.2973. Our posterior mean estimate is 21.298, which is very close.
The reason it is not exactly the same is because we estimated the posterior mean of the constant based
on an MCMC sample simulated from its posterior distribution instead of using the known formula.
Closed-form expressions for posterior mean estimators are available only for some Bayesian models.
In general, posterior distributions of parameters are unknown and posterior summaries may only be
estimated from the MCMC samples of parameters.

In practice, we must verify the convergence of MCMC before making any inferential conclusions
about the obtained results.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 73

We start by looking at various graphical diagnostics as produced by bayesgraph diagnostics.

. bayesgraph diagnostics {mpg:_cons}

18

20

22

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.2

.4
.6

18 20 22 24

Histogram

0.00

0.20

0.40

0.60

0 10 20 30 40
Lag

Autocorrelation
0

.2
.4

.6

18 20 22 24

all

1−half

2−half

Density

mpg:_cons

The trace plot represents a “perfect” trace plot. It does not exhibit any trends, and it traverses the
distribution quickly. The chain is centered around 21.3, but also explores the portions of the distribution
where the density is low, which is indicative of good mixing of the chain. The autocorrelation dies
off very quickly. The posterior distribution looks normal. The kernel density estimates based on the
first and second halves of the sample are very similar to each other and are close to the overall
density estimate. We can see that MCMC converged and mixes well. See [BAYES] bayesgraph for
details about this command.

See Convergence diagnostics of MCMC for more discussion about convergence of MCMC.

Example 2: Informative prior for the mean when variance is known

In example 1, we used a noninformative prior for {mpg: cons}. Here, we consider a conjugate
normal prior for {mpg: cons}. A parameter is said to have a conjugate prior when the corresponding
posterior belongs to the same family as the prior. In our example, if we assume a normal prior for
the constant, its posterior is known to be normal too.

Suppose that based on previous studies, the distribution of the mean mileage was found to be
normal with mean of 25 and variance of 10. We change the flat prior in bayesmh’s prior() option
from example 1 with normal(25,10).

74 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4169

Log marginal likelihood = -236.71627 Efficiency = .2293

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.47952 .6820238 .014243 21.47745 20.13141 22.82153

Compared with example 1, our results change only slightly: the estimates of posterior mean is 21.48
and of posterior standard deviation is 0.68. The 95% credible interval is [20.1, 22.82].

The reason we obtained such similar results is that our specified prior is in close agreement with
what we observed in this sample. The prior mean of 25 with a standard deviation of

√
10 = 3.16

overlaps greatly with what we observe for {mpg: cons} in the data.

If we place a very strong prior on the value for the mean by, for example, substantially decreasing
the variance of the normal prior distribution,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,0.1))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,0.1)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4194

Log marginal likelihood = -246.2939 Efficiency = .2352

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 24.37211 .292777 .006037 24.36588 23.79701 24.94403

we obtain very different results. Now the posterior mean and standard deviation estimates are very
close to their prior values, as one would expect with such strong prior information.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 75

Which results are correct? The answer depends on how confident we are in our prior knowledge.
If we previously observed many samples in which the average mileage for the considered population
of cars was essentially 25, our last results are consistent with this and the information about the
mean of {mpg: cons} contained in the observed sample was not enough to counteract our belief.
If, on the other hand, we had no prior information about the mean mileage, then we would use a
noninformative or mildly informative prior in our Bayesian analysis. Also, if we believe that our
observed data should have more weight in our analysis, we would not specify a very strong prior.

Example 3: Noninformative normal prior for the mean when variance is known

In example 1, we used a completely noninformative, flat prior for {mpg: cons}. In example 2,
we considered a conjugate normal prior for {mpg: cons}. We also saw that by varying the variance
of the normal prior distribution, we could control the “informativeness” of our prior. The larger the
variance, the less informative the prior. In fact, if we let the variance approach infinity, we will arrive
at the same posterior distribution of the constant as with the flat prior.

For example, if we specify a very large variance in the normal prior,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(0,1000000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(0,1000000)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal likelihood = -241.78836 Efficiency = .2292

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.29812 .7034313 .014693 21.28049 19.93155 22.69868

we will obtain results that are very similar to the results from example 1 with the flat prior.

We do not need to use such an extreme value of the variance for the results to become less sensitive
to the prior specification. As we saw in example 2, using the variance of 10 in that example resulted
in very little impact of the prior on the results.

76 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Mean of a normal distribution with an unknown variance

Let’s now consider the case where both mean and variance of the normal distribution are unknown.

Example 4: Noninformative Jeffreys prior when mean and variance are unknown

A noninformative prior commonly used for the normal model with unknown mean and variance
is the Jeffreys prior, under which the prior for the mean is flat and the prior for the variance is
the reciprocal of the variance. We use the same flat prior for {mpg: cons} as in example 1 and
specify the jeffreys prior for {var} using a separate prior() statement.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Because we used a noninformative prior, our results should be similar to the frequentist results apart
from simulation uncertainty. Compared with example 1, the average efficiency of the MH algorithm
decreased to 10%, as is expected with more parameters, but is still considered a good efficiency for
the MH algorithm.

The posterior mean estimate of {mpg: cons} is close to the OLS estimate of 21.297, and the
posterior standard deviation is close to the standard error of the OLS estimate 0.673. MCSE is slightly
larger than in example 1 because we have lower efficiency. If we wanted to make MCSE smaller, we
could increase our MCMC sample size. The posterior mean estimate of {var} agrees with the MLE
of the variance 33.02, but we would not expect the two to be necessarily the same. We estimated the
posterior mean of {var}, not the posterior mode, and because posterior distribution of {var} is not
symmetric, the two estimates may not be the same.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 77

Again, as with any MCMC analysis, we must verify the convergence of our MCMC sample before
we can trust our results.

. bayesgraph diagnostics _all

19

20

21

22

23

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.2

.4
.6

19 20 21 22 23 24

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.2

.4
.6

19 20 21 22 23 24

all

1−half

2−half

Density

mpg:_cons

20

30

40

50

60

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60 70

all

1−half

2−half

Density

var

Graphical diagnostic plots do not show any signs of nonconvergence for either of the parameters.

Recall that to access convergence of MCMC, we must explore convergence for all model parameters.

Example 5: Informative conjugate prior when mean and variance are unknown

For a normal distribution with unknown mean and variance, the informative conjugate prior is a
normal prior for the mean and an inverse-gamma prior for the variance. Specifically, if y ∼ N(µ, σ2),
then the informative conjugate prior for the parameters is

µ|σ2 ∼ N(µ0, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where µ0 is the prior mean of the normal distribution and ν0 and σ2
0 are the prior degrees of freedom

and prior variance for the inverse-gamma distribution. Let’s assume µ0 = 25, ν0 = 10, and σ2
0 = 30.

78 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Notice that in the specification of the prior for {mpg: cons}, we specify the parameter {var}
as the variance of the normal distribution. We use igamma(5,150) as the prior for the variance
parameter {var}.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(25,{var}))
> prior({var}, igamma(5,150))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var})

{var} ~ igamma(5,150)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1971
Efficiency: min = .09822

avg = .09923
Log marginal likelihood = -237.77006 max = .1002

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.314 .6639278 .02097 21.29516 20.08292 22.63049

var 33.54699 5.382861 .171756 32.77635 24.88107 46.0248

Compared with example 4, the variance is slightly smaller, but the results are still very similar.

Example 6: Noninformative inverse-gamma prior when mean and variance are unknown

The Jeffreys prior for the variance from example 4 can be viewed as a limiting case of an
inverse-gamma distribution with the degrees of freedom approaching zero.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 79

Indeed, if we replace the jeffreys prior in example 4 with an inverse-gamma distribution with
very small degrees of freedom,

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat)
> prior({var}, igamma(0.0001,0.0001))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ igamma(0.0001,0.0001)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -243.85656 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29223 .6828811 .021905 21.27899 19.99154 22.61903

var 34.76569 5.915305 .180753 34.18389 24.91294 47.61275

we obtain results that are very close to the results from example 4.

Simple linear regression

In this example, we consider a simple linear regression with one independent variable. We continue
with auto.dta, but this time we regress mpg on a rescaled covariate weight.

. use http://www.stata-press.com/data/r14/auto

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

We will have three model parameters: the slope and the intercept for the linear predictor and the
variance parameter for the error term. Regression parameters, {mpg:weight} and {mpg: cons},
will be declared implicitly by bayesmh, but we will need to explicitly specify the variance parameter
{var}. We will also need to assign appropriate priors for all parameters.

80 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 7: Noninformative prior for regression coefficients and variance

As in our earlier examples, we start with a noninformative prior. For this model, a common
noninformative prior for the parameters includes flat priors for {mpg:weight} and {mpg: cons}
and a Jeffreys prior for {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1768
Efficiency: min = .04557

avg = .06624
Log marginal likelihood = -198.14389 max = .07961

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6019838 .0512557 .001817 -.6018433 -.7015638 -.5021532
_cons 39.47227 1.589082 .058601 39.49735 36.26465 42.43594

var 12.22248 2.214665 .10374 11.92058 8.899955 17.47372

Our model summary shows the likelihood model for mpg, flat priors for the two regression coefficients,
and a Jeffreys prior for the variance parameter. Now that we have a covariate in the model, the mean
of the normal distribution is labeled as xb mpg to emphasize that it is now a linear combination of
independent variables. Regression coefficients involved in the linear predictor are marked with (1)
on the right.

The results are again very similar to the frequentist results. Posterior mean estimates of the
coefficients are very similar to the OLS estimates obtained by using regress below. Posterior
standard deviations are similar to the standard errors from regress.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 81

. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

Example 8: Conjugate prior for regression coefficients and variance

In this example, we use a conjugate prior for the parameters, which corresponds to normal priors
for {mpg:weight} and {mpg: cons} and an inverse-gamma prior for {var},

βweight|σ2 ∼ N(µweight, σ
2)

βcons|σ2 ∼ N(µcons, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where regression coefficients have different means but equal variances. µweight and µcons are the
prior means of the normal distributions, and ν0 and σ2

0 are the prior degrees of freedom and prior
variance for the inverse-gamma distribution. Let’s assume µweight = −0.5, µcons = 50, ν0 = 10,
and σ2

0 = 10.

82 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:weight}, normal(-0.5,{var}))
> prior({mpg:_cons}, normal(40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight} ~ normal(-0.5,{var}) (1)
{mpg:_cons} ~ normal(40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1953
Efficiency: min = .05953

avg = .06394
Log marginal likelihood = -202.74075 max = .06932

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6074375 .0480685 .001916 -.6078379 -.6991818 -.5119767
_cons 39.65274 1.499741 .05696 39.63501 36.59486 42.47547

var 11.696 1.929562 .079083 11.52554 8.570938 16.26954

For this mildly informative prior, our regression coefficients are still very similar to the results obtained
using the noninformative prior in example 7, but the variance estimate is slightly smaller.

Example 9: Zellner’s g prior for regression coefficients

In example 8, we assumed that {mpg:weight} and {mpg: cons} are independent a priori. We
can specify Zellner’s g prior (Zellner 1986), often used for regression coefficients in a multiple
regression, which allows correlation between the regression coefficients.

The prior for the coefficients can be written as

β|σ2 ∼ MVN(µ0, gσ
2(X ′X)−1)

where β is a vector of coefficients, µ0 is the vector of prior means, g is the prior degrees of freedom,
and X is the design matrix. Let’s, for example, use g = 30 and µ0 = (µweight, µcons) = (−0.5, 40).
Zellner’s g prior is not strictly a conventional Bayesian prior because it depends on the data.

In bayesmh, we can use prior zellnersg() to specify this prior. The first argument for this prior
is the dimension (2), the second argument is the degrees of freedom (30), the next parameters are
prior means (−0.5 and 40), and the last parameter is the name of the parameter corresponding to the
variance term ({var}).

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 83

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, zellnersg(2,30,-0.5,40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ zellnersg(2,30,-0.5,40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

The results are now closer to the results using noninformative prior obtained in example 7, because
we are introducing some information from the observed data by using (X ′X)−1.

Example 10: Specifying expressions as distributional arguments

We can actually reproduce what prior zellnersg() does in example 9 manually.

First, we need to create a matrix that contains (X ′X)−1, S.

. matrix accum xTx = weight
(obs=74)

. matrix S = invsym(xTx)

84 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Then, we can use the multivariate normal prior mvnormal() with the variance specified as an
expression 30*var*S.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnormal(2,-0.5,40,30*{var}*S))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnormal(2,-0.5,40,30*{var}*S) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

We obtain results identical to those from example 9.

Multiple linear regression

For a detailed example of a multiple linear regression, see Overview example in [BAYES] bayes.

Improving efficiency of MH sampling

In this section, we demonstrate how one can improve efficiency of the MH algorithm by using
blocking of parameters and Gibbs sampling, whenever available. We continue with our simple linear
regression of mpg on rescaled weight from Simple linear regression, but we use different values for
the parameters of prior distributions. We also assume that regression coefficients and the variance
parameter are independent a priori. We use the blocksummary option to include a summary about
each block.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 85

Example 11: First simulation run

Our first simulation is performed using the default settings for the algorithm. Specifically, all three
model parameters are placed in one simulation block and are updated simultaneously, as our block
summary indicates.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10)) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {mpg:weight _cons} {var}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2432
Efficiency: min = .06871

avg = .08318
Log marginal likelihood = -226.63723 max = .09063

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5759855 .0471288 .001569 -.5750919 -.6676517 -.4868595
_cons 38.65481 1.468605 .048784 38.70029 35.88062 41.49839

var 9.758003 1.514112 .057762 9.601339 7.302504 13.13189

The mean estimates based on the simulated sample are {mpg:weight}= −0.58, {mpg: cons}=
38.65, and {var}= 9.8. The MH algorithm achieves an overall AR of 24% and an average efficiency
of about 8%.

86 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Our next step is to perform a visual inspection of the convergence of the chain.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

A graphical summary for the {var} parameter does not show any obvious problems. The trace plot
reveals a good coverage of the domain of the marginal distribution, while the histogram and kernel
density plots resemble the shape of an expected inverse-gamma distribution. The autocorrelation dies
off after about lag 20.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 87

Example 12: Second simulation run—blocking of variance

Next, we show how to improve the mixing of the MCMC chain by using more careful blocking
of model parameters. We can use the bayesgraph matrix command to view the scatterplots of the
simulated values for {mpg:weight}, {mpg: cons}, and {var}.

. bayesgraph matrix _all

mpg:weight

mpg:_cons

var

−.8

−.6

−.4

−.8 −.6 −.4

35

40

45

35 40 45

5

10

15

5 10 15

The scatterplots reveal high correlation between {mpg:weight} and {mpg: cons}. On the other
hand, there is no significant correlation between {var} and the other two parameters.

In cases like this, we can expect higher sampling efficiency if we place {var} in a separate block.
We can do this by including the option block({var}). The other two parameters, {mpg:weight}
and {mpg: cons}, will be automatically considered as a second block.

88 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var}
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3309
Efficiency: min = .09023

avg = .1202
Log marginal likelihood = -226.73992 max = .1784

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5744536 .0450094 .001484 -.576579 -.663291 -.4853636
_cons 38.59206 1.397983 .04654 38.63252 35.80229 41.32773

var 9.721684 1.454193 .034432 9.570546 7.303129 12.95105

In this second run, we achieve higher simulation efficiency, about 12% on average. The MCSE for
{var} is 0.034 and is about half the value of 0.058 from example 11, which leads to twice as much
accuracy in the estimation of the posterior mean of {var}.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 89

Again, we can verify the convergence of the MCMC run for {var} by inspecting the bayesgraph
diagnostics plot.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

The improved sampling efficiency for {var} is evident by observing that the autocorrelation becomes
negligible after about lag 10. The trace plot reveals more rapid traversing of the marginal posterior
domain as well.

Example 13: Third simulation run—Gibbs update of variance

Further improvement of the mixing can be achieved by requesting a Gibbs sampling for the variance
parameter. This is possible because {var} has an inverse-gamma prior, which is independent of the
mean and is a semiconjugate prior in this model.

90 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

To request Gibbs sampling, we specify suboption gibbs within option block().

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6285
Efficiency: min = .1141

avg = .3259
Log marginal likelihood = -226.72192 max = .7441

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5764752 .0457856 .001324 -.5764938 -.6654439 -.486788
_cons 38.64148 1.438705 .04259 38.6177 35.82136 41.38734

var 9.711499 1.454721 .016865 9.585728 7.236344 12.95503

The average efficiency is now 0.33 with the maximum of 0.74 corresponding to the variance parameter.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 91

The diagnostics plot for {var} is an example of almost perfect mixing.

. bayesgraph diagnostics {var}

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

6 8 10 12 14 16

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

Example 14: Fourth simulation run—full Gibbs sampling

Continuing example 13, there is still room for improvement in our model in terms of sampling
efficiency. The efficiency of the regression coefficients is now low relative to the variance efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
weight 1195.57 8.36 0.1196
_cons 1141.12 8.76 0.1141

var 7440.67 1.34 0.7441

92 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

For example, diagnostic plots for {weight: cons} do not look as good as diagnostic plots for
the variance parameter in example 13.

. bayesgraph diagnostics {mpg:weight}

−.8

−.7

−.6

−.5

−.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8
1
0

−.8 −.7 −.6 −.5 −.4

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

2
4

6
8

1
0

−.8 −.7 −.6 −.5 −.4

all

1−half

2−half

Density

mpg:weight

Further improvement of the mixing can be achieved by requesting Gibbs sampling for the two
blocks of parameters: regression coefficients and variance. Again, this is possible only because
{mpg:weight}, {mpg: cons}, and {var} have normal and an inverse-gamma priors, which are
independent and are semiconjugate in this model.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 93

To request Gibbs sampling for the regression coefficients, we must place them in a separate block.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs)
> block({mpg:}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons} (Gibbs)

Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .9423

avg = .9808
Log marginal likelihood = -226.67227 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5751071 .0467837 .000468 -.5757037 -.6659412 -.4823263
_cons 38.61033 1.459511 .014595 38.61058 35.79156 41.45336

var 9.703432 1.460435 .015045 9.564502 7.216982 12.96369

Now we have perfect sampling efficiency (with an average of 0.98) with essentially no autocorrelation.
The estimators of posterior means have the lowest MCSEs among the four simulations.

94 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

For example, diagnostic plots for {mpg:weight} now look noticeably better.

. bayesgraph diagnostics {mpg:weight}

−.8

−.7

−.6

−.5

−.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8

−.8 −.7 −.6 −.5 −.4

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

2
4

6
8

−.8 −.7 −.6 −.5 −.4

all

1−half

2−half

Density

mpg:weight

You can verify that the diagnostic plots of all parameters demonstrate almost perfect mixing as
well.

. bayesgraph diagnostics _all
(output omitted)

Logistic regression model: a case of nonidentifiable parameters

We use the heart disease dataset from the UCI Machine Learning Repository (Lichman 2013) and,
in particular, we consider a subset of the Switzerland data created by William Steinbrunn, M.D. of
University Hospital in Zurich, Switzerland, and by Matthias Pfisterer, M.D. of University Hospital in
Basel, Switzerland. The dataset is named heartswitz.dta and contains 6 variables, of which num
is the predicted attribute that takes values from 0 (no heart disease) to 4. We dichotomized num to
create a new binary variable disease as an indicator for the presence of a heart disease.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 95

. use http://www.stata-press.com/data/r14/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. describe

Contains data from http://www.stata-press.com/data/r14/heartswitz.dta
obs: 123 Subset of Switzerland heart

disease data from UCI Machine
Learning Repository

vars: 6 5 Feb 2015 16:55
size: 738 (_dta has notes)

storage display value
variable name type format label variable label

age byte %9.0g Age (in years)
male byte %9.0g malelab 1 = male, 0 = female
isfbs byte %9.0g fbslab Indicator for fasting blood sugar

> 120 mg/dl: 0 = no, 1 = yes
restecg byte %28.0g ecglab Resting electrocardiographic

results (3 categories)
num byte %9.0g Presence of heart disease: 0 =

absent and 1,2,3,4 = present
disease byte %9.0g dislab Indicator for heart disease: 0 =

absent, 1 = present (num>0)

Sorted by:

Our goal is to investigate the relationship between the presence of a heart disease and covariates
restecg, isfbs, age, and male.

First, we fit a standard logistic regression model using the logit command.

. logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly
restecg dropped and 17 obs not used

note: isfbs != 0 predicts success perfectly
isfbs dropped and 3 obs not used

note: male != 1 predicts success perfectly
male dropped and 2 obs not used

Iteration 0: log likelihood = -4.2386144
Iteration 1: log likelihood = -4.2358116
Iteration 2: log likelihood = -4.2358076
Iteration 3: log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coef. Std. Err. z P>|z| [95% Conf. Interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

We encounter collinearity and dropping of observations because of perfect prediction. As a result, the
regression coefficients corresponding to restecg, isfbs, and male are essentially excluded from
the model. The standard logistic analysis is limited because of the small size of the dataset.

96 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Next we consider Bayesian analysis of the same data. We fit the same logistic regression model
using bayesmh and apply fairly noninformative normal priors N(0, 1e4) for all regression parameters.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,10000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2661
Efficiency: min = .01685

avg = .02389
Log marginal likelihood = -16.709588 max = .02966

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 81.22007 63.87998 4.29587 68.31417 2.518447 237.8033
isfbs 81.65967 60.07603 4.03945 70.37466 2.035696 229.4291

age -.0191681 .1777758 .013695 -.0154955 -.3833187 .3242438
male -53.69173 42.4866 2.50654 -44.93144 -154.439 .7090207

_cons 59.39037 43.5938 2.53139 51.31836 .1225503 161.2943

The estimated posterior means of {disease:restecg}, {disease:isfbs}, {disease:male}, and
{disease: cons} are fairly large, roughly on the same scale as the prior standard deviation of 100.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 97

Indeed, if we decrease the standard deviation of the priors to 10, we observe that the scale of the
estimates decreases by the same order of magnitude.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,100))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,100) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .3161
Efficiency: min = .02287

avg = .0331
Log marginal likelihood = -12.418273 max = .05204

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 8.559131 6.71 .443681 7.447336 -.889714 23.93564
isfbs 6.322615 6.411998 .281084 5.504684 -3.85021 20.56641

age .0526448 .1226056 .00718 .0468937 -.1734675 .3050607
male -3.831954 5.31727 .279435 -3.048654 -15.77187 4.451594

_cons 5.624899 6.641158 .417961 5.181183 -6.408041 20.1234

We can, therefore, conclude that the regression parameters are highly sensitive to the choice of
priors and their scale cannot be determined by the data alone; that is, it cannot be determined by
the likelihood of the model. In other words, these model parameters are not identifiable from the
likelihood alone. This conclusion is in agreement with the results of the logit command.

We may consider applying an informative prior. We can use information from other heart disease
studies from Lichman (2013). For example, we use a subset of the Hungarian data created by Andras
Janosi, M.D. of Hungarian Institute of Cardiology in Budapest, Hungary. hearthungary.dta contains
the same attributes as in heartswitz.dta but from a Hungarian population.

98 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We fit bayesmh with noninformative priors to hearthungary.dta and obtain the following
posterior mean estimates for the regression parameters:

. use http://www.stata-press.com/data/r14/hearthungary
(Subset of Hungarian heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,1000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,1000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 285
Acceptance rate = .2341
Efficiency: min = .03088

avg = .04524
Log marginal likelihood = -195.7454 max = .06362

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg -.1076298 .2931371 .013664 -.1036111 -.6753464 .4471483
isfbs 1.182073 .541182 .030797 1.169921 .2267485 2.268314

age .042955 .0170492 .000676 .0432923 .0103757 .0763747
male 1.488844 .3612114 .018399 1.484816 .7847398 2.244648

_cons -3.866674 .8904101 .041022 -3.869567 -5.658726 -2.112237

With this additional information, we can form more informative priors for the 5 parameters of
interest—we center {restecg} and {age} at 0, {disease:isfbs} and {disease:male} at 1, and
{disease: cons} at −4, and we use a prior variance of 10 for all coefficients.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 99

. use http://www.stata-press.com/data/r14/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .247
Efficiency: min = .03691

avg = .05447
Log marginal likelihood = -11.021903 max = .06737

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 1.74292 2.21888 .097001 1.385537 -2.065912 6.584702
isfbs 1.885653 2.792842 .145375 1.595679 -2.976167 7.976913

age .1221246 .0698409 .002691 .1174274 -.0078114 .2706446
male .2631 2.201574 .089281 .2667496 -4.125275 4.646742

_cons -2.304595 2.706482 .115472 -2.256248 -7.785531 3.098357

We now obtain more reasonable results that also agree with the Hungarian results. For the final
analysis, we may consider other heart disease datasets to verify the reasonableness of our prior
specifications and to check the sensitivity of the parameters to other prior specifications.

Ordered probit regression

Ordered probit and ordered logit regressions are appropriate for modeling ordinal response variables.
You can perform Bayesian analysis of an ordinal outcome by specifying the oprobit or ologit
likelihood function. In addition to regression coefficients in ordered models, bayesmh automatically
introduces parameters representing the cutpoints for the linear predictor. The cutpoint parameters are
declared as {depname: cut1}, {depname: cut2}, and so on, where depname is the name of the
response variable.

In the next example, we consider the full auto dataset and model the ordinal variable rep77, the
repair record, as a function of independent variables foreign, length, and mpg. The variable rep77
has 5 levels, so the cutpoint parameters are {rep77: cut1}, {rep77: cut2}, {rep77: cut3}, and
{rep77: cut4}. The independent variables are all positive, so it seems reasonable to use exponential
prior for the cutpoint parameters. The exponential prior is controlled by a hyperparameter {lambda}.
Based on the range of the independent predictors, we assign {lambda} a prior that is uniform in

100 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

the 10 to 40 range. We assign N(0, 1) prior for regression coefficients. To monitor the progress, we
specify dots to request that bayesmh displays dots every 100 iterations and iteration numbers every
1,000 iterations.

. use http://www.stata-press.com/data/r14/fullauto
(Automobile Models)

. replace length = length/10
variable length was int now float
(74 real changes made)

. set seed 14

. bayesmh rep77 foreign length mpg, likelihood(oprobit)
> prior({rep77: foreign length mpg}, normal(0,1))
> prior({rep77:_cut1 _cut2 _cut3 _cut4}, exponential({lambda=30}))
> prior({lambda}, uniform(10,40)) block(lambda) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
rep77 ~ oprobit(xb_rep77,{rep77:_cut1 ... _cut4})

Priors:
{rep77:foreign length mpg} ~ normal(0,1) (1)

{rep77:_cut1 ... _cut4} ~ exponential({lambda})

Hyperprior:
{lambda} ~ uniform(10,40)

(1) Parameters are elements of the linear form xb_rep77.

Bayesian ordered probit regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 66
Acceptance rate = .3422
Efficiency: min = .02171

avg = .0355
Log marginal likelihood = -102.82883 max = .1136

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

rep77
foreign 1.338071 .3750768 .022296 1.343838 .6331308 2.086062
length .3479392 .1193329 .00787 .3447806 .1277292 .5844067

mpg .1048089 .0356498 .002114 .1022382 .0373581 .1761636
_cut1 7.204502 2.910222 .197522 7.223413 1.90771 13.07034
_cut2 8.290923 2.926149 .197229 8.258871 2.983281 14.16535
_cut3 9.584845 2.956191 .197144 9.497836 4.23589 15.52108
_cut4 10.97314 3.003014 .192244 10.89227 5.544563 17.06189

lambda 18.52477 7.252342 .215137 16.40147 10.21155 36.44309

When we specify dots or dots(), bayesmh displays dots as simulation is performed. The burn-in and
simulation iterations are displayed separately. During the adaptation period, iterations are displayed
with a symbol a instead of a dot. This indicates the period during which the proposal distribution is
still changing and thus may not be suitable for sampling from yet. Typically, adaptation is performed
during the burn-in period, the iterations of which are discarded from the MCMC sample. You should
pay closer attention to your results if you see adaptive iterations during the simulation period. This
may happen, for example, if you increase adaptation(maxiter()) without increasing burnin()

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 101

correspondingly. In this case, you may need to perform additional checks to verify that the part of
the MCMC sample corresponding to the adaptation period is similar to the rest of the sample.

Posterior credible intervals suggest that foreign, length, and mpg are among the explanatory
factors for rep77. Based on MCSEs, their posterior mean estimates are fairly precise. The posterior
mean estimates of cutpoints, as expected, are not as precise. The estimated posterior mean for
{lambda} is 18.52.

We placed the hyperparameter {lambda} in a separate block because we wanted to sample this
nuisance parameter independently from the other model parameters. Based on the bivariate scatterplots,
this parameter does appear to be independent of other model parameters a posteriori.

. bayesgraph matrix {rep77:foreign} {rep77:length} {rep77:mpg} {lambda}

rep77:foreign

rep77:length

rep77:mpg

{lambda}

0

1

2

3

0 1 2 3

0

.5

1

0 .5 1

0

.1

.2

0 .1 .2

10

20

30

40

10 20 30 40

102 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

As with any MCMC analysis, we should verify convergence of all of our parameters. Here we show
diagnostic plots only for {lambda}.

. bayesgraph diagnostics {lambda}

10

20

30

40

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

5
.1

10 20 30 40

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.0
2

.0
4

.0
6

.0
8

10 20 30 40

all

1−half

2−half

Density

lambda

The diagnostic plots for {lambda} do not cause any concern.

Beta-binomial model
bayesmh is a regression command, which models the mean of the outcome distribution as a

function of predictors. There are cases when we do not have any predictors and want to model the
outcome distribution directly. For example, we may want to fit a Poisson distribution or a binomial
distribution to our outcome. We can do this by simply omitting covariates in the model specification
of bayesmh and fitting a constant-only model. There is a caveat. Because bayesmh is a regression
command, it will interpret our model as a regression model with one covariate containing values of
one in all observations. For example, if we use likelihood(poisson) to fit a Poisson distribution to
the outcome, bayesmh will fit a Poisson regression with the link function for the mean µ = exp(β0)
as a function of parameter β0, a constant, rather than modeling the mean parameter µ directly. We can
specify noglmtransform within likelihood() to prevent the exponentiation in the Poisson model
or, more generally, to request that no GLM-type transformation be used when fitting certain generalized
linear or nonlinear outcome models. noglmtransform is supported with Poisson, exponential, and
binomial likelihood models.

Let’s revisit the example from What is Bayesian analysis? in [BAYES] intro, originally from Hoff
(2009, 3), of estimating the prevalence of a rare infectious disease in a small city. The outcome

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 103

variable y is the number of infected subjects in a city of 20 subjects, and our data consist of only
one observation, y = 0. We assume a binomial distribution for the outcome y, Binom(20,θ), where
the infection probability θ is a parameter of interest. Based on some previous studies, the model
parameter θ is assigned a Beta(2, 20) prior. For this model, the posterior distribution of θ is known
to be Beta(2, 40).

To fit a binomial distribution to y using bayesmh, we specify a constant-only regression model
and use option likelihood(binlogit(20), noglmtransform). The infection probability θ is
represented by {y: cons}.

. set obs 1
number of observations (_N) was 0, now 1

. generate y = 0

. set seed 14

. bayesmh y, likelihood(binlogit(20), noglmtransform)
> prior({y:_cons}, beta(2,20)) initial({y:_cons} 0.01)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({y:_cons},20)

Prior:
{y:_cons} ~ beta(2,20)

Bayesian binomial regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4527

Log marginal likelihood = -1.1658052 Efficiency = .1549

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons .0467973 .0317862 .000808 .039931 .0051255 .1277823

The estimated posterior mean for {y: cons} is 0.0468, which is close to the theoretical value of
2/(2 + 40) = 0.0476 and is within the range of the MCSE of 0.0008.

Multivariate regression

We consider a simple multivariate normal regression model without covariates. We use auto.dta,
and we fit a multivariate normal distribution to variables mpg, weight, and length.

We rescale these variables to have approximately equal ranges. Equalizing the range of model
variables is always recommended, because this makes the model computationally more stable.

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. quietly replace weight = weight/1000

. quietly replace length = length/100

. quietly replace mpg = mpg/10

104 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 15: Default MH sampling with inverse-Wishart prior for the covariance

For a multivariate normal distribution, an inverse-Wishart prior is commonly used as a prior for
the covariance matrix. Let’s fit our multivariate model using bayesmh.

We specify the multivariate normal likelihood likelihood(mvnormal({Sigma,m})) for the three
variables mpg, weight, and length, where {Sigma,m} is a matrix parameter for the covariance
matrix. We use vague normal priors normal(0,100) for all three means of the variables. For a
covariance matrix {Sigma,m}, which is of dimension three, we specify an inverse-Wishart prior with
the identity scale matrix. We also specify the mean parameters and the covariance parameter in two
separate blocks. To monitor the simulation process, we specify dots.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3255
Efficiency: min = .001396

avg = .04166
Log marginal likelihood = -254.88899 max = .1111

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.13089 .0455363 .001763 2.129007 2.04435 2.223358

weight
_cons 3.018691 .0671399 .00212 3.020777 2.880051 3.149828

length
_cons 1.879233 .0210167 .00063 1.879951 1.837007 1.920619

Sigma_1_1 .1571554 .0038157 .000183 .1570586 .1499028 .1648159
Sigma_2_1 -.1864936 .0024051 .000343 -.1864259 -.1912537 -.18194
Sigma_3_1 -.0533863 .0033667 .000199 -.053342 -.0601722 -.0468986
Sigma_2_2 .3293518 .0044948 .001203 .329703 .3193904 .3366703
Sigma_3_2 .0894404 .0040487 .000471 .0894156 .0816045 .0976702
Sigma_3_3 .0329253 .002521 .00024 .0328027 .0285211 .0383005

Note: There is a high autocorrelation after 500 lags.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 105

In this first run, we do not achieve good mixing of the MCMC chain. bayesmh issues a note about
significant autocorrelation of the simulated parameters.

A closer inspection of the ESS table reveals very low sampling efficiencies for the elements of the
covariance matrix {Sigma}.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
_cons 667.48 14.98 0.0667

weight
_cons 1002.92 9.97 0.1003

length
_cons 1111.14 9.00 0.1111

Sigma_1_1 433.25 23.08 0.0433
Sigma_2_1 49.03 203.96 0.0049
Sigma_3_1 287.03 34.84 0.0287
Sigma_2_2 13.96 716.45 0.0014
Sigma_3_2 73.76 135.57 0.0074
Sigma_3_3 110.41 90.58 0.0110

106 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

For example, the diagnostic plots for {Sigma 2 2} provide visual confirmation of the convergence
issues—very poorly mixing trace plot, high autocorrelation, and a bimodal posterior distribution.

. bayesgraph diagnostics Sigma_2_2

.315

.32

.325

.33

.335

.34

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2
0

4
0

6
0

8
0

1
0
0

.315 .32 .325 .33 .335 .34

Histogram

−0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation
0

5
0

1
0
0

1
5
0

2
0
0

.315 .32 .325 .33 .335 .34

all

1−half

2−half

Density

Sigma_2_2

What we see here is a general problem associated with the simulation of covariance matrices.
Random-walk MH algorithm is not well suited for sampling positive-definite matrices. This is why
even an adaptive version of the MH algorithm, as implemented in bayesmh, may not achieve good
mixing.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 107

Example 16: Adaptation of MH sampling with inverse-Wishart prior for the covariance

Continuing example 15, we can specify longer adaptation and burn-in periods to improve conver-
gence.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots burnin(5000) adaptation(maxiter(50))
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaa.....4000.........5000
> done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 15,000
Random-walk Metropolis-Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2382
Efficiency: min = .02927

avg = .05053
Log marginal likelihood = -245.83844 max = .07178

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.13051 .0475691 .001809 2.13263 2.038676 2.220953

weight
_cons 3.017943 .0626848 .00234 3.016794 2.898445 3.143252

length
_cons 1.878912 .019905 .000769 1.878518 1.840311 1.918476

Sigma_1_1 .1711394 .0089943 .000419 .1706437 .1548036 .1898535
Sigma_2_1 -.1852432 .002432 .000126 -.1852973 -.1898398 -.1803992
Sigma_3_1 -.0517404 .0035831 .000201 -.051688 -.058747 -.0449874
Sigma_2_2 .3054418 .0144859 .000551 .3055426 .2783409 .3340654
Sigma_3_2 .0809091 .0057474 .000314 .080709 .0698331 .0924053
Sigma_3_3 .030056 .002622 .000153 .0299169 .0251627 .0355171

There is no note about high autocorrelation, and the average efficiency increases slightly from 4% to
5%.

108 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Sampling efficiencies of the elements of the covariance matrix improved substantially.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
_cons 691.54 14.46 0.0692

weight
_cons 717.82 13.93 0.0718

length
_cons 670.63 14.91 0.0671

Sigma_1_1 459.78 21.75 0.0460
Sigma_2_1 370.45 26.99 0.0370
Sigma_3_1 318.91 31.36 0.0319
Sigma_2_2 692.06 14.45 0.0692
Sigma_3_2 334.08 29.93 0.0334
Sigma_3_3 292.70 34.16 0.0293

The diagnostic plots for {Sigma 2 2} look much better.

. bayesgraph diagnostics Sigma_2_2

.26

.28

.3

.32

.34

.36

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
1
0

2
0

3
0

.26 .28 .3 .32 .34 .36

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
1
0

2
0

3
0

.26 .28 .3 .32 .34 .36

all

1−half

2−half

Density

Sigma_2_2

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 109

Example 17: Gibbs sampling of a covariance matrix

Continuing example 15, the convergence of the chain can be greatly improved if we use Gibbs
sampling for the covariance matrix parameter. For a multivariate normal model, inverse Wishart is
a conjugate prior, or more precisely semiconjugate prior, for the covariance matrix and thus Gibbs
sampling is available. To request Gibbs sampling, we only need to add the gibbs suboption to the
block specification of {Sigma,m}. The mean parameters are still updated by the random-walk MH
algorithm.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .5926
Efficiency: min = .05922

avg = .6581
Log marginal likelihood = -240.48949 max = .9737

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.12953 .0462658 .001722 2.129648 2.038988 2.215482

weight
_cons 3.018778 .0610962 .002511 3.019004 2.903026 3.141158

length
_cons 1.880089 .0200601 .000795 1.880318 1.840313 1.920597

Sigma_1_1 .150745 .0164684 .000167 .1495192 .1219407 .1865202
Sigma_2_1 -.1571837 .0197078 .000202 -.1559806 -.199528 -.1223894
Sigma_3_1 -.0443814 .0060322 .000062 -.0439561 -.0572446 -.0338437
Sigma_2_2 .2673595 .0292434 .000305 .265501 .2159522 .3304341
Sigma_3_2 .0708204 .0085562 .000087 .0702694 .0557287 .089472
Sigma_3_3 .0273568 .0029966 .000031 .0271421 .0220828 .0337088

Compared with example 15, the results improved substantially. Compared with example 16, the
minimum efficiency increases from about 3% to 6% and the average efficiency from 5% to 66%.
MCSEs of posterior mean estimates, particularly for elements of {Sigma}, are lower.

110 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The diagnostic plots, for example, for Sigma 2 2 also indicate a very good convergence.

. bayesgraph diagnostics Sigma_2_2

.2

.25

.3

.35

.4

.45

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
5

1
0

1
5

.2 .25 .3 .35 .4 .45

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

5
1
0

1
5

.2 .3 .4 .5

all

1−half

2−half

Density

Sigma_2_2

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 111

Example 18: Gibbs sampling of a covariance matrix with the Jeffreys prior

In this example, we perform a sensitivity analysis of the model by replacing the inverse-Wishart
prior for the covariance matrix with a Jeffreys prior.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:} {length:}, normal(0,100))
> prior({Sigma,m}, jeffreys(3))
> block({mpg:} {weight:} {length:})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ jeffreys(3)

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6223
Efficiency: min = .08573

avg = .6886
Log marginal likelihood = -42.728723 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.130704 .0709095 .002185 2.129449 1.989191 2.267987

weight
_cons 3.019323 .0950116 .003245 3.019384 2.834254 3.208017

length
_cons 1.879658 .0271562 .000892 1.879859 1.827791 1.933834

Sigma_1_1 .3596673 .0628489 .000628 .3526325 .2575809 .5028854
Sigma_2_1 -.3905511 .0772356 .000772 -.3824458 -.5668251 -.2654059
Sigma_3_1 -.1103824 .0220164 .000223 -.1077659 -.1611913 -.0751177
Sigma_2_2 .6503219 .1141333 .001141 .6378476 .466738 .9140429
Sigma_3_2 .1763159 .0318394 .000323 .1725042 .1248434 .2507866
Sigma_3_3 .0533981 .0093631 .000095 .0522228 .0382405 .0748096

Note: Adaptation tolerance is not met in at least one of the blocks.

Compared with example 17, the estimates of the means of the multivariate distribution do not change
much, but the estimates of the elements of the covariance matrix do change. The estimates for
{Sigma,m} obtained using the Jeffreys prior are approximately twice as big as the estimates obtained
using the inverse-Wishart prior. If we compute correlation matrices corresponding to {Sigma,m} from
the two models, they will be similar. This can be explained by the fact that both the Jeffreys prior and
the inverse-Wishart prior with identity scale matrix are not informative for the correlation structure

112 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

because they only depend on the determinant and the trace of {Sigma,m} whereas the correlation
structure is determined by the data alone.

Technical note: Adaptation tolerance is not met

At the bottom of the table in the previous output, the note about the adaptation tolerance not being
met in one of the blocks is displayed. Adaptation is part of MH sampling, so the note refers to the block
of regression coefficients. This note does not necessarily indicate a problem. It simply notifies you that
the default target acceptance rate as specified in adaptation(tarate()) has not been reached within
the tolerance specified in adaptation(tolerance()). The used default for the target acceptance
rate corresponds to the theoretical asymptotically optimal acceptance rate of 0.44 for a block with
one parameter and 0.234 for a block with multiple parameters. The rate is derived for a specific
class of models and does not necessarily represent the optimal rate for all models. If your MCMC
converged, you can safely ignore this note. Otherwise, you need to investigate your model further.
One remedy is to increase the burn-in period, which automatically increases the adaptation period, or
more specifically, the number of adaptive iterations as controlled by adaptation(maxiter()). For
example, if we increase burn-in to 3,000 by specifying option burnin(3000) in the above example,
we will meet the adaptation tolerance.

The diagnostic plots of Sigma 2 2 demonstrate excellent mixing properties.
. bayesgraph diagnostics Sigma_2_2

.4

.6

.8

1

1.2

1.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
1

2
3

4

.4 .6 .8 1 1.2 1.4

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0
1

2
3

4

.4 .6 .8 1 1.2 1.4

all

1−half

2−half

Density

Sigma_2_2

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 113

Panel-data and multilevel models
Although the MH algorithm underlying bayesmh is not optimal for fitting Bayesian multilevel

models, you can use it to fit some multilevel models that do not have too many random effects. Below
we consider two-level random-intercept and random-coefficients models. A two-level random-effects
model is also known as a panel-data model.

Two-level random-intercept model or panel-data model

Ruppert, Wand, and Carroll (2003) and Diggle et al. (2002) analyzed a longitudinal dataset
consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs were identified by the
group variable id.

The following two-level model was considered:

weightij = β0 + β1weekij + uj + εij

where uj is the random effect for pig j, j = 1, . . . , 48, and the counter i = 1, . . . , 9 identifies the
weeks.

We first use mixed to fit this model by using maximum likelihood for comparison purposes; see
[ME] mixed.

. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(_cons) 14.81751 3.124226 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

114 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + uj + εij = β1weekij + τj + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τj ∼ i.i.d. N(β0, σ
2
id)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
id ∼ InvGamma(0.001, 0.001)

The model has four main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 and σ2
id. β0 is actually a hyperparameter in this example, because it is the mean

parameter of the prior distribution for random effects τj . The pig random effects τj are considered
nuisance parameters. We use normal priors for the regression coefficients and group levels identified
by the id variable and inverse-gamma priors for the variance parameters. The chosen priors are fairly
noninformative, so we would expect results to be similar to the frequentist results.

To fit this model using bayesmh, we need to include random effects for pig in our regression
model. This can be done by adding factor levels of the id variable to the regression by using the
factor-variable specification i.id. This specification, by default, will omit one of the id categories
as a base category. In our Bayesian model, we need to keep all categories of id, so we use fvset
to declare no base for the id variable.

. fvset base none id

In addition to two regression coefficients and two variance components, we have 48 random-effects
parameters. As for other models, bayesmh will automatically create parameters of the regression func-
tion: {weight:week} for the regression coefficient of week and {weight:1.id}, {weight:2.id},
. . ., {weight:48.id} for random effects. We do not include a constant in our regression function
because it is modeled as a mean of random effects in their prior. So, we need to define the three
remaining model parameters manually; we will use {weight: cons} for the mean of random effects,
{var id} for the variance of random effects, and {var 0} for the error variance.

We will perform three simulations for the specified Bayesian model to illustrate some common
difficulties in applying MH MCMC to multilevel models.

Example 19: First simulation—default MH settings

In the first simulation, we use default simulation settings of the MH algorithm. We have many
parameters in our model, so the simulation will take a few moments. For exploration purposes and
to expedite results, here we use a smaller MCMC size of 5,000 instead of the default of 10,000. To
monitor the progress of the simulation, we also specify dots.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 115

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> mcmcsize(5000) dots
Burn-in 2500 aaaaaaaa.1000.........2000..... done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id} ~ normal({weight:_cons},{var_id}) (1)
{weight:week} ~ normal(0,100) (1)

{var_0} ~ igamma(0.001,0.001)
{weight:_cons} ~ normal(0,100)

Hyperprior:
{var_id} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .2382
Efficiency: min = .00136

avg = .004915
Log marginal likelihood = -1483.9819 max = .03084

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.263434 .0264724 .002955 6.262433 6.214032 6.31423

id
1 16.24666 .2357628 .058097 16.2599 15.78635 16.67799
2 24.06862 .3243331 .06509 24.07464 23.37339 24.67859

(output omitted)
47 29.73823 .3734104 .07144 29.71473 29.04301 30.48604
48 20.82722 .4258745 .160651 20.78619 20.13018 21.71069

var_0 9.218097 .5679745 .174024 9.181747 8.218479 10.38655

weight
_cons 13.59053 .3519081 .028341 13.62244 12.88323 14.25594

var_id 12.49858 .3116721 .050076 12.50611 11.9335 13.12018

Note: There is a high autocorrelation after 500 lags.

bayesmh reports the presence of a high correlation after 500 lags. This and the low average efficiency
of 0.005 may indicate problems with MCMC convergence for some of the parameters.

116 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

For convenience, we use bayesstats summary to show posterior summaries for parameters of
interest only. Alternatively, you can specify the noshow(i.id) option with bayesmh to suppress the
summaries for factor levels.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.263434 .0264724 .002955 6.262433 6.214032 6.31423

_cons 13.59053 .3519081 .028341 13.62244 12.88323 14.25594

var_0 9.218097 .5679745 .174024 9.181747 8.218479 10.38655
var_id 12.49858 .3116721 .050076 12.50611 11.9335 13.12018

The posterior mean estimates for {weight:week} and {weight: cons} are 6.26 and 13.59, respec-
tively. The estimate for the residual variance {var 0} is 9.22 with the standard deviation of 0.57,
and the estimate of the group-effect variance {var id} is 12.5 with the standard deviation of 0.31.

Because of the low efficiencies, we should be suspicious of these results. If we look at diagnostic
plots for, for example, {weight:week},

. bayesgraph diagnostics {weight:week}

6.2

6.25

6.3

6.35

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

1
5

2
0

6.2 6.25 6.3 6.35

Histogram

−0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0
5

1
0

1
5

2
0

6.2 6.25 6.3 6.35

all

1−half

2−half

Density

weight:week

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 117

we see that the trace plot exhibits some trend and does not show good mixing and that the autocorrelation
is relatively high after at least lag 40. Our MCMC does not seem to converge and thus we cannot trust
the obtained results.

Example 20: Second simulation—blocking of parameters

Continuing example 19, we can improve efficiency of the MH algorithm by separating model
parameters into blocks to be sampled independently. We consider a separate block for each model
parameter with random-effects parameters sharing the same block. We also specify nomodelsummary
to suppress the model summary and notable to suppress the table output of bayesmh.

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons},normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({var_0})
> block({var_id})
> block({weight:i.id})
> block({weight:week})
> block({weight:_cons})
> burnin(3000) mcmcsize(5000) dots notable nomodelsummary
Burn-in 3000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000 done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Bayesian normal regression MCMC iterations = 8,000
Random-walk Metropolis-Hastings sampling Burn-in = 3,000

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .4194
Efficiency: min = .001727

avg = .01731
Log marginal likelihood = -1204.9586 max = .2403
Note: There is a high autocorrelation after 500 lags.

Blocking certainly improved efficiencies: the average efficiency is now 0.017, but we still have a note
about high autocorrelation.

We use bayesstats summary below to report summaries of only model parameters of interest.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.214099 .020815 .002059 6.214429 6.174678 6.255888

_cons 19.28371 .552023 .015925 19.28177 18.2078 20.35016

var_0 4.183143 .2908152 .009833 4.167876 3.669035 4.828092
var_id 15.53468 3.251813 .112054 15.16295 10.46451 23.19296

Here our estimates of variance components change noticeably: {var 0} is 4.18 and {var id} is
15.53.

118 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The diagnostic plots for {weight:week} are much better, but the mixing of MCMC is still not
great.

. bayesgraph diagnostics {weight:week}

6.15

6.2

6.25

6.3

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

1
5

2
0

6.15 6.2 6.25 6.3

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

5
1
0

1
5

2
0

6.1 6.15 6.2 6.25 6.3

all

1−half

2−half

Density

weight:week

Example 21: Third simulation—Gibbs sampling

The most efficient MCMC procedure for our Bayesian model is Gibbs sampling, which can be set
up as follows. To request a Gibbs sampling for a block of model parameters, we must first define
them in a separate prior() statement and then put them in a separate block() with the gibbs
suboption.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 119

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons},normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({var_0}, gibbs) block({var_id}, gibbs)
> block({weight:i.id}, gibbs) block({weight:week}, gibbs)
> block({weight:_cons},gibbs) mcmcsize(5000) dots notable nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .123

avg = .6764
Log marginal likelihood = -1051.4228 max = .857

There is no note about high autocorrelation in this run. The average efficiency increased dramatically
to 0.68. It appears that our MCMC has now converged.

If we again inspect the diagnostic plots of, for example, {weight:week}, we will now see a very
good mixing.

. bayesgraph diagnostics {weight:week}

6.1

6.15

6.2

6.25

6.3

6.35

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

6.1 6.15 6.2 6.25 6.3 6.35

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

8
1
0

6 6.1 6.2 6.3 6.4

all

1−half

2−half

Density

weight:week

120 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We again use bayesstats summary to see posterior summaries of the model parameters of interest.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.209425 .0373593 .001507 6.209439 6.135128 6.282676

_cons 19.29971 .6097913 .012916 19.2999 18.11953 20.47267

var_0 4.414173 .3194018 .004992 4.396302 3.828712 5.099535
var_id 15.85026 3.45786 .052824 15.44261 10.34387 23.6678

With Gibbs sampling, our estimates change only slightly. For example, the estimates of variance
components are 4.41 for {var 0: cons} and 15.85 for {var id}.

All estimates are very close to the MLEs obtained earlier with the mixed command.

Linear growth curve model—a random-coefficient model

Continuing our pig data example from Two-level random-intercept model or panel-data model, we
extend the random-intercept model to include random coefficients for week by using

weightij = β0 + β1weekij + u0j + u1jweekij + εij

where u0j is the random effect for pig and u1j is the pig-specific random coefficient on week for
j = 1, . . . , 48 and i = 1, . . . , 9.

We again use mixed to fit this model by using maximum likelihood.

. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id: week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -869.03825
Iteration 1: log likelihood = -869.03825

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 121

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374358 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + u0j + u1jweekij + εij = τ0j + τ1jweekij + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τ0j ∼ i.i.d. N(β0, σ
2
id)

τ1j ∼ i.i.d. N(β1, σ
2
week)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
id ∼ InvGamma(0.001, 0.001)

σ2
week ∼ InvGamma(0.001, 0.001)

The model has five main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 , σ2
id, and σ2

week. β0 and β1 are hyperparameters because they are specified as mean
parameters of the prior distributions for random effects τ0j and τ1j , respectively. Random effects τ0j
and τ1j are considered nuisance parameters. We again use normal priors for the regression coefficients
and group levels identified by the id variable and their interactions with week and inverse-gamma
priors for the variance parameters. We specify fairly noninformative priors.

To fit this model using bayesmh, we need to include random effects for pig in our regression
model. This can be done by adding factor levels of the id variable to the regression by using the
factor-variable specification i.id. This specification, by default, will omit one of the id categories
as a base category. In our Bayesian model, we need to keep all categories of id:

. fvset base none id

We fit our model using bayesmh. Following example 21, we perform blocking of parameters and
use Gibbs sampling for the blocks.

122 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh weight i.id i.id#c.week, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:i.id#c.week}, normal({weight:week},{var_week}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> prior({var_week}, igamma(0.001, 0.001))
> block({var_0}, gibbs)
> block({var_id}, gibbs)
> block({var_week}, gibbs)
> block({weight:i.id}, gibbs)
> block({weight:i.id#c.week}, gibbs)
> block({weight:week}, gibbs)
> block({weight:_cons}, gibbs)
> mcmcsize(5000) dots notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id} ~ normal({weight:_cons},{var_id}) (1)

{weight:i.id#c.week} ~ normal({weight:week},{var_week}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:_cons week} ~ normal(0,100)

Hyperprior:
{var_id var_week} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .08386

avg = .1582
Log marginal likelihood = -929.94517 max = .7758

Our AR is good and efficiencies are high. We do not have a reason to suspect nonconvergence.
Nevertheless, it is important to perform graphical convergence diagnostics to confirm this.

Let’s look at diagnostic plots. We show only diagnostic plots for the mean of random coefficients
on week, but convergence should be established for all parameters before any inference can be made.
We leave it to you to verify convergence of the remaining parameters.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 123

. bayesgraph diagnostics {weight:week}

5.8

6

6.2

6.4

6.6

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
1

2
3

4

5.8 6 6.2 6.4 6.6

Histogram

−0.04

−0.02

0.00

0.02

0.04

0.06

0 10 20 30 40
Lag

Autocorrelation

0
1

2
3

4

5.8 6 6.2 6.4 6.6

all

1−half

2−half

Density

weight:week

The diagnostic plots look good.

Our posterior mean estimates of the main model parameters are in agreement with maximum
likelihood results from mixed, as is expected with noninformative priors.

. bayesstats summary {weight:week _cons} {var_0} {var_id} {var_week}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.210054 .0948751 .001523 6.210372 6.029255 6.398015

_cons 19.32719 .4096827 .007805 19.32701 18.53177 20.14601

var_0 1.607193 .1224062 .002371 1.600899 1.384723 1.863646
var_id 7.253204 1.705803 .038343 7.034003 4.566251 11.32263

var_week .3940417 .0886511 .001723 .3822614 .2545719 .607737

124 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Bayesian analysis of change-point problem

Change-point problems deal with stochastic data, usually time-series data, which undergoes some
abrupt change at some time point. It is of interest to localize the point of change and estimate the
properties of the stochastic process before and after the change.

Here we analyze the British coal mining disaster data for the years 1851 to 1962 as given in
Table 5 in Carlin, Gelfand, and Smith (1992). The data are originally from Maguire, Pearson, and
Wynn (1952) with updates from Jarrett (1979).

coal.dta contains 112 observations, and it includes the variables id, which records observation
identifiers; count, which records the number of coal mining disasters involving 10 or more deaths;
and year, which records the years corresponding to the disasters.

. use http://www.stata-press.com/data/r14/coal
(British coal-mining disaster data, 1851-1962)

. describe

Contains data from http://www.stata-press.com/data/r14/coal.dta
obs: 112 British coal-mining disaster

data, 1851-1962
vars: 3 5 Feb 2015 18:03
size: 560 (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g Observation identifier
year int %9.0g Year of disasters
count byte %9.0g Number of disasters per year

Sorted by:

The figures below suggest a fairly abrupt decrease in the rate of disasters around the 1887–1895
period, possibly because of the decline in labor productivity in coal mining (Raftery and Akman 1986).
The line plot of count versus year is shown in the left pane and its smoothed version in the right
pane.

0
2

4
6

N
u
m

b
e
r

o
f
d
is

a
s
te

rs
 p

e
r

y
e
a
r

1860 1880 1900 1920 1940 1960
Year of disasters

0
1

2
3

4
M

e
d
ia

n
 s

p
lin

e

1860 1880 1900 1920 1940 1960
Year of disasters

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 125

To find the change-point parameter (cp) in the rate of disasters, we apply the following Bayesian
model with noninformative priors for the parameters (accounting for the restricted range of cp):

countsi ∼ Poisson(µ1), if yeari < cp

countsi ∼ Poisson(µ2), if yeari ≥ cp
µ1 ∼ 1

µ2 ∼ 1

cp ∼ Uniform(1851, 1962)

The model has three parameters: µ1, µ2, and cp, which we will declare as {mu1}, {mu2}, and
{cp} with bayesmh. One interesting feature of this model is the specification of a mixture distribution
for count. To accommodate this, we use the nonlinear specification of bayesmh and specify the
substitutable expression

({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

as the mean of a Poisson distribution. To ensure the feasibility of the initial state, we specify the
desired initial values in option initial(). Because of high autocorrelation in the MCMC chain, we
increase the MCMC size to achieve higher precision of our estimates. We change the default title to
the title specific to our analysis. To monitor the progress of simulation, we request that bayesmh
displays a dot every 500 iterations and an iteration number every 5,000 iterations.

. set seed 14

. bayesmh count = ({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})),
> likelihood(poisson, noglmtransform)
> prior({mu1} {mu2}, flat)
> prior({cp}, uniform(1851,1962))
> initial({mu1} 1 {mu2} 1 {cp} 1906)
> mcmcsize(40000) title(Change-point analysis) dots(500, every(5000))
Burn-in 2500 aa... done
Simulation 400005000.........10000.........15000.........20000.......
> ..25000.........30000.........35000.........40000 done

Model summary

Likelihood:
count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

Priors:
{mu1 mu2} ~ 1 (flat)

{cp} ~ uniform(1851,1962)

Change-point analysis MCMC iterations = 42,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 40,000
Number of obs = 112
Acceptance rate = .2243
Efficiency: min = .03456

avg = .0678
Log marginal likelihood = -173.33996 max = .1256

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu1 3.136251 .2942003 .007913 3.131459 2.599068 3.731112
cp 1890.358 2.424871 .034217 1890.554 1886.07 1896.303

mu2 .9410287 .1199134 .002882 .9370863 .7219138 1.189728

126 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

According to our results, the change occurred in the first half of 1890. The drop of the disaster rate
was significant, from an estimated average of 3.136 to 0.94.

The diagnostic plots, for example, for {cp} do not indicate any convergence problems. (This is
also true for other parameters.)

. bayesgraph diagnostics {cp}

1880

1885

1890

1895

1900

0 10000 20000 30000 40000

Iteration number

Trace

0
.0

5
.1

.1
5

.2
.2

5

1880 1885 1890 1895 1900

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

5
.1

.1
5

.2
.2

5

1880 1885 1890 1895 1900

all

1−half

2−half

Density

cp

The simulated marginal density of {cp} shown in the right bottom corner provides more details.
Apart from the main peak, there are two smaller bumps around the years 1886 and 1896, which
correspond to local peaks in the number of disasters at these years: 4 in 1886 and 3 in 1896.

We may be interested in estimating the ratio between the two means. We can use bayesstats
summary to estimate this ratio.

. bayesstats summary (ratio:{mu1}/{mu2})

Posterior summary statistics MCMC sample size = 40,000

ratio : {mu1}/{mu2}

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

ratio 3.386058 .532557 .014112 3.336782 2.471534 4.553885

The posterior mean estimate of the ratio and its 95% credible intervals confirm the change between
the two means. After 1890, the mean number of disasters decreased by a factor of about 3.4 with a
95% credible range of [2.47, 4.55].

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 127

Remember that convergence must be verified not only for all model parameters but also for the
functions of interest. The diagnostic plots for ratio look good.

. bayesgraph diagnostics (ratio:{mu1}/{mu2})

2

3

4

5

6

0 10000 20000 30000 40000

Iteration number

Trace

0
.2

.4
.6

.8

2 3 4 5 6

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation
0

.2
.4

.6
.8

2 3 4 5 6

all

1−half

2−half

Density

ratio: {mu1}/{mu2}

ratio

Bioequivalence in a crossover trial

Balanced crossover designs are widely used in the pharmaceutical industry for testing the efficacy
of new drugs. Gelfand et al. (1990) analyzed a two-treatment, two-period crossover trial comparing
two Carbamazepine tablets. The data consist of log-concentration measurements and are originally
described in Maas et al. (1987).

A random-effect two-treatment, two-period crossover design is given by

yi(jk) = µ+ (−1)j−1φ

2
+ (−1)k−1π

2
+ di + εi(jk) = µi(jk) + εi(jk)

εi(jk) ∼ i.i.d.N(0, σ2)

di ∼ i.i.d.N(0, τ2)

where i = 1, . . . , n is the subject index, j = 1, 2 is the treatment group, and k = 1, 2 is the period.

bioequiv.dta has four main variables: subject identifier id from 1 to 10, treatment identifier
treat containing values 1 or 2, period identifier period containing values 1 or 2, and outcome y
measuring log concentration for the two tablets.

128 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. use http://www.stata-press.com/data/r14/bioequiv
(Bioequivalent study of Carbamazepine tablets)

. describe

Contains data from http://www.stata-press.com/data/r14/bioequiv.dta
obs: 20 Bioequivalent study of

Carbamazepine tablets
vars: 5 5 Feb 2015 23:45
size: 160 (_dta has notes)

storage display value
variable name type format label variable label

obsid byte %9.0g Observation identifier
id byte %9.0g Subject identifier
treat byte %9.0g Assigned treatment
period byte %9.0g Period identifier
y float %9.0g Log-concentration measurement

Sorted by: id period

Before fitting bayesmh, we request no base category for the id variable.

. fvset base none id

The outcome is assumed to be normally distributed with mean µi(jk) and variance σ2. To
accommodate the specific structure of the regression function, we use a nonlinear specification of
bayesmh. We specify the expression for the mean function µi(jk) as a nonlinear expression following
the outcome y. We use noninformative priors for parameters and separate parameters in blocks. To
improve convergence, we increase our adaptation and burn-in periods. (The command may take some
time to produce results, so we specify the dots() option.)

. set seed 14

. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{y:i.id}),
> likelihood(normal({var}))
> prior({y:i.id}, normal(0,{tau}))
> prior({tau}, igamma(0.001,0.001))
> prior({var}, igamma(0.001,0.001))
> prior({mu} {phi} {pi}, normal(0,1e6))
> block({y:i.id}, split)
> block({tau}, gibbs) block({var}, gibbs)
> adaptation(every(200) maxiter(50)) burnin(10000) dots(250, every(2500))
Burn-in 10000 aaaaaaaaa2500aaaaaaaaa5000aaaaaaaaa7500aaaaaaaaa10000 done
Simulation 100002500.........5000.........7500.........10000 done

Model summary

Likelihood:
y ~ normal(<expr1>,{var})

Priors:
{var} ~ igamma(0.001,0.001)

{y:i.id} ~ normal(0,{tau})
{mu phi pi} ~ normal(0,1e6)

Hyperprior:
{tau} ~ igamma(0.001,0.001)

Expression:
expr1 : {mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+({y:1bn.id}*1bn.i

d+{y:2.id}*2.id+{y:3.id}*3.id+{y:4.id}*4.id+{y:5.id}*5.id+{y:6.id}*6
.id+{y:7.id}*7.id+{y:8.id}*8.id+{y:9.id}*9.id+{y:10.id}*10.id)

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 129

Bayesian normal regression MCMC iterations = 20,000
Metropolis-Hastings and Gibbs sampling Burn-in = 10,000

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .5131
Efficiency: min = .01345

avg = .02821
Log marginal likelihood = -25.692825 max = .04365

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 1.43231 .0579197 .004993 1.434814 1.305574 1.545945
phi -.0093502 .050824 .00257 -.0104379 -.1039488 .1010855
pi -.1815055 .0542115 .003107 -.1821367 -.2963565 -.0702212

y
id
1 .0668345 .0834954 .005428 .0645855 -.0879197 .2407731
2 .1217473 .0895501 .005941 .1190309 -.037415 .308847
3 .0561551 .0812912 .005154 .0525818 -.0971676 .2344846
4 .0619807 .0827296 .005294 .0564789 -.0923602 .2365587
5 .1701813 .09874 .006345 .1685315 -.0149722 .3676389
6 -.1640241 .0917804 .005572 -.1690176 -.3443967 .0135562
7 -.1191101 .0864379 .005291 -.1168358 -.2894083 .0400566
8 -.0590061 .0803792 .004595 -.0572132 -.2217439 .0908653
9 -.0779055 .0814977 .00481 -.0769495 -.2428321 .0816219

10 -.014813 .0788845 .00452 -.0138628 -.1750312 .1463467

var .0134664 .0087676 .000482 .0109334 .0042003 .0370388
tau .0228884 .020285 .000971 .0182243 .0015547 .0725889

Sampling efficiencies look reasonable considering the number of model parameters. The diagnostic plots
of the main model parameters (not shown here) look reasonable except there is a high autocorrelation
in the MCMC for {mu}, so you may consider increasing the MCMC size or using thinning.

Parameter θ = exp(φ) is commonly used as a measure of bioequivalence. Bioequivalence is
declared whenever θ lies in the interval (0.8, 1.2) with a high posterior probability.

We use bayesstats summary to calculate this probability and to also display other main parameters.
. bayesstats summary {mu} {phi} {pi} {tau} {var}
> (theta:exp({phi})) (equiv:exp({phi})>0.8 & exp({phi})<1.2)

Posterior summary statistics MCMC sample size = 10,000

theta : exp({phi})
equiv : exp({phi})>0.8 & exp({phi})<1.2

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 1.43231 .0579197 .004993 1.434814 1.305574 1.545945
phi -.0093502 .050824 .00257 -.0104379 -.1039488 .1010855
pi -.1815055 .0542115 .003107 -.1821367 -.2963565 -.0702212

tau .0228884 .020285 .000971 .0182243 .0015547 .0725889
var .0134664 .0087676 .000482 .0109334 .0042003 .0370388

theta .9919787 .0507755 .002569 .9896164 .9012714 1.106371
equiv .9982 .0423903 .000892 1 1 1

We obtain an estimate of 0.998 for the posterior probability of bioequivalence specified as an expression
equiv. So we would conclude bioequivalence between the two tablets.

130 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Random-effects meta-analysis of clinical trials

In meta-analysis of clinical trials, one considers several distinct studies estimating an effect of
interest. It is convenient to consider the true effect as varying randomly between the studies. A detailed
description of the random-effects meta-analysis can be found in, for example, Carlin (1992).

We illustrate Bayesian random-effects meta-analysis of 2× 2 tables for the beta-blockers dataset
analyzed in Carlin (1992). These data are also analyzed in Yusuf, Simon, and Ellenberg (1987). The
data summarize the results of 22 clinical trials of beta-blockers used as postmyocardial infarction
treatment.

Example 22: Normal–normal analysis

Here we follow the approach of Carlin (1992) for the normal–normal analysis of the beta-blockers
data.

For our normal–normal analysis, we consider data in wide form and concentrate on modeling
estimates of log odds-ratios from 22 studies.

. use http://www.stata-press.com/data/r14/betablockers_wide
(Beta-blockers data in wide form)

. describe

Contains data from http://www.stata-press.com/data/r14/betablockers_wide.dta
obs: 22 Beta-blockers data in wide form

vars: 7 5 Feb 2015 19:02
size: 550 (_dta has notes)

storage display value
variable name type format label variable label

study byte %9.0g Study identifier
deaths0 int %9.0g Number of deaths in the control

group
total0 int %9.0g Number of subjects in the control

group
deaths1 int %9.0g Number of deaths in the treatment

group
total1 int %9.0g Number of subjects in the

treatment group
D double %10.0g Log odds-ratio (based on

empirical logits)
var double %10.0g Squared standard error of log

odds-ratio

Sorted by:

The estimates of log odds-ratios and their squared standard errors are recorded in variables D and var,
respectively. They are computed from variables deaths0, total0, deaths1, and total1 based on
empirical logits; see Carlin (1992, eq. (3) and (4)). The study variable records study identifiers.

In a normal–normal model, we assume a random-effects model for estimates of log odds-ratios
with normally distributed errors and normally distributed random effects. Specifically,

Di = d+ ui + εi = di + εi

where εi ∼ N(0, vari) and di ∼ N(d, σ2). Errors εis represent uncertainty about estimates of log
odds-ratios in each study i and are assumed to have known study-specific variances, varis. Random
effects dis represent differences in estimates of log odds-ratios from study to study. The estimates of

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 131

their mean and variance are of interest in meta-analysis: d estimates a true effect and σ2 estimates
variation in estimating this effect across studies. Small values of σ2 imply that the estimates of a true
effect agree among studies.

In Bayesian analysis, we additionally specify prior distributions for d and σ2. Following Car-
lin (1992), we use noninformative priors for these parameters: normal with large variance for d and
inverse gamma with very small degrees of freedom for σ2.

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

In our data, random effects di is represented by a factor variable i.study. We use all levels of
study in our analysis, so we use fvset to request no base level for this variable.

. fvset base none study

We specify normal() likelihood with bayesmh and request observation-specific variances by
specifying variable var as normal()’s variance argument. We follow the above model formulation
for specifying prior distributions. To improve efficiency, we request that all parameters be placed
in separate blocks and use Gibbs sampling for the mean parameter {d} and the variance parameter
{sig2}. We also increase the burn-in period to 3,000 iterations and request more frequent adaptation
by specifying the adaptation(every(10)) option. The command will take a little longer to run,
so we request that a dot be displayed every 500 iterations and an iteration number be displayed every
2,500 iterations to monitor the progress of the simulation.

. set seed 14

. bayesmh D i.study, likelihood(normal(var)) noconstant
> prior({D:i.study}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({D:i.study}, split)
> block({sig2}, gibbs)
> block({d}, gibbs)
> burnin(3000) adaptation(every(10)) dots(500, every(2500))
Burn-in 3000 aaaa2500a done
Simulation 100002500....5000....7500....10000 done

Model summary

Likelihood:
D ~ normal(xb_D,var)

Prior:
{D:i.study} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_D.

132 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Bayesian normal regression MCMC iterations = 13,000
Metropolis-Hastings and Gibbs sampling Burn-in = 3,000

MCMC sample size = 10,000
Number of obs = 22
Acceptance rate = .5315
Efficiency: min = .01845

avg = .04462
Log marginal likelihood = 14.38145 max = .06842

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

D
study

1 -.2357346 .1380931 .005394 -.2396019 -.5018659 .0564967
2 -.2701697 .135307 .006741 -.2585033 -.5760455 -.0174336
3 -.2538771 .1376569 .005263 -.2495234 -.5436489 .0222503
4 -.246526 .08904 .003506 -.2483908 -.4212739 -.0643877
5 -.1969971 .12748 .006635 -.2072718 -.4149274 .1014951
6 -.2527047 .1339466 .00647 -.2526702 -.5224128 .0229356
7 -.3377723 .1100308 .006646 -.3283355 -.5829385 -.1548902
8 -.2054826 .1130796 .005594 -.2121369 -.4051584 .0546629
9 -.2666327 .1215781 .005263 -.2630645 -.5206763 -.0297599

10 -.2803866 .0841634 .003593 -.2771339 -.4590086 -.1252279
11 -.2354098 .1049351 .004449 -.237795 -.4360951 -.0191799
12 -.202938 .1178808 .005967 -.209884 -.4105608 .0725293
13 -.2714193 .1288598 .006394 -.263365 -.564746 -.023963
14 -.1273999 .1468804 .009997 -.1553146 -.3495763 .2172828
15 -.2518538 .1249082 .005184 -.2502685 -.5090334 -.0021013
16 -.2245814 .1210757 .004998 -.231592 -.4488306 .0415657
17 -.2043954 .1357651 .007347 -.2164064 -.4321717 .1044344
18 -.2153688 .1423256 .006983 -.222428 -.4718119 .0991941
19 -.2242526 .1360964 .006098 -.2300817 -.4938685 .075416
20 -.2428998 .1151988 .005403 -.2424417 -.4723024 -.0126589
21 -.2972177 .1281401 .006041 -.2862546 -.5946982 -.0770212
22 -.2979427 .1266137 .00575 -.2885006 -.5953839 -.0816952

d -.2429052 .0611413 .004501 -.2426092 -.3623229 -.1261924
sig2 .0166923 .020771 .001488 .0095773 .0007359 .0753652

Our posterior mean estimates d and sig2 of mean d and variance σ2 are −0.24 and 0.017, respectively,
with posterior standard deviations of 0.06 and 0.02. The estimates are close to those reported by
Carlin (1992). Considering the number of parameters, the AR and efficiency summaries look good.

We can obtain the efficiencies for the main parameters by using bayesstats ess.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

d 184.49 54.20 0.0184
sig2 194.88 51.31 0.0195

The efficiencies are acceptable, but based on the correlation times, the autocorrelation becomes small
only after lag 50 or so. The precision of the mean and variance estimates is comparable to those based
on 184 independent observations for the mean and 195 independent observations for the variance.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 133

We explore convergence visually.

. bayesgraph diagnostics {d} {sig2}

−.5

−.4

−.3

−.2

−.1

0

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

−.5 −.4 −.3 −.2 −.1 0

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

−.5 −.4 −.3 −.2 −.1 0

all

1−half

2−half

Density

d

0

.1

.2

.3

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

0
4

0
6

0

0 .1 .2 .3

Histogram

−0.20

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

0
4

0
6

0

0 .1 .2 .3

all

1−half

2−half

Density

sig2

The diagnostic plots look reasonable for both parameters, but autocorrelation is high. You may consider
increasing the default MCMC size to obtain more precise estimates of posterior means.

Example 23: Binomial-normal model

There is an alternative but equivalent way of formulating the meta-analysis model from example 23
as a binomial-normal model. Instead of modeling estimates of log odds-ratios directly, one can model
probabilities of success (an event of interest) in each group.

Let pTi and pCi be the probabilities of success for the treatment and control groups in the ith trial.
The random-effects meta-analysis model can be given as

logit(pCi) = µi

logit(pTi) = µi + di

where µi is log odds of success in the control group in study i and µi + di is log odds of success in
the treatment group. dis are viewed as random effects and are assumed to be normally distributed as

di ∼ i.i.d.N(d, σ2)

where d is the population effect and σ2 is its variability across trials.

Suppose that we observe yCi successes out of nCi events in the control group and yTi successes
out of nTi events in the treatment group from the ith trial. Then,

yCi ∼ Binomial(pCi , n
C
i)

yTi ∼ Binomial(pTi , n
T
i)

The random effects are usually assumed to be normally distributed as

di ∼ i.i.d.N(d, σ2)

where d is the population effect and is the main parameter of interest in the model, and σ2 is its
variability across trials.

134 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We can rewrite the model above assuming the data are in long form as

logit(pi) = µi + (Ti == 1)× di
yi ∼ Binomial(pi, ni)

di ∼ i.i.d.N(d, σ2)

where Ti is a binary treatment with Ti = 0 for the control group and Ti = 1 for the treatment group.

In Bayesian analysis, we additionally specify prior distributions for µi, d, and σ2. We use
noninformative priors.

µi ∼ 1

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We continue our analysis of beta-blockers data. The analysis of these data using a binomial-normal
model is also provided as an example in OpenBUGS (Thomas et al. 2006).

For this analysis, we use the beta-blockers data in long form.

. use http://www.stata-press.com/data/r14/betablockers_long
(Beta-blockers data in long form)

. describe

Contains data from http://www.stata-press.com/data/r14/betablockers_long.dta
obs: 44 Beta-blockers data in long form

vars: 4 5 Feb 2015 19:02
size: 264 (_dta has notes)

storage display value
variable name type format label variable label

study byte %9.0g Study identifier
treat byte %9.0g treatlab Treatment group: 0 - control, 1 -

treatment
deaths int %9.0g Number of deaths in each group
total int %9.0g Number of subjects in each group

Sorted by: study treat

Variable treat records the binary treatment: treat==0 identifies the control group, and treat==1
identifies the treatment group.

To relate to the notation of our model, we create variable mu to contain identifiers for each study.
We also request that no base is set for our factor variables mu and study.

. generate mu = study

. fvset base none mu study

We use a binlogit() likelihood model for the number of deaths. We split all parameters into
separate blocks and request Gibbs sampling for sig2 to improve efficiency of the algorithm. We also
specify burnin(3000) and perform more frequent adaptation using adaptation(every(10)).

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 135

. set seed 14

. bayesmh deaths i.mu 1.treat#i.study, likelihood(binlogit(total)) noconstant
> prior({deaths:i.mu}, flat)
> prior({deaths:1.treat#i.study}, normal({d},{sig2}))
> prior({d},normal(0,1000)) prior({sig2}, igamma(0.001,0.001))
> block({deaths:1.treat#i.study}, split)
> block({deaths:i.mu}, split) block({d}, gibbs)
> block({sig2}, gibbs)
> burnin(3000) adaptation(every(10)) dots(500, every(2500))
Burn-in 3000 aaaa2500a done
Simulation 100002500....5000....7500....10000 done

Model summary

Likelihood:
deaths ~ binlogit(xb_deaths,total)

Priors:
{deaths:i.mu} ~ 1 (flat) (1)

{deaths:i.treat#i.study} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_deaths.

Bayesian binomial regression MCMC iterations = 13,000
Metropolis-Hastings and Gibbs sampling Burn-in = 3,000

MCMC sample size = 10,000
Number of obs = 44
Acceptance rate = .5136
Efficiency: min = .01331

avg = .08388
Log marginal likelihood = -131.25444 max = .2121

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

deaths
mu
1 -2.434128 .445865 .009682 -2.426842 -3.332509 -1.634211
2 -2.186034 .2348462 .005222 -2.1798 -2.654988 -1.741019
3 -2.121815 .2711186 .006175 -2.111274 -2.680885 -1.617358
4 -2.395562 .0809699 .002675 -2.396577 -2.549786 -2.237609
5 -2.401359 .1540556 .004839 -2.397723 -2.697435 -2.099078
6 -2.221807 .3487384 .009421 -2.19026 -2.966567 -1.591299
7 -1.71437 .0784958 .002737 -1.714861 -1.86485 -1.558509
8 -2.110073 .1178488 .003906 -2.107124 -2.342254 -1.88807
9 -1.959062 .1492379 .004604 -1.958407 -2.264319 -1.682202

10 -2.241497 .0699547 .002446 -2.240693 -2.38241 -2.107086
11 -2.308927 .1095127 .003416 -2.310487 -2.527959 -2.095512
12 -1.458926 .1263283 .003392 -1.457141 -1.709941 -1.207061
13 -2.993073 .2129428 .004776 -2.985876 -3.43956 -2.606033
14 -2.722014 .1239681 .004773 -2.718786 -2.973852 -2.490443
15 -1.355571 .1596962 .004102 -1.354465 -1.676543 -1.04002
16 -1.489021 .1416432 .004123 -1.483373 -1.764335 -1.223957
17 -1.993007 .1853341 .005607 -1.98668 -2.378721 -1.646472
18 -2.964669 .2847685 .006746 -2.947758 -3.571054 -2.455845
19 -3.433652 .3440502 .007869 -3.421849 -4.142976 -2.799305
20 -1.486827 .1357797 .003528 -1.486625 -1.756737 -1.218571
21 -2.141426 .1384291 .00422 -2.140922 -2.410842 -1.870514
22 -2.923959 .1412969 .004275 -2.925278 -3.19683 -2.656737

136 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

treat#study
1 1 -.2412583 .1366465 .005294 -.246471 -.5222947 .0360048
1 2 -.2805666 .1338706 .005662 -.2698089 -.5741051 -.0336747
1 3 -.2627764 .1328548 .008139 -.2548607 -.560451 -.0111309
1 4 -.2518226 .0939223 .004196 -.2503843 -.4532776 -.0673868
1 5 -.2017774 .1277379 .006441 -.2137416 -.4256577 .0927942
1 6 -.2586228 .1381994 .008395 -.2507483 -.5628148 .0127226
1 7 -.3472471 .1015792 .006818 -.3376469 -.5653234 -.1742163
1 8 -.2142745 .1108317 .005637 -.2186595 -.4201235 .0252865
1 9 -.278724 .1237785 .007732 -.2705361 -.5565986 -.048334
1 10 -.2895344 .0855712 .003741 -.2834565 -.4695875 -.1309819
1 11 -.2455467 .105304 .004622 -.2461274 -.4571545 -.0309278
1 12 -.2094773 .1127281 .005102 -.2184074 -.4059582 .0326186
1 13 -.2762859 .1352985 .007211 -.2669069 -.5767289 -.0217408
1 14 -.1279066 .1427634 .009247 -.1505654 -.3554016 .2047083
1 15 -.2617291 .1192822 .005606 -.2592285 -.5019967 -.0192021
1 16 -.2303032 .1178814 .005088 -.2340642 -.4559166 .0227396
1 17 -.2135575 .1312599 .006438 -.2233056 -.4489128 .0833568
1 18 -.2219846 .1455447 .006833 -.2345571 -.4844894 .1041897
1 19 -.2283609 .143887 .006233 -.2362389 -.4981321 .0853338
1 20 -.2433477 .116537 .00486 -.2461491 -.4661368 .0000666
1 21 -.3065246 .1182271 .007766 -.2933875 -.5769479 -.0992575
1 22 -.3038501 .1276486 .007902 -.2917561 -.6014336 -.0757054

d -.249726 .060338 .004671 -.2481786 -.3694177 -.1323805
sig2 .0167392 .0191965 .001664 .0103045 .0007443 .0674249

This model has 22 more parameters than the model in example 22. The posterior mean estimates
d and sig2 of mean d and variance σ2 are −0.25 and 0.017, respectively, with posterior standard
deviations of 0.06 and 0.02. The estimates of the mean and variance are again close to the ones
reported by Carlin (1992).

Compared with example 22, the efficiencies and other statistics for the main parameters are similar.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

d 166.90 59.92 0.0167
sig2 133.14 75.11 0.0133

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 137

The diagnostic plots look similar to those shown in example 22.

. bayesgraph diagnostics {d} {sig2}

−.6

−.4

−.2

0

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8
−.5 −.4 −.3 −.2 −.1 0

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

−.6 −.4 −.2 0 .2

all

1−half

2−half

Density

d

0

.05

.1

.15

.2

.25

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

0
4

0
6

0

0 .05 .1 .15 .2 .25

Histogram

−0.20

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

0
4

0
6

0

0 .05 .1 .15 .2 .25

all

1−half

2−half

Density

sig2

Stored results
bayesmh stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k sc) number of scalar parameters
e(k mat) number of matrix parameters
e(n eq) number of equations
e(mcmcsize) MCMC sample size
e(burnin) number of burn-in iterations
e(mcmciter) total number of MCMC iterations
e(thinning) thinning interval
e(arate) overall AR
e(eff min) minimum efficiency
e(eff avg) average efficiency
e(eff max) maximum efficiency
e(clevel) credible interval level
e(hpd) 1 if hpd is specified; 0 otherwise
e(batch) batch length for batch-means calculations
e(corrlag) maximum autocorrelation lag
e(corrtol) autocorrelation tolerance
e(dic) deviation information criterion
e(lml lm) log marginal-likelihood using Laplace–Metropolis method
e(scale) initial multiplier for scale factor; scale()
e(block# gibbs) 1 if Gibbs sampling is used in #th block; 0 otherwise
e(block# scale) #th block initial multiplier for scale factor
e(block# tarate) #th block target adaptation rate
e(block# arate last) #th block AR from the last adaptive iteration
e(block# tolerance) #th block adaptation tolerance
e(adapt every) adaptation iterations adaptation(every())
e(adapt maxiter) maximum number of adaptive iterations adaptation(maxiter())
e(adapt miniter) minimum number of adaptive iterations adaptation(miniter())
e(adapt alpha) adaptation parameter adaptation(alpha())
e(adapt beta) adaptation parameter adaptation(beta())
e(adapt gamma) adaptation parameter adaptation(gamma())
e(adapt tolerance) adaptation tolerance adaptation(tolerance())
e(repeat) number of attempts used to find feasible initial values

138 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Macros
e(cmd) bayesmh
e(cmdline) command as typed
e(method) sampling method
e(depvars) names of dependent variables
e(eqnames) names of equations
e(likelihood) likelihood distribution (one equation)
e(likelihood#) likelihood distribution for #th equation
e(prior) prior distribution
e(prior#) prior distribution, if more than one prior() is specified
e(priorparams) parameter specification in prior()
e(priorparams#) parameter specification from #th prior(), if more than one prior() is specified
e(parnames) names of model parameters except exclude()
e(postvars) variable names corresponding to model parameters in e(parnames)
e(subexpr) substitutable expression
e(subexpr#) substitutable expression, if more than one
e(wtype) weight type (one equation)
e(wtype#) weight type for #th equation
e(wexp) weight expression (one equation)
e(wexp#) weight expression for #th equation
e(block# names) parameter names from #th block
e(exclude) names of excluded parameters
e(filename) name of the file with simulation results
e(scparams) scalar model parameters
e(matparams) matrix model parameters
e(pareqmap) model parameters in display order
e(title) title in estimation output
e(rngstate) random-number state at the time of simulation
e(search) on, repeat(), or off

Matrices
e(mean) posterior means
e(sd) posterior standard deviations
e(mcse) MCSE
e(median) posterior medians
e(cri) credible intervals
e(Cov) variance–covariance matrix of parameters
e(ess) effective sample sizes
e(init) initial values vector

Functions
e(sample) mark estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Adaptive MH algorithm
Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

Likelihood-prior configurations
Prior-hyperprior configurations

Marginal likelihood

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 139

Adaptive MH algorithm

The bayesmh command implements an adaptive random-walk Metropolis–Hastings algorithm with
optional blocking of parameters. Providing an efficient MH procedure for simulating from a general
posterior distribution is a difficult task, and various adaptive methods have been proposed (Haario,
Saksman, and Tamminen 2001; Giordani and Kohn 2010; Roberts and Rosenthal 2009; Andrieu and
Thoms 2008). The essence of the problem is in choosing an optimal proposal covariance matrix and
a scale for parameter updates. Below we describe the implemented adaptation algorithm, assuming
one block of parameters. In the presence of multiple blocks, the adaptation is applied to each block
independently. The adaptation() option of bayesmh controls all the tuning parameters for the
adaptation algorithm.

Let θ be a vector of d scalar model parameters. Let T0 be the length of a burn-in period
(iterations that are discarded) as specified in burnin() and T be the size of the MCMC sample
(iterations that are retained) as specified in mcmcsize(). The total number of MCMC iterations is
then Ttotal = T0 + (T − 1) × thinning() + 1. Also, let ALEN be the length of the adaptation
interval (option adaptation(every())) and AMAX be the maximum number of adaptations (option
adaptation(maxiter())).

The steps of the adaptive MH algorithm are the following. At t = 0, we initialize θt = θ
f
0 , where

θ
f
0 is the initial feasible state, and we set adaptation counter k = 1 and initialize ρ0 = 2.38/

√
d,

where d is the number of considered parameters. Σ0 is the identity matrix. For t = 1, . . . , Ttotal, do
the following:

1. Generate proposal parameters: θ∗ = θt−1 + e, e ∼ N(0, ρ2
kΣk), where ρk and Σk are current

values of the proposal scale and covariance for adaptation iteration k.

2. Calculate the acceptance probability using

r = min
{

p(θ∗|y)

p(θt−1|y)
, 1

}
where p(θ|y) = f(y|θ)p(θ) is the posterior distribution of θ corresponding to the likelihood
function f(y|θ) and prior p(θ).

3. Draw u ∼ Uniform(0, 1) and set θt = θ∗ if u < r or θt = θt−1, otherwise.

4. Perform adaptive iteration k. This step is performed only if k ≤ AMAX and t mod ALEN = 0.
Update ρk according to (1), update Σk according to (2), and set k = k + 1.

5. Repeat steps 1–4. Note that the adaptation in step 4 is not performed at every MCMC iteration.

The output is the MCMC sequence {θt}Ttotal

t=T0+1 or θ1, θ1+l, θ1+2l, . . . , where l is the thinning
interval as specified in the thinning() option.

If the parameter vector θ is split into B blocks θ1, θ2, . . . , θB , then steps 1 through 3 are repeated
for each θb, b = 1, . . . , B sequentially. The adaptation in step 4 is then applied sequentially to each
block b = 1, 2, . . . , B. See Blocking of parameters in [BAYES] intro for details about blocking.

Initialization. We recommend that you carefully choose starting values for model parameters, θ0,
to be within the domain of the posterior distribution; see the initial() option. By default, MLEs are
used as initial values, whenever available. If MLEs are not available, parameters with positive support
are initialized with one, and the remaining parameters are initialized with zeros. Matrix parameters
are initialized as identity matrices. If specified initial values θ0 are within the domain of the posterior,
then θ

f
0 = θ0. Otherwise, bayesmh performs 500 attempts (or as specified in search(repeat()))

to find a feasible state θ
f
0 , which is used as the initial state in the algorithm. If the command cannot

find feasible values, it exits with an error.

140 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Adaptation. The adaptation step is performed as follows. At each adaptive iteration k of the
tth MCMC iteration, the proposal covariance Σk and scale ρk are tuned to achieve an optimal AR.
Some asymptotic results (for example, Gelman, Gilks, and Roberts [1997]) show that the optimal
AR, hereafter referred to as a TAR, for a single model parameter is 0.44 and is 0.234 for a block of
multiple parameters.

Adaptation is performed periodically after a constant number of iterations as specified by the adap-
tation(every()) option. At least adaptation(miniter()) adaptive iterations are performed not
to exceed adaptation(maxiter()). bayesmh does not perform adaptation if the absolute difference
between the current AR and TAR is within the tolerance given by adaptation(tolerance()).

The bayesmh command allows you to control the calculation of AR through the adapta-
tion(alpha()) option with the default of 0.75, as follows,

ARk = (1− α)ARk−1 + αÂRk,

where ÂRk is the expected acceptance probability, which is computed as the average of the acceptance
probabilities, r, since the last adaptive iteration (for example, Andrieu and Thoms [2008]), and
AR0 is defined as described in the adaptation(tarate()) option. Choosing α ∈ (0, 1) allows for
smoother change in the current AR between adaptive iterations.

The tuning of the proposal scale ρ is based on results in Gelman, Gilks, and Roberts (1997),
Roberts and Rosenthal (2001), and Andrieu and Thoms (2008). The initial ρ0 is set to 2.38/

√
d,

where d is the number of parameters in the considered block. Then, ρk is updated according to

ρk = ρk−1e
βk{Φ−1(ARk/2)−Φ−1(TAR/2)} (1)

where Φ(·) is the standard normal cumulative distribution function and βk is defined below.

The adaptation of the covariance matrix is performed when multiple parameters are in the block
and is based on Andrieu and Thoms (2008). You may specify an initial proposal covariance matrix Σ0

in covariance() or use the identity matrix by default. Then, at time of adaptation k, the proposal
covariance Σk is recomputed according to the formula

Σk = (1− βk)Σk−1 + βkΣ̂k, βk =
β0

kγ
(2)

where Σ̂k = (Θtk − µk−1)(Θtk − µk−1)′/(tk − tk−1) is the empirical covariance of the recent
MCMC sample Θtk = {θs}tks=tk−1

and tk−1 is the MCMC iteration corresponding to the adaptive
iteration k − 1 or 0 if adaptation did not take place. µk is defined as

µk = µk−1 + βk(Θtk − µk−1), k > 1

and µ1 = Θtk , where Θtk is the sample mean of Θtk .

The constants β0 ∈ [0, 1] and γ ∈ [0, 1] in (2) are specified in the options adaptation(beta())
and adaptation(gamma()), respectively. The default values are 0.8 and 0, respectively. When
γ > 0, we have a diminishing adaptation regime, which means that Σk is not changing much from
one adaptive iteration to another. Random-walk Metropolis–Hastings algorithms with diminishing
adaptation are shown to preserve the ergodicity of the Markov chain (Roberts and Rosenthal 2007;
Andrieu and Moulines 2006; Atchadé and Rosenthal 2005).

The above algorithm is also used for discrete parameters, but discretization is used to obtain
samples of discrete values. The default initial scale factor ρ0 is set to 2.38/d for a block of d
discrete parameters. The default TAR for discrete parameters with priors bernoulli() and index()
is max{0.1353, 1/nmaxbins}, where nmaxbins is the maximum number of discrete values a parameter
can take among all the parameters specified in the same block. Blocks containing a mixture of
continuous and discrete parameters are not allowed.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 141

Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

In some cases, when a block of parameters θb has a conjugate prior, or more appropriately,
a semiconjugate prior, with respect to the respective likelihood distribution for this block, you can
request Gibbs sampling instead of random-walk MH sampling. Then, steps 1 through 4 of the algorithm
described in Adaptive MH algorithm are replaced with just one step of Gibbs sampling as follows:

1’. Simulate proposal parameters: θb∗ ∼ Fb(θb|θ1
∗, . . . , θ

b−1
∗ , θb+1

∗ , . . . , θB∗ ,y)

Here Fb(·|·) is the full conditional distribution of θb with respect to the rest of the parameters.

Below we list the full conditional distributions for the likelihood-prior specifications for which
bayesmh provides Gibbs sampling. All priors except Jeffreys priors are semiconjugate, meaning that
full conditional distributions belong to the same family as the specified prior distributions for the
chosen data model. This contrasts with a concept of conjugacy under which the posterior distribution
of all parameters belongs to the same family as the joint prior distribution. All the combinations
below assume prior independence; that is, all parameters are independent a priori. Thus their joint
prior distribution is simply the product of the individual prior distributions.

Likelihood-prior configurations

Let y = (y1, y2, . . . , yn)′ be a data sample of size n. For multivariate data, Y =

(y1,y2, . . . ,yn)′ = {yij}n,di,j=1 is an n× d data matrix.

1. Normal–normal model: θb is a mean of a normal distribution of yis with a variance σ2; mean
and variance are independent a priori,

yi|θb, σ2 ∼ N(θb, σ2), i = 1, 2, . . . , n

θb ∼ N(µ0, τ
2
0)

θb|σ2,y ∼ Fb = N(µn, τ
2
n)

where µ0 and τ2
0 are hyperparameters (prior mean and prior variance) of a normal prior distribution

for θb and
µn =

(
µ0τ

−2
0 +

∑
yiσ
−2
)
τ2
n

τ2
n = (τ−2

0 + nσ−2)−1

2. Normal–normal regression: θb is a p1×1 subvector of a p×1 vector of regression coefficients β
from a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′

and with a variance σ2; regression coefficients and variance are independent a priori,

yi|θb, σ2 ∼ N(x′iβ, σ
2), i = 1, 2, . . . , n

θbk ∼ i.i.d. N(β0, τ
2
0), k = 1, 2, . . . , p1

θb|σ2,y ∼ Fb = MVN(µn,Λn)

where β0 and τ2
0 are hyperparameters (prior regression coefficient and prior variance) of normal

prior distributions for θbk and

µn = (β0τ
−2
0 +X ′byσ

−2)Λn

Λn = (τ−2
0 Ip1 + σ−2X ′bXb)

−1

142 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

In the above, Ip1 is a p1 × p1 identity matrix, and Xb = (x′1b,x
′
2b, . . . ,x

′
nb)
′ is an n × p1

submatrix of X corresponding to the regression coefficients θb.

3. Normal–inverse-gamma model: θb is a variance of a normal distribution of yis with a mean µ;
mean and variance are independent a priori,

yi|µ, θb ∼ N(µ, θb), i = 1, 2, . . . , n

θb ∼ InvGamma(α, β)

θb|µ,y ∼ Fb = InvGamma(α+ n/2, β +

n∑
i=1

(yi − µ)2/2)

where α and β are hyperparameters (prior shape and prior scale) of an inverse-gamma prior
distribution for θb.

4. Multivariate-normal–multivariate-normal model: θb is a mean vector of a multivariate normal
distribution of ys with a d×d covariance matrix Σ; mean and covariance are independent a priori,

yi|θb,Σ ∼ MVN(θb,Σ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|Σ, Y ∼ Fb = MVN(µn,Λn)

where µ0 and Λ0 are hyperparameters (prior mean vector and prior covariance) of a multivariate
normal prior distribution for θb and

µn = ΛnΛ−1
0 µ0 + ΛnΣ−1

(
n∑
i=1

yi

)
Λn = (Λ−1

0 + nΣ−1)−1

5. Multivariate-normal–inverse-Wishart model: Θb is a d× d covariance matrix of a multivariate
normal distribution of ys with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ InvWishart(ν,Ψ)

Θb|µ, Y ∼ Fb = InvWishart(n+ ν,Ψ +

n∑
i=1

(yi − µ)(yi − µ)′)

where ν and Ψ are hyperparameters (prior degrees of freedom and prior scale matrix) of an
inverse-Wishart prior distribution for Θb.

6. Multivariate-normal–Jeffreys model: Θb is a d× d covariance matrix of a multivariate normal
distribution of ys with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ |Θb|−
d+1
2 (multivariate Jeffreys)

Θb|µ, Y ∼ Fb = InvWishart(n− 1,

n∑
i=1

(yi − µ)(yi − µ)′)

where | · | denotes the determinant of a matrix.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 143

Prior-hyperprior configurations

Suppose that a prior distribution of a parameter of interest θ has hyperparameters θh for which a
prior distribution is specified. We refer to the former prior distribution as a hyperprior. You can also
request Gibbs sampling for the following prior-hyperprior combinations.

We use θbh and θbh to refer to the hyperparameters from the block b.

1. Normal–normal model: θbh is a mean of a normal prior distribution of θ with a variance σ2
h;

mean and variance are independent a priori,

θ|θbh, σ2
h ∼ N(θbh, σ

2
h)

θbh ∼ N(µ0, τ
2
0)

θbh|σ2
h, θ ∼ Fb = N(µ1, τ

2
1)

where µ0 and τ2
0 are the prior mean and prior variance of a normal hyperprior distribution for θbh

and
µ1 =

(
µ0τ

−2
0 + θσ−2

h

)
τ2
1

τ2
1 = (τ−2

0 + σ−2
h)−1

2. Normal–inverse-gamma model: θbh is a variance of a normal prior distribution of θ with a mean
µh; mean and variance are independent a priori,

θ|µh, θbh ∼ N(µh, θ
b
h)

θbh ∼ InvGamma(α, β)

θbh|µh, θ ∼ Fb = InvGamma(α+ 0.5, β + (θ − µ)2/2)

where α and β are the prior shape and prior scale, respectively, of an inverse-gamma hyperprior
distribution for θbh.

3. Bernoulli–beta model: θbh is a probability of success of a Bernoulli prior distribution of θ,

θ|θbh ∼ Bernoulli(θbh)

θbh ∼ Beta(α, β)

θbh|θ ∼ Fb = Beta(α+ θ, β + 1− θ)

where α and β are the prior shape and prior scale, respectively, of a beta hyperprior distribution
for θbh.

4. Poisson–gamma model: θbh is a mean of a Poisson prior distribution of θ,

θ|θbh ∼ Poisson(θbh)

θbh ∼ Gamma(α, β)

θbh|θ ∼ Fb = Gamma(α+ θ, β/(β + 1))

where α and β are the prior shape and prior scale, respectively, of a gamma hyperprior distribution
for θbh.

144 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

5. Multivariate-normal–multivariate-normal model: θbh is a mean vector of a multivariate normal
prior distribution of θ with a d× d covariance matrix Σh; mean and covariance are independent
a priori,

θ|θbh,Σh ∼ MVN(θbh,Σh)

θbh ∼ MVN(µ0,Λ0)

θbh|Σh, θ ∼ Fb = MVN(µ1,Λ1)

where µ0 and Λ0 are the prior mean vector and prior covariance of a multivariate normal hyperprior
distribution for θbh and

µ1 = Λ1Λ−1
0 µ0 + Λ1Σ−1

h θ

Λ1 = (Λ−1
0 + Σ−1

h)−1

6. Multivariate-normal–inverse-Wishart model: Θb
h is a d× d covariance matrix of a multivariate

normal prior distribution of θ with a mean vector µh; mean and covariance are independent a
priori,

θ|µh,Θb
h ∼ MVN(µh,Θ

b
h)

Θb
h ∼ InvWishart(ν,Ψ)

Θb
h|µh, θ ∼ Fb = InvWishart(ν + 1,Ψ + (θ− µh)(θ− µh)′)

where ν and Ψ are the prior degrees of freedom and prior scale matrix of an inverse-Wishart
hyperprior distribution for Θb

h.

Marginal likelihood

The marginal likelihood is defined as

m(y) =

∫
p(y|θ)π(θ)dθ

where p(y|θ) is the probability density of data y given θ and π(θ) is the density of the prior
distribution for θ.

Marginal likelihood m(y), being the denominator term in the posterior distribution, has a major
role in Bayesian analysis. It is sometimes referred to as “model evidence”, and it is used as a
goodness-of-fit criterion. For example, marginal likelihoods are used in calculating Bayes factors for
the purpose of model comparison; see Methods and formulas in [BAYES] bayesstats ic.

The simplest approximation to m(y) is provided by the Monte Carlo integration,

m̂p =
1

M

M∑
s=1

p(y|θs)

where {θs}Ms=1 is an independent sample from the prior distribution π(θ). This estimation is very
inefficient, however, because of the high variance of the likelihood function. MCMC samples are not
independent and cannot be used directly for calculating m̂p.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 145

An improved estimation of the marginal likelihood can be obtained by using importance sampling.
For a sample {θt}Tt=1, not necessarily independent, from the posterior distribution, the harmonic
mean of the likelihood values,

m̂h =

{
1

T

T∑
t=1

p(y|θt)−1

}−1

approximates m(y) (Geweke 1989).

Another method for estimating m(y) uses the Laplace approximation,

m̂l = (2π)p/2| − H̃|−1/2p(y|θ̃)π(θ̃)

where p is the number of parameters (or dimension of θ), θ̃ is the posterior mode, and H̃ is the
Hessian matrix of l(θ) = p(y|θ)π(θ) calculated at the mode θ̃.

Using the fact that the posterior sample covariance matrix, which we denote as Σ̂, is asymptot-
ically equal to (−H̃)−1, Raftery (1996) proposed what he called the Laplace–Metropolis estimator
(implemented by bayesmh):

m̂lm = (2π)p/2|Σ̂|1/2p(y|θ̃)π(θ̃)

Raftery (1996) recommends that a robust and consistent estimator be used for the posterior covariance
matrix.� �

Nicholas Constantine Metropolis (1915–1999) was born in Chicago, where he received BSc and
PhD degrees in physics at the University of Chicago. He oscillated through his career between
posts there and at what later became the Los Alamos National Laboratory in New Mexico.
Metropolis is best known for his contributions to Monte Carlo methods, algorithms based on
repeated random sampling. He was the first author on an outstanding paper about a Monte
Carlo algorithm (Metropolis et al. 1953), with Arianna W. Rosenbluth, Marshall N. Rosenbluth
(1927–2003), Augusta H. Teller (1909–2000), and Edward Teller (1908–2003). However, the
relative contributions of these authors have been much disputed, and general and specific credit
for the method should also be given to others, including John von Neumann (1903–1957),
Stanisław M. Ulam (1909–1984), and Enrico Fermi (1901–1954). According to Google Scholar,
Metropolis et al. (1953) has been cited over 28,000 times.

W. Keith Hastings (1930–) was born in Toronto, Ontario. He received BA, MA, and PhD degrees
in applied mathematics and statistics from the University of Toronto; his doctoral thesis was on
invariant fiducial distributions. Hastings worked as a consultant in computer applications for a
Toronto firm, at the University of Canterbury in New Zealand, and at Bell Labs in New Jersey
before returning from 1966 to 1971 to his alma mater. In this period, he wrote a famous paper
(Hastings 1970) generalizing the work of Metropolis et al. (1953) to produce what is now often
called the Metropolis–Hastings algorithm. It is the most common Markov chain Monte Carlo
method, widely used throughout statistical science to sample from high-dimensional distributions.
According to Google Scholar, Hastings (1970) has been cited over 8,000 times. Hastings worked
at the University of Victoria in British Columbia from 1971 to 1992, when he retired.

Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.� �

146 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

References
Andrieu, C., and É. Moulines. 2006. On the ergodicity properties of some adaptive MCMC algorithms. Annals of

Applied Probability 16: 1462–1505.

Andrieu, C., and J. Thoms. 2008. A tutorial on adaptive MCMC. Statistics and Computing 18: 343–373.

Atchadé, Y. F., and J. S. Rosenthal. 2005. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11: 815–828.

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian analysis of changepoint problems.
Journal of the Royal Statistical Society, Series C 41: 389–405.

Carlin, J. B. 1992. Meta-analysis for 2×2 tables: A Bayesian approach. Statistics in Medicine 11: 141–158.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford:
Oxford University Press.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. Illustration of Bayesian inference in normal
data models using Gibbs sampling. Journal of the American Statistical Association 85: 972–985.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., W. R. Gilks, and G. O. Roberts. 1997. Weak convergence and optimal scaling of random walk Metropolis
algorithms. Annals of Applied Probability 7: 110–120.

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:
1317–1339.

Geyer, C. J. 2011. Introduction to Markov chain Monte Carlo. In Handbook of Markov Chain Monte Carlo, ed.
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 3–48. Boca Raton, FL: Chapman & Hall/CRC.

Giordani, P., and R. J. Kohn. 2010. Adaptive independent Metropolis–Hastings by fast estimation of mixtures of
normals. Journal of Computational and Graphical Statistics 19: 243–259.

Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223–242.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:
97–109.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

Jarrett, R. G. 1979. A note on the intervals between coal-mining disasters. Biometrika 66: 191–193.

Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society
of London, Series A 186: 453–461.

Lichman, M. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Maas, B., W. R. Garnett, I. M. Pellock, and T. J. Comstock. 1987. A comparative bioavailability study of Carbamazepine
tablets and chewable formulation. Therapeutic Drug Monitoring 9: 28–33.

Maguire, B. A., E. S. Pearson, and A. H. A. Wynn. 1952. The time intervals between industrial accidents. Biometrika
39: 168–180.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. Journal of Chemical Physics 21: 1087–1092.

Raftery, A. E. 1996. Hypothesis testing and model selection. In Markov Chain Monte Carlo in Practice, ed. W. R.
Gilks, S. Richardson, and D. J. Spiegelhalter, 163–187. Boca Raton, FL: Chapman and Hall.

Raftery, A. E., and V. E. Akman. 1986. Bayesian analysis of a Poisson process with a change-point. Biometrika 73:
85–89.

Roberts, G. O., and J. S. Rosenthal. 2001. Optimal scaling for various Metropolis–Hastings algorithms. Statistical
Science 16: 351–367.

. 2007. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Journal of Applied Probability
44: 458–475.

. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18: 349–367.

Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University
Press.

Thomas, A., B. O’Hara, U. Ligges, and S. Sturtz. 2006. Making BUGS Open. R News 6: 12–17.

http://archive.ics.uci.edu/ml

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 147

Thompson, J. 2014. Bayesian Analysis with Stata. College Station, TX: Stata Press.

Yusuf, S., R. Simon, and S. S. Ellenberg. 1987. Proceedings of the workshop on methodological issues in overviews
of randomized clinical trials, May 1986. In Statistics in Medicine, vol. 6.

Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In
Vol. 6 of Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti (Studies in Bayesian
Econometrics and Statistics), ed. P. K. Goel and A. Zellner, 233–343. Amsterdam: North-Holland.

Zellner, A., and N. S. Revankar. 1969. Generalized production functions. Review of Economic Studies 36: 241–250.

Also see
[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] bayes — Introduction to commands for Bayesian analysis

[BAYES] intro — Introduction to Bayesian analysis

[BAYES] Glossary

http://www.stata-press.com/books/bayesian-analysis-with-stata/

Title

bayesmh evaluators — User-defined evaluators with bayesmh

Description Syntax Options Remarks and examples
Stored results Also see

Description

bayesmh provides two options, evaluator() and llevaluator(), that facilitate user-defined
evaluators for fitting general Bayesian regression models. bayesmh, evaluator() accommodates
log-posterior evaluators. bayesmh, llevaluator() accommodates log-likelihood evaluators, which
are combined with built-in prior distributions to form the desired posterior density. For a catalog of
built-in likelihood models and prior distributions, see [BAYES] bayesmh.

Syntax

Single-equation models

User-defined log-posterior evaluator

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, evaluator(evalspec)

[
options

]
User-defined log-likelihood evaluator

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, llevaluator(evalspec)

prior(priorspec)
[

options
]

Multiple-equations models

User-defined log-posterior evaluator

bayesmh (eqspecp)
[
(eqspecp)

[
. . .
]] [

if
] [

in
] [

weight
]
, evaluator(evalspec)[

options
]

User-defined log-likelihood evaluator

bayesmh (eqspecll)
[
(eqspecll)

[
. . .
]] [

if
] [

in
] [

weight
]
, prior(priorspec)[

options
]

148

bayesmh evaluators — User-defined evaluators with bayesmh 149

The syntax of eqspecp is

varspec
[
, noconstant

]
The syntax of eqspecll for built-in likelihood models is

varspec, likelihood(modelspec)
[
noconstant

]
The syntax of eqspecll for user-defined log-likelihood evaluators is

varspec, llevaluator(evalspec)
[
noconstant

]
The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvars

]
for multiple outcomes with common regressors

depvars =
[

indepvars
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvars1

]
) (

[
eqname2:

]
depvar2

[
indepvars2

]
)
[
. . .
]

The syntax of evalspec is

progname, parameters(paramlist)
[
extravars(varlist) passthruopts(string)

]
where progname is the name of a Stata program that you write to evaluate the log-posterior density
or the log-likelihood function (see Program evaluators), and paramlist is a list of model parameters:

paramdef
[

paramdef
[
. . .
]]

The syntax of paramdef is

{
[

eqname:
]
param

[
param

[
. . .
]] [

, matrix
]
}

where the parameter label eqname and parameter names param are valid Stata names. Model
parameters are either scalars such as {var}, {mean}, and {shape:alpha} or matrices such as
{Sigma, matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} in
the above to specify an initial value. For example, you can specify {var=1}, {mean=1.267}, or
{shape:alpha=3}. You can specify the multiple parameters with same equation as {eq:p1 p2
p3} or {eq: S1 S2, matrix}. Also see Declaring model parameters in [BAYES] bayesmh.

150 bayesmh evaluators — User-defined evaluators with bayesmh

options Description

∗evaluator(evalspec) specify log-posterior evaluator; may not be combined with
llevaluator() and prior()

∗llevaluator(evalspec) specify log-likelihood evaluator; requires prior() and may not
be combined with evaluator()

∗prior(priorspec) prior for model parameters; required with log-likelihood evaluator
and may be repeated

likelihood(modelspec) distribution for the likelihood model; allowed within
an equation of a multiple-equations model only

noconstant suppress constant term; not allowed with ordered models
specified in likelihood() with multiple-equations models

bayesmhopts any options of [BAYES] bayesmh except likelihood() and
prior()

∗Option evaluator() is required for log-posterior evaluators, and options llevaluator() and prior() are required
for log-likelihood evaluators. With log-likelihood evaluators, prior() must be specified for all model parameters
and can be repeated.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
Only fweights are allowed; see [U] 11.1.6 weight.

Options
evaluator(evalspec) specifies the name and the attributes of the log-posterior evaluator; see Program

evaluators for details. This option may not be combined with llevaluator() or likelihood().

llevaluator(evalspec) specifies the name and the attributes of the log-likelihood evaluator; see Pro-
gram evaluators for details. This option may not be combined with evaluator() or likelihood()
and requires the prior() option.

prior(priorspec); see [BAYES] bayesmh.

likelihood(modelspec); see [BAYES] bayesmh. This option is allowed within an equation of a
multiple-equations model only.

noconstant; see [BAYES] bayesmh.

bayesmhopts specify any options of [BAYES] bayesmh, except likelihood() and prior().

Remarks and examples
Remarks are presented under the following headings:

Program evaluators
Simple linear regression model
Logistic regression model
Multivariate normal regression model
Cox proportional hazards regression
Global macros

bayesmh evaluators — User-defined evaluators with bayesmh 151

Program evaluators

If your likelihood model or prior distributions are particularly complex and cannot be represented
by one of the predefined sets of distributions or by substitutable expressions provided with bayesmh,
you can program these functions by writing your own evaluator program.

Evaluator programs can be used for programming the full posterior density by specifying the
evaluator() option or only the likelihood portion of your Bayesian model by specifying the
llevaluator() option. For likelihood evaluators, prior() option(s) must be specified for all model
parameters. Your program is expected to calculate and return an overall log-posterior or a log-likelihood
density value.

It is allowed for the return values to match the log density up to an additive constant, in which
case, however, some of the reported statistics such as DIC and log marginal-likelihood may not be
applicable.

Your program evaluator progname must be a Stata program; see [U] 18 Programming Stata. The
program must follow the style below.

program progname
args lnden xb1 [xb2 . . .] [modelparams]
. . . computations . . .
scalar ‘lnden’ = . . .

end

Here lnden contains the name of a temporary scalar to be filled in with an overall log-posterior or
log-likelihood value;

xb# contains the name of a temporary variable containing the linear predictor from the #th equation;
and

modelparams is a list of names of scalars or matrices to contain the values of model parameters
specified in suboption parameters() of evaluator() or llevaluator(). For matrix pa-
rameters, the specified names will contain the names of temporary matrices containing current
values. For scalar parameters, these are the names of temporary scalars containing current
values. The order in which names are listed should correspond to the order in which model
parameters are specified in parameters().

Also see Global macros for a list of global macros available to the program evaluator.

After you write a program evaluator, you specify its name in the option evaluator() for
log-posterior evaluators,

. bayesmh . . ., evaluator(progname, evalopts)

or option llevaluator() for log-likelihood evaluators,
. bayesmh . . ., llevaluator(progname, evalopts)

Evaluator options evalopts include parameters(), extravars(), and passthruopts().

parameters(paramlist) specifies model parameters. Model parameters can be scalars or matrices.
Each parameter must be specified in curly braces {}. Multiple parameters with the same equation
names may be specified within one set of {}.

For example,
parameters({mu} {var:sig2} {S,matrix} {cov:Sigma, matrix} {prob:p1 p2})

specifies a scalar parameter with name mu without an equation label, a scalar parameter with
name sig2 and label var, a matrix parameter with name S, a matrix parameter with name
Sigma and label cov, and two scalar parameters {prob:p1} and {prob:p2}.

152 bayesmh evaluators — User-defined evaluators with bayesmh

extravars(varlist) specifies any variables in addition to dependent and independent variables
that you may need in your program evaluator. Examples of such variables are offset variables,
exposure variables for count-data models, and failure or censoring indicators for survival-time
models. See Cox proportional hazards regression for an example.

passthruopts(string) specifies a list of options you may want to pass to your program evaluator.
For example, these options may contain fixed values of model parameters and hyperparameters.
See Multivariate normal regression model for an example.

bayesmh automatically creates parameters for regression coefficients: {depname:varname} for
every varname in indepvars, and a constant parameter {depname: cons} unless noconstant is
specified. These parameters are used to form linear predictors used by the program evaluator. If you
need to access values of the parameters in the evaluator, you can use $MH b; see the log-posterior
evaluator in Cox proportional hazards regression for an example. With multiple dependent variables,
regression coefficients are defined for each dependent variable.

Simple linear regression model

Suppose that we want to fit a Bayesian normal regression where we program the posterior distribution
ourselves. The normaljeffreys program below computes the log-posterior density for the normal
linear regression with flat priors for the coefficients and the Jeffreys prior for the variance parameter.

. program normaljeffreys
1. version 14
2. args lnp xb var
3. /* compute log likelihood */

. tempname sd
4. scalar ‘sd’ = sqrt(‘var’)
5. tempvar lnfj
6. quietly generate double ‘lnfj’=lnnormalden($MH_y,‘xb’,‘sd’) if $MH

> _touse
7. quietly summarize ‘lnfj’, meanonly
8. if r(N) < $MH_n {
9. scalar ‘lnp’ = .

10. exit
11. }
12. tempname lnf
13. scalar ‘lnf’ = r(sum)
14. /* compute log prior */

. tempname lnprior
15. scalar ‘lnprior’ = -2*ln(‘sd’)
16. /* compute log posterior */

. scalar ‘lnp’ = ‘lnf’ + ‘lnprior’
17. end

The program accepts three parameters: a temporary name ‘lnp’ of a scalar to contain the log-posterior
value, a temporary name ‘xb’ of the variable that contains the linear predictor, and a temporary
name ‘var’ of a scalar that contains the values of the variance parameter.

The first part of the program calculates the overall log likelihood of the normal regression. The
second part of the program calculates the log of prior distributions of the parameters. Because the
coefficients have flat prior distributions with densities of 1, their log is 0 and does not contribute
to the overall prior. The only contribution is from the Jeffreys prior ln(1/σ2) = −2 ln(σ) for the
variance σ2. The third and final part of the program computes the values of the posterior density as
the sum of the overall log likelihood and the log of the prior.

The substantial portion of this program is the computation of the overall log likelihood. The global
macro $MH y contains the name of the dependent variable, $MH touse contains a temporary marker

bayesmh evaluators — User-defined evaluators with bayesmh 153

variable identifying observations to be used in computations, and $MH n contains the total number
of observations in the sample identified by the $MH touse variable.

We used the built-in function lnnormalden() to compute observation-specific log likelihood and
used summarize to obtain the overall value. Whenever a temporary variable is needed for calculations,
such as ‘lnfj’ in our program, it is important to create it of type double to ensure the highest
precision of the results. It is also important to perform computations using only the relevant subset
of observations as identified by the marker variable stored in $MH touse. This variable contains the
value of 1 for observations to be used in the computations and 0 for the remaining observations.
Missing values in used variables, if, and in affect this variable. After we compute the log-likelihood
value, we should verify that the number of nonmissing observation-specific contributions to the
log likelihood equals $MH n. If it does not, the log-posterior value (or log-likelihood value in a
log-likelihood evaluator) must be set to missing.

We can now specify the normaljeffreys evaluator in the evaluator() option of bayesmh.
In addition to the regression coefficients, we have one extra parameter, the variance of the normal
distribution, which we must specify in the parameters() suboption of evaluator().

We use auto.dta to illustrate the command. We specify a simple regression of mpg on rescaled
weight.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. quietly replace weight = weight/100

. set seed 14

. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))
Burn-in ...
note: invalid initial state
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1433
Efficiency: min = .06246

avg = .06669
Log marginal likelihood = -198.247 max = .07091

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6052218 .053604 .002075 -.6062666 -.7121237 -.4992178
_cons 39.56782 1.658124 .066344 39.54211 36.35645 42.89876

var 12.19046 2.008871 .075442 12.03002 8.831172 17.07787

The output of bayesmh with user-written evaluators is the same as the output of bayesmh with built-in
distributions, except the title and the model summary. The generic title Bayesian regression is
used for all evaluators, but you can change it by specifying the title() option. The model summary
provides the name of the posterior evaluator.

154 bayesmh evaluators — User-defined evaluators with bayesmh

Following the command line, there is a note about invalid initial state. For program evaluators,
bayesmh initializes all parameters with zeros, except for positive parameters used in prior specifications,
which are initialized with ones. This may not be sensible for all parameters, such as the variance
parameter in our example. We may consider using, for example, OLS estimates as initial values of
the parameters.

. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

. display e(rmse)^2
11.825962

We specify initial values in the initial() option.

. set seed 14

. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

We can compare our results with bayesmh that uses a built-in normal likelihood and flat and
Jeffreys priors. To match the results, we must use the same initial values, because bayesmh has a
different initialization logic for built-in distributions.

bayesmh evaluators — User-defined evaluators with bayesmh 155

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

If your Bayesian model uses prior distributions that are supported by bayesmh but the likelihood
model is not supported, you can write only the likelihood evaluator and use built-in prior distributions.

For example, we extract the portion of the normaljeffreys program computing the overall log
likelihood into a separate program and call it normalreg.

. program normalreg
1. version 14
2. args lnf xb var
3. /* compute log likelihood */

. tempname sd
4. scalar ‘sd’ = sqrt(‘var’)
5. tempvar lnfj
6. quietly generate double ‘lnfj’ = lnnormalden($MH_y,‘xb’,‘sd’) ///

> if $MH_touse
7. quietly summarize ‘lnfj’, meanonly
8. if r(N) < $MH_n {
9. scalar ‘lnf’ = .

10. exit
11. }
12. scalar ‘lnf’ = r(sum)
13. end

We can now specify this program in the llevaluator() option and use prior() options to
specify built-in flat priors for the coefficients and the Jeffreys prior for the variance.

156 bayesmh evaluators — User-defined evaluators with bayesmh

. set seed 14

. bayesmh mpg weight, llevaluator(normalreg, parameters({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normalreg(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

We obtain the same results as earlier.

Logistic regression model

Some models, such as logistic regression, do not have any additional parameters except regression
coefficients. Here we show how to use a program evaluator for fitting a Bayesian logistic regression
model.

We start by creating a program for computing the log likelihood.

. program logitll
1. version 14
2. args lnf xb
3. tempvar lnfj
4. quietly generate ‘lnfj’ = ln(invlogit(‘xb’)) if $MH_y == 1 & $MH_

> touse
5. quietly replace ‘lnfj’ = ln(invlogit(-‘xb’)) if $MH_y == 0 & $MH_

> touse
6. quietly summarize ‘lnfj’, meanonly
7. if r(N) < $MH_n {
8. scalar ‘lnf’ = .
9. exit

10. }
11. scalar ‘lnf’ = r(sum)
12. end

bayesmh evaluators — User-defined evaluators with bayesmh 157

The structure of our log-likelihood evaluator is similar to the one described in Simple linear regression
model, except we have no extra parameters.

We continue with auto.dta and regress foreign on mpg. For simplicity, we assume a flat prior
for the coefficients and use bayesmh, llevaluator() to fit this model.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh foreign mpg, llevaluator(logitll) prior({foreign:}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logitll(xb_foreign)

Prior:
{foreign:mpg _cons} ~ 1 (flat) (1)

(1) Parameters are elements of the linear form xb_foreign.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal likelihood = -41.626028 max = .1068

Equal-tailed
foreign Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560637 1.261675 .041387 -4.503921 -7.107851 -2.207665

158 bayesmh evaluators — User-defined evaluators with bayesmh

The results from the program-evaluator version match the results from bayesmh with a built-in
logistic model.

. set seed 14

. bayesmh foreign mpg, likelihood(logit) prior({foreign:}, flat)
> initial({foreign:} 0)
Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logit(xb_foreign)

Prior:
{foreign:mpg _cons} ~ 1 (flat) (1)

(1) Parameters are elements of the linear form xb_foreign.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal likelihood = -41.626029 max = .1068

Equal-tailed
foreign Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560636 1.261675 .041387 -4.503921 -7.10785 -2.207665

Because we assumed a flat prior with the density of 1, the log prior is 0, so the log-posterior
evaluator for this model is the same as the log-likelihood evaluator.

. set seed 14

. bayesmh foreign mpg, evaluator(logitll)
Burn-in ...
Simulation ...

Model summary

Posterior:
foreign ~ logitll(xb_foreign)

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal likelihood = -41.626028 max = .1068

Equal-tailed
foreign Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560637 1.261675 .041387 -4.503921 -7.107851 -2.207665

bayesmh evaluators — User-defined evaluators with bayesmh 159

Multivariate normal regression model

Here we demonstrate how to write a program evaluator for a multivariate response. We consider
a bivariate normal regression, and we again start with a log-likelihood evaluator. In this example, we
also use Mata to speed up our computations.

. program mvnregll
1. version 14
2. args lnf xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. mata: st_numscalar("‘lnf’", mvnll_mata(‘d’,‘n’,"‘diff1’","‘diff2’"))
9. end

.

. mata:
mata (type end to exit)

: real scalar mvnll_mata(real scalar d, n, string scalar sdiff1, sdiff2)
> {
> real matrix Diff
> real scalar trace, lnf
> real matrix Sigma
>
> Sigma = st_matrix(st_global("MH_m1"))
> st_view(Diff=.,.,(sdiff1,sdiff2),st_global("MH_touse"))
>
> /* compute log likelihood */
> trace = trace(cross(cross(Diff’,invsym(Sigma))’,Diff’))
> lnf = -0.5*n*(d*ln(2*pi())+ln(det(Sigma)))-0.5*trace
>
> return(lnf)
> }

: end

The mvnregll program has three arguments: a scalar to store the log-likelihood values and two
temporary variables containing linear predictors corresponding to each of the two dependent variables.
It creates deviations ‘diff1’ and ‘diff2’ and passes them, along with other parameters, to the
Mata function mvnll mata() to compute the bivariate normal log-likelihood value.

The extra parameter in this model is a covariance matrix of a bivariate response. In Simple linear
regression model, we specified an extra parameter, variance, which was a scalar, as an additional
argument of the evaluator. This is not allowed with matrix parameters. They should be accessed via
globals $MH m1, $MH m2, and so on for each matrix model parameters in the order they are specified
in option parameters(). In our example, we have only one matrix and we access it via $MH m1.
$MH m1 contains the temporary name of a matrix containing the current value of the covariance matrix
parameter.

160 bayesmh evaluators — User-defined evaluators with bayesmh

To demonstrate, we again use auto.dta. We rescale the variables to be used in our example to
stabilize the results.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

. replace length = length/10
variable length was int now float
(74 real changes made)

We fit a bivariate normal regression of mpg and weight on length. We specify the extra covariance
parameter as a matrix model parameter {Sigma,m} in suboption parameters() of llevaluator().
We specify flat priors for the coefficients and an inverse-Wishart prior for the covariance matrix.

. set seed 14

. bayesmh mpg weight = length, llevaluator(mvnregll, parameters({Sigma,m}))
> prior({mpg:} {weight:}, flat)
> prior({Sigma,m}, iwishart(2,12,I(2))) mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnregll(xb_mpg,xb_weight,{Sigma,m})

Priors:
{mpg:length _cons} ~ 1 (flat) (1)

{weight:length _cons} ~ 1 (flat) (2)
{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

To reduce computation time, we used a smaller MCMC sample size of 1,000 in our example. In your
analysis, you should always verify whether a smaller MCMC sample size results in precise enough
estimates before using it for final results.

bayesmh evaluators — User-defined evaluators with bayesmh 161

We can check our results against bayesmh using the built-in multivariate normal regression after
adjusting the initial values.

. set seed 14

. bayesmh mpg weight = length, likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:}, flat)
> prior({Sigma,m}, iwishart(2,12,I(2)))
> mcmcsize(1000) initial({mpg:} {weight:} 0)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnormal(2,xb_mpg,xb_weight,{Sigma,m})

Priors:
{mpg:length _cons} ~ 1 (flat) (1)

{weight:length _cons} ~ 1 (flat) (2)
{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian multivariate normal regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

We obtain the same results.

Similarly, we can define the log-posterior evaluator. We already have the log-likelihood evaluator,
which we can reuse in our log-posterior evaluator. The only additional portion is to compute the log
of the inverse-Wishart prior density for the covariance parameter.

162 bayesmh evaluators — User-defined evaluators with bayesmh

. program mvniWishart
1. version 14
2. args lnp xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. mata: ///

> st_numscalar("‘lnp’", mvniWish_mata(‘d’,‘n’,"‘diff1’","‘diff2’"))
9. end

.

. mata:
mata (type end to exit)

: real scalar mvniWish_mata(real scalar d, n, string scalar sdiff1, sdiff2)
> {
> real scalar lnf, lnprior
> real matrix Sigma
>
> /* compute log likelihood */
> lnf = mvnll_mata(d,n,sdiff1,sdiff2)
> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_m1"))
> lnprior = lniwishartden(12,I(2),Sigma)
> return(lnf + lnprior)
> }

: end

bayesmh evaluators — User-defined evaluators with bayesmh 163

The results of the log-posterior evaluator match our earlier results.

. set seed 14

. bayesmh mpg weight = length, evaluator(mvniWishart, parameters({Sigma,m}))
> mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishart(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

Sometimes, it may be useful to be able to pass options to our evaluators. For example, we used
the identity I(2) matrix as a scale matrix of the inverse Wishart distribution. Suppose that we want
to check the sensitivity of our results to other choices of the scale matrix. We can pass the name
of a matrix we want to use in an option. In our example, we use the vmatrix() option to pass
the name of the scale matrix. We later specify this option within suboption passthruopts() of
the evaluator() option. The options passed this way are stored in the $MH passthruopts global
macro.

. program mvniWishartV
1. version 14
2. args lnp xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. local 0 , $MH_passthruopts
9. syntax, vmatrix(string)

10. mata: st_numscalar("‘lnp’", ///
> mvniWishV_mata(‘d’,‘n’,"‘diff1’","‘diff2’","‘vmatrix’"))
11. end

164 bayesmh evaluators — User-defined evaluators with bayesmh

. mata:
mata (type end to exit)

: real scalar mvniWishV_mata(real scalar d, n, string scalar sdiff1, sdiff2,
> vmat)
> {
> real scalar lnf, lnprior
> real matrix Sigma
>
> /* compute log likelihood */
> lnf = mvnll_mata(d,n,sdiff1,sdiff2)
> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_m1"))
> lnprior = lniwishartden(12,st_matrix(vmat),Sigma)
> return(lnf + lnprior)
> }

: end

We now define the scale matrix V (as the identity matrix to match our previous results) and specify
vmatrix(V) in suboption passthruopts() of evaluator().

. set seed 14

. matrix V = I(2)

. bayesmh mpg weight = length,
> evaluator(mvniWishartV, parameters({Sigma,m}) passthruopts(vmatrix(V)))
> mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishartV(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

The results are the same as before.

bayesmh evaluators — User-defined evaluators with bayesmh 165

Cox proportional hazards regression

Some evaluators may require additional variables, apart from the dependent and independent
variables, for computation. For example, in a Cox proportional hazards model such variable is a
failure or censoring indicator. The coxphll program below computes partial log likelihood for the
Cox proportional hazards regression. The failure indicator will be passed to the evaluator as an extra
variable in suboption extravars() of option llevaluator() or option evaluator() and can be
accessed from the global macro $MH extravars.

. program coxphll
1. version 14
2. args lnf xb
3. tempvar negt
4. quietly generate double ‘negt’ = -$MH_y1
5. local d "$MH_extravars"
6. sort $MH_touse ‘negt’ ‘d’
7. tempvar B A sumd last L
8. local byby "by $MH_touse ‘negt’ ‘d’"
9. quietly {

10. gen double ‘B’ = sum(exp(‘xb’)) if $MH_touse
11. ‘byby’: gen double ‘A’ = cond(_n==_N, sum(‘xb’), .) ///

> if ‘d’==1 & $MH_touse
12. ‘byby’: gen ‘sumd’ = cond(_n==_N, sum(‘d’), .) if $MH_touse
13. ‘byby’: gen byte ‘last’ = (_n==_N & ‘d’ == 1) if $MH_touse
14. gen double ‘L’ = ‘A’ - ‘sumd’*ln(‘B’) if ‘last’ & $MH_touse
15. quietly count if $MH_touse & ‘last’
16. local n = r(N)
17. summarize ‘L’ if ‘last’ & $MH_touse, meanonly
18. }
19. if r(N) < ‘n’ {
20. scalar ‘lnf’ = .
21. exit
22. }
23. scalar ‘lnf’ = r(sum)
24. end

We demonstrate the command using the survival-time cancer dataset. The survival-time variable
is studytime and the failure indicator is died. The regressor of interest in this model is age. We
use a fairly noninformative normal prior with a zero mean and a variance of 100 for the regression
coefficient of age. (The constant in the Cox proportional hazards model is not likelihood-identifiable,
so we omit it from this model with a noninformative prior.)

. use http://www.stata-press.com/data/r14/cancer
(Patient Survival in Drug Trial)

. gsort -studytime died

. set seed 14

. bayesmh studytime age, llevaluator(coxphll, extravars(died))
> prior({studytime:}, normal(0,100)) noconstant mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ coxphll(xb_studytime)

Prior:
{studytime:age} ~ normal(0,100) (1)

(1) Parameter is an element of the linear form xb_studytime.

166 bayesmh evaluators — User-defined evaluators with bayesmh

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 48
Acceptance rate = .4066

Log marginal likelihood = -103.04797 Efficiency = .3568

Equal-tailed
studytime Mean Std. Dev. MCSE Median [95% Cred. Interval]

age .076705 .0330669 .001751 .077936 .0099328 .1454275

We specified the failure indicator died in suboption extravars() of llevaluator(). We again
used a smaller value for the MCMC sample size only to reduce computation time.

For the log-posterior evaluator, we add the log of the normal prior of the age coefficient to the
log-likelihood value to obtain the final log-posterior value. We did not need to specify the loop in the
log-prior computation in this example, but we did this to be general, in case more than one regressor
is included in the model.

. program coxphnormal
1. version 14
2. args lnp xb

. /* compute log likelihood */

. tempname lnf
3. scalar ‘lnf’ = .
4. quietly coxphll ‘lnf’ ‘xb’

. /* compute log priors of regression coefficients */

. tempname lnprior
5. scalar ‘lnprior’ = 0
6. forvalues i = 1/$MH_bn {
7. scalar ‘lnprior’ = ‘lnprior’ + lnnormalden($MH_b[1,‘i’], 10)
8. }
9. /* compute log posterior */

. scalar ‘lnp’ = ‘lnf’ + ‘lnprior’
10. end

As expected, we obtain the same results as previously.
. set seed 14

. bayesmh studytime age, evaluator(coxphnormal, extravars(died))
> noconstant mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
studytime ~ coxphnormal(xb_studytime)

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 48
Acceptance rate = .4066

Log marginal likelihood = -103.04797 Efficiency = .3568

Equal-tailed
studytime Mean Std. Dev. MCSE Median [95% Cred. Interval]

age .076705 .0330669 .001751 .077936 .0099328 .1454275

bayesmh evaluators — User-defined evaluators with bayesmh 167

Global macros

Global macros Description

$MH n number of observations
$MH yn number of dependent variables
$MH touse variable containing 1 for the observations to be used; 0 otherwise
$MH w variable containing weight associated with the observations
$MH extravars varlist specified in extravars()

$MH passthruopts options specified in passthruopts()

One outcome
$MH y1 name of the dependent variable
$MH x1 name of the first independent variable
$MH x2 name of the second independent variable
. . .
$MH xn number of independent variables
$MH xb name of a temporary variable containing the linear combination

Multiple outcomes
$MH y1 name of the first dependent variable
$MH y2 name of the second dependent variable
. . .
$MH y1x1 name of the first independent variable modeling y1

$MH y1x2 name of the second independent variable modeling y1

. . .
$MH y1xn number of independent variables modeling y1

$MH y1xb name of a temporary variable containing the linear combination modeling y1

$MH y2x1 name of the first independent variable modeling y2

$MH y2x2 name of the second independent variable modeling y2

. . .
$MH y2xn number of independent variables modeling y2

$MH y2xb name of a temporary variable containing the linear combination modeling y2

. . .

Scalar and matrix parameters
$MH b name of a temporary vector of coefficients;

stripes are properly named after the name of the coefficients
$MH bn number of coefficients
$MH p name of a temporary vector of additional scalar model parameters, if any;

stripes are properly named
$MH pn number of additional scalar model parameters
$MH m1 name of a temporary matrix of the first matrix parameter, if any
$MH m2 name of a temporary matrix of the second matrix parameter, if any
. . .
$MH mn number of matrix model parameters

168 bayesmh evaluators — User-defined evaluators with bayesmh

Stored results
In addition to the results stored by bayesmh, bayesmh, evaluator() and bayesmh, lleval-

uator() store the following in e():

Macros
e(evaluator) program evaluator (one equation)
e(evaluator#) program evaluator for the #th equation
e(evalparams) evaluator parameters (one equation)
e(evalparams#) evaluator parameters for the #th equation
e(extravars) extra variables (one equation)
e(extravars#) extra variables for the #th equation
e(passthruopts) pass-through options (one equation)
e(passthruopts#) pass-through options for the #th equation

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] intro — Introduction to Bayesian analysis

[BAYES] Glossary

Title

bayesmh postestimation — Postestimation tools for bayesmh

Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after bayesmh:

Command Description

bayesgraph graphical summaries and convergence diagnostics
bayesstats ess effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors
bayestest model hypothesis testing using model posterior probabilities
bayestest interval interval hypothesis testing
∗estimates cataloging estimation results

∗ estimates table and estimates stats are not appropriate with bayesmh estimation results.

Remarks and examples
Remarks are presented under the following headings:

Different ways of specifying model parameters
Specifying functions of model parameters
Storing estimation results after bayesmh

After estimation, you can use bayesgraph to check convergence of MCMC visually. Once con-
vergence is established, you can use bayesstats summary to obtain Bayesian summaries such as
posterior means and standard deviations of model parameters and functions of model parameters;
bayesstats ess to compute effective sample sizes and related statistics for model parameters and
functions of model parameters; and bayesstats ic to compute Bayesian information criteria and
Bayes factors for model parameters and their functions. You can use bayestest model to test
hypotheses by comparing posterior probabilities of models. You can also use bayestest interval
to test interval hypotheses about parameters and functions of parameters.

For an overview example of postestimation commands, see Overview example in [BAYES] bayes.

Different ways of specifying model parameters

Many bayesmh postestimation commands such as bayesstats summary and bayesgraph allow
you to specify model parameters for which you want to see the results. To see results for all parameters,
simply type a postestimation command without arguments after bayesmh estimation, for example,

. bayesstats summary

or you could type

. bayesstats summary _all

169

170 bayesmh postestimation — Postestimation tools for bayesmh

To manually list all model parameters, type

. bayesstats summary {param1} {param2} . . .

or

. bayesstats summary {param1 param2} . . .

The only exception is the bayesgraph command when there is more than one model parameter.
In that case, bayesgraph requires that you either specify all to request all model parameters or
specify the model parameters of interest.

You can refer to a single model parameter in the same way you define parameters in the bayesmh
command. For example, for a parameter with name param and no equation name, you can use
{param}. For a parameter with name param and equation name eqname, you can use its full name
{eqname:name}, where the equation name and the parameter name are separated with a colon. With
postestimation commands, you can also omit the equation name when referring to the parameter with
an equation name.

In the presence of more than one model parameter, you have several ways for referring to multiple
parameters at once. If parameters have the same equation name, you can refer to all the parameters
with that equation name as follows.

Suppose that you have three parameters with the same equation name eqname. Then the specification

. bayesstats summary {eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

. bayesstats summary {eqname:}

or the specification

. bayesstats summary {eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same
equation name. For example, in the above, if we wanted to use only param1 and param2, we could
type

. bayesstats summary {eqname:param1 param2}

There is also a convenient way to refer to the parameters with the same name but different equation
names. For example, typing

. bayesstats summary {eqname1:param} {eqname2:param}

is the same as simply typing

. bayesstats summary {param}

You can mix and match all the specifications above in one call to a postestimation command. You
can also specify expressions of model parameters; see Specifying functions of model parameters for
details.

Note that if param refers to a matrix model parameter, then the results will be provided for all
elements of the matrix. For example, if param is the name of a 2× 2 matrix, then typing

. bayesstats summary {param}

implies the following:

. bayesstats summary {param_1_1} {param_1_2} {param_2_1} {param_2_2}

bayesmh postestimation — Postestimation tools for bayesmh 171

Specifying functions of model parameters

You can use bayesmh postestimation commands to obtain results for functions or expressions of
model parameters. Each expression must be specified in parentheses. An expression can be any Stata
expression, but it may not include matrix model parameters. However, you may include individual
elements of matrix model parameters. You may provide labels for your expressions.

For example, we can obtain results for the exponentiated parameter {param} as follows:

. bayesstats summary (exp({param}))

Note that we specified the expression in parentheses.

We can include a label, say, myexp, in the above by typing

. bayesstats summary (myexp: exp({param}))

We can specify multiple expressions by typing

. bayesstats summary (myexp: exp({param}) (sd: sqrt({var})))

If param is a matrix, we can specify expressions, including its elements, but not the matrix itself
in the following:

. bayesstats summary (exp({param_1_1})) (exp({param_1_2})) . . .

Storing estimation results after bayesmh

The bayesmh command stores various e() results such as scalars, macros, and matrices in
memory like any other estimation command. Unlike other estimation commands, bayesmh also saves
the resulting simulation dataset containing MCMC samples of parameters to disk. Many bayesmh
postestimation commands such as bayesstats summary and bayesstats ess require access to
this file. If you do not specify the saving() option with bayesmh, the command saves simulation
results in a temporary Stata dataset. This file is being replaced with the new simulation results each
time bayesmh is run. To save your simulation results, you must specify the saving() option with
bayesmh, in which case your simulation results are saved to the specified file in the specified location
and will not be overridden by the next call to bayesmh.

You can specify the saving() option during estimation by typing

. bayesmh . . . , likelihood() prior() . . . saving()

or on replay by typing

. bayesmh, saving()

As you can with other estimation commands, you can use estimates store to store bayesmh
estimation results in memory and estimates save to save them to disk, but you must first use the
saving() option with bayesmh to save simulation data in a permanent dataset. For example, type

. bayesmh . . . , likelihood() prior() . . . saving(bmh_simdata)

. estimates store model1

or, after bayesmh estimation, type

. bayesmh, saving(bmh_simdata)

. estimates store model1

172 bayesmh postestimation — Postestimation tools for bayesmh

Once you create a permanent dataset, it is your responsibility to erase it after it is no longer
needed. estimates drop and estimates clear will drop estimation results only from memory;
they will not erase the simulation files you saved.

. estimates drop model1

. erase bmh_simdata.dta

See [R] estimates for more information about commands managing estimation results. estimates
table and estimates stats are not appropriate after bayesmh.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] bayes — Introduction to commands for Bayesian analysis

[BAYES] intro — Introduction to Bayesian analysis

[BAYES] Glossary
[U] 20 Estimation and postestimation commands

Title

bayesgraph — Graphical summaries and convergence diagnostics

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

bayesgraph provides graphical summaries and convergence diagnostics for simulated posterior
distributions (MCMC samples) of model parameters and functions of model parameters obtained from
the bayesmh command. Graphical summaries include trace plots, autocorrelation plots, and various
distributional plots.

Quick start
Trace plot, histogram, autocorrelation plot, and density plot for parameter {p}

bayesgraph diagnostics {p}

Add plots for parameter {y:x1}
bayesgraph diagnostics {p} {y:x1}

As above, but for all model parameters
bayesgraph diagnostics all

As above, but for a function of model parameters {y:x1} and {p}

bayesgraph diagnostics ({y:x1}/{p})

Specify a blue trace plot line for all plots
bayesgraph diagnostics {p} {y:x1} {y:x2}, traceopts(lcolor(blue))

Specify a blue trace plot line only for the second trace plot
bayesgraph diagnostics {p} {y:x1} {y:x2}, trace2opts(lcolor(blue))

Trace plots for all parameters in a single graph
bayesgraph trace all, byparm

Cumulative sum plot for parameter {p}
bayesgraph cusum {p}

Scatterplot matrix for parameters {p} and {y:x1}

bayesgraph matrix {p} {y:x1}

Autocorrelation plots for elements 1,1 and 2,1 of matrix parameter {S}
bayesgraph ac {S 1 1} {S 2 1}

Diagnostic plots for all parameters in the model and pause at least 3 seconds before displaying the
next graph

bayesgraph diagnostics _all, sleep(3)

173

174 bayesgraph — Graphical summaries and convergence diagnostics

As above, but pause until the user presses any key
bayesgraph diagnostics _all, wait

As above, but close the current Graph window when the next graph is displayed
bayesgraph diagnostics _all, close

Menu
Statistics > Bayesian analysis > Graphical summaries

Syntax
Graphical summaries and convergence diagnostics for a single parameter

bayesgraph graph scalar param
[
, singleopts

]
Graphical summaries and convergence diagnostics for multiple parameters

bayesgraph graph spec
[

spec . . .
] [

, multiopts
]

bayesgraph matrix spec spec
[

spec . . .
] [

, singleopts
]

Graphical summaries and convergence diagnostics for all parameters

bayesgraph graph all
[
, multiopts

]
graph Description

diagnostics multiple diagnostics in compact form
trace trace plots
ac autocorrelation plots
histograpm histograms
kdensity density plots
cusum cumulative sum plots
matrix scatterplot matrix

bayesgraph matrix requires at least two parameters.

scalar param is a scalar model parameter specified as {param} or {eqname:param} or an expression
exprspec of scalar model parameters. Matrix model parameters are not allowed, but you may refer
to their individual elements.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] bayesmh postestimation
for examples.

spec is either scalar param or exprspec.

bayesgraph — Graphical summaries and convergence diagnostics 175

singleopts Description

Options

skip(#) skip every # observations from the MCMC sample; default is skip(0)

name(name, . . .) specify name of graph
saving(filename, . . .) save graph in file
graphopts graph-specific options

multiopts Description

Options

byparm
[
(grbyparmopts)

]
specify the display of plots on one graph; default is separate graph

for each plot; not allowed with graphs diagnostics and matrix
or with option combine()

combine
[
(grcombineopts)

]
specify the display of plots on one graph; recommended when

the number of parameters is large; not allowed with graphs
diagnostics and matrix or with option byparm()

sleep(#) pause for # seconds between multiple graphs; default is sleep(0)

wait pause until the more condition is cleared[
no
]
close (do not) close Graph windows when the next graph is displayed with

multiple graphs; default is noclose

skip(#) skip every # observations from the MCMC sample; default is skip(0)

name(namespec, . . .) specify names of graphs
saving(filespec, . . .) save graphs in files
graphopts(graphopts) control the look of all graphs; not allowed with byparm()

graph
[

#
]
opts(graphopts) control the look of #th graph; not allowed with byparm()

graphopts equivalent to graphopts(graphopts); only one may be specified

graphopts Description

diagnosticsopts options for bayesgraph diagnostics

tslineopts options for bayesgraph trace and bayesgraph cusum

acopts options for bayesgraph ac

histopts options for bayesgraph histogram

kdensityopts options for bayesgraph kdensity

grmatrixopts options for bayesgraph matrix

176 bayesgraph — Graphical summaries and convergence diagnostics

diagnosticsopts Description

traceopts(tslineopts) affect rendition of all trace plots
trace

[
#
]
opts(tslineopts) affect rendition of #th trace plot

acopts(acopts) affect rendition of all autocorrelation plots
ac
[

#
]
opts(acopts) affect rendition of #th autocorrelation plot

histopts(histopts) affect rendition of all histogram plots
hist

[
#
]
opts(histopts) affect rendition of #th histogram plot

kdensopts(kdensityopts) affect rendition of all density plots
kdens

[
#
]
opts(kdensityopts) affect rendition of #th density plot

grcombineopts any option documented in [G-2] graph combine

acopts Description

ci plot autocorrelations with confidence intervals; not allowed with
byparm()

acopts any options other than generate() documented for the ac
command in [TS] corrgram

kdensityopts Description

kdensopts options for the overall kernel density plot
show(showspec) show first-half density, second-half density, or both; default is both

kdensfirst(kdens1opts) affect rendition of the first-half density plot
kdenssecond(kdens2opts) affect rendition of the second-half density plot

Options

� � �
Options �

byparm
[
(grbyparmopts)

]
specifies the display of all plots of parameters as subgraphs on one graph.

By default, a separate graph is produced for each plot when multiple parameters are specified.
This option is not allowed with bayesgraph diagnostics or bayesgraph matrix and may
not be combined with option combine(). When many parameters or expressions are specified,
this option may fail because of memory constraints. In that case, you may use option combine()
instead.

grbyparmopts is any of the suboptions of by() documented in [G-3] by option.

byparm() allows y scales to differ for all graph types and forces x scales to be the same only for
bayesgraph trace and bayesgraph cusum. Use noyrescale within byparm() to specify
a common y axis, and use xrescale or noxrescale to change the default behavior for the
x axis.

byparm() with bayesgraph trace and bayesgraph cusum defaults to displaying multiple
plots in one column to accommodate the x axis with many iterations. Use norowcoldefault
within byparm() to switch back to the default behavior of options rows() and cols() of the
[G-3] by option.

combine
[
(grcombineopts)

]
specifies the display of all plots of parameters as subgraphs on one

graph and is an alternative to byparm() with a large number of parameters. By default, a separate

bayesgraph — Graphical summaries and convergence diagnostics 177

graph is produced for each plot when multiple parameters are specified. This option is not allowed
with bayesgraph diagnostics or bayesgraph matrix and may not be combined with option
byparm(). It can be used in cases where a large number of parameters or expressions are specified
and the byparm() option would cause an error because of memory constraints.

grcombineopts is any of the options documented in [G-2] graph combine.

sleep(#) specifies pausing for # seconds before producing the next graph. This option is allowed only
when multiple parameters are specified. This option may not be combined with wait, combine(),
or byparm().

wait causes bayesgraph to display more and pause until any key is pressed before producing
the next graph. This option is allowed when multiple parameters are specified. This option may
not be combined with sleep(), combine(), or byparm(). wait temporarily ignores the global
setting that is specified using set more off.[

no
]
close specifies that, for multiple graphs, the Graph window be closed when the next graph is

displayed. The default is noclose or to not close any Graph windows.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the
computation. skip() does not thin the chain in the sense of physically removing observations from
the sample, as is done by bayesmh’s thinning() option. It only discards selected observations
from the computation and leaves the original sample unmodified.

name(namespec
[
, replace

]
) specifies the name of the graph or multiple graphs. See

[G-3] name option for a single graph. If multiple graphs are produced, then the argument of
name() is either a list of names or a stub, in which case graphs are named stub1, stub2, and so
on. With multiple graphs, if name() is not specified and neither sleep() nor wait is specified,
name(Graph #, replace) is assumed, and thus the produced graphs may be replaced by
subsequent bayesgraph commands.

The replace suboption causes existing graphs with the specified name or names to be replaced.

saving(filespec
[
, replace

]
) specifies the filename or filenames to use to save the graph or multiple

graphs to disk. See [G-3] saving option for a single graph. If multiple graphs are produced, then
the argument of saving() is either a list of filenames or a stub, in which case graphs are saved
with filenames stub1, stub2, and so on.

The replace suboption specifies that the file (or files) may be replaced if it already exists.

graphopts(graphopts) and graph
[

#
]
opts(graphopts) affect the rendition of graphs. graphopts()

affects the rendition of all graphs but may be overridden for specific graphs by using the
graph#opts() option. The options specified within graph#opts() are specific for each type of
graph.

The two specifications

bayesgraph . . ., graphopts(graphopts)

and

bayesgraph . . ., graphopts

are equivalent, but you may specify one or the other.

178 bayesgraph — Graphical summaries and convergence diagnostics

These options are not allowed with byparm() and when only one parameter is specified.

graphopts specifies options specific to each graph type.

diagnosticsopts specifies options for use with bayesgraph diagnostics. See the corresponding
table in the syntax diagram for a list of options.

tslineopts specifies options for use with bayesgraph trace and bayesgraph cusum. See the
options of [TS] tsline except by().

acopts specifies options for use with bayesgraph ac.

ci requests that the graph of autocorrelations with confidence intervals be plotted. By default,
confidence intervals are not plotted. This option is not allowed with byparm().

acopts specifies any options except generate() of the ac command in [TS] corrgram.

histopts specifies options for use with bayesgraph histogram. See options of [R] histogram
except by().

kdensityopts specifies options for use with bayesgraph kdensity.

kdensopts specifies options for the overall kernel density plot. See the options documented in
[R] kdensity except generate() and at().

show(showspec) specifies which kernel density curves to plot. showspec is one of both, first,
second, or none. show(both), the default, overlays both the first-half density curve and
the second-half density curve with the overall kernel density curve. If show(first) is
specified, only the first-half density curve, obtained from the first half of an MCMC sample,
is plotted. If show(second) is specified, only the second-half density curve, obtained from
the second half of an MCMC sample, is plotted. If show(none) is specified, only the overall
kernel density curve is shown.

kdensityfirst(kdens1opts) specifies options of [G-2] graph twoway kdensity except by()
to affect rendition of the first-half kernel density plot.

kdensitysecond(kdens2opts) specifies options of [G-2] graph twoway kdensity except by()
to affect rendition of the second-half kernel density plot.

grmatrixopts specifies options for use with bayesgraph matrix. See the options of [G-2] graph
matrix except by().

Remarks and examples
Remarks are presented under the following headings:

Using bayesgraph
Examples

Trace plots
Autocorrelation plots
Histogram plots
Kernel density plots
Cumulative sum plots
Bivariate scatterplots
Diagnostic plots
Functions of model parameters

bayesgraph — Graphical summaries and convergence diagnostics 179

Using bayesgraph

bayesgraph requires specifying at least one parameter with all graph types except matrix, which
requires at least two parameters. To request graphs for all parameters, use all.

When multiple graphs are produced, they are automatically stored in memory with names Graph #
and will all appear on the screen. After you are done reviewing the graphs, you can type

. graph close Graph__*

to close these graphs or type

. graph drop Graph__*

to close the graphs and drop them from memory.

If you would like to see only one graph at a time, you can specify option close to close the
Graph window when the next graph is displayed. You can also use option sleep() or option wait
to pause between the subsequent graphs. The sleep(#) option causes each graph to pause for #
seconds. The wait option causes bayesgraph to wait until a key is pressed before producing the
next graph.

You can combine separate graphs into one by specifying one of byparm() or combine(). These
options are not allowed with diagnostics or matrix graphs. The byparm() option produces more
compact graphs, but it may not be feasible with many parameters or expressions and large sizes of
MCMC samples.

With multiple graphs, you can control the look of each individual graph with graph#opts().
Options common to all graphs may be specified in graphopts() or passed directly to the command
as with single graphs.

Examples

We demonstrate the bayesgraph command using an example of Bayesian normal linear regression
applied to auto.dta. We model the mpg variable using a normal distribution with unknown mean
and variance. Our Bayesian model thus has two parameters, {mpg: cons} and {var}, for which
we need to specify prior distributions. We consider fairly noninformative prior distributions for these
parameters: N(0, 1000) for the constant and inverse gamma with shape and scale of 0.1 for the
variance. Because the specified prior distributions are independent and semiconjugate relative to the
normal data distribution, we can use Gibbs sampling for both parameters instead of the default MH
sampling. To illustrate, we will use Gibbs sampling for the variance and MH sampling (default) for
the mean.

180 bayesgraph — Graphical summaries and convergence diagnostics

We use bayesmh to fit our model.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(0,1000))
> prior({var}, igamma(0.1,0.1)) block({var}, gibbs)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(0,1000)

{var} ~ igamma(0.1,0.1)

Bayesian normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .7133
Efficiency: min = .2331

avg = .6166
Log marginal likelihood = -242.1155 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29231 .6648867 .013771 21.29419 19.94367 22.56746

var 34.2805 5.844213 .058442 33.6464 24.65882 47.5822

The MCMC simulation has a fairly high efficiency for the MH algorithm of 23% for the mean and an
efficiency of 1 for the variance because of the Gibbs sampling. The output suggests no convergence
problems. However, it is important to verify this and to also inspect various other graphical summaries
of the parameters. This example demonstrates graphical summaries for a well-mixing MCMC chain that
has converged and that generates samples from the posterior distribution of the model. For examples
of poor-mixing MCMC chains, see Convergence diagnostics in MCMC in [BAYES] intro.

Trace plots

We start with trace plots, which plot the values of the simulated parameters against the iteration
number and connect consecutive values with a line. For a well-mixing parameter, the range of the
parameter is traversed rapidly by the MCMC chain, which makes the drawn lines look almost vertical
and dense. Sparseness and trends in the trace plot of a parameter suggest convergence problems.

Let’s use bayesgraph trace to obtain trace plots for {mpg: cons} and {var}. We specify
all to request both plots at once.

bayesgraph — Graphical summaries and convergence diagnostics 181

. bayesgraph trace _all

1
9

2
0

2
1

2
2

2
3

2
4

0 2000 4000 6000 8000 10000

Iteration number

Trace of mpg:_cons

2
0

3
0

4
0

5
0

6
0

7
0

0 2000 4000 6000 8000 10000

Iteration number

Trace of var

The mean parameter mixes very well and the variance parameter mixes perfectly.

182 bayesgraph — Graphical summaries and convergence diagnostics

Alternatively, we can use the byparm() option to plot results on one graph.

. bayesgraph trace _all, byparm

18

20

22

24

20

40

60

80

0 5000 10000

mpg:_cons

var

Iteration number
Graphs by parameter

Trace plots

bayesgraph trace (as well as bayesgraph cusum) with option byparm() displays multi-
ple plots in one column to accommodate an x axis with many iterations. You can specify by-
parm(norowcoldefault) to switch to the default behavior of options rows() and cols() docu-
mented in [G-3] by option.

Autocorrelation plots

The second graphical summary we demonstrate is an autocorrelation plot. This plot shows the
degree of autocorrelation in an MCMC sample for a range of lags, starting from lag 0. At lag 0, the
plotted value corresponds to the sample variance of MCMC.

Autocorrelation is usually present in any MCMC sample. Typically, autocorrelation starts from some
positive value for lag 0 and decreases toward 0 as the lag index increases. For a well-mixing MCMC
chain, autocorrelation dies off fairly rapidly.

bayesgraph — Graphical summaries and convergence diagnostics 183

For example, autocorrelation for {mpg: cons} becomes negligible after about lag 8 and is basically
nonexistent for {var}.

. bayesgraph ac _all, byparm

0

.2

.4

.6

−.02

−.01

0

.01

.02

0 10 20 30 40 0 10 20 30 40

mpg:_cons var

Lag
Graphs by parameter

Autocorrelations

Autocorrelation lags are approximated by correlation times of parameters as reported by the
bayesstats ess command; see [BAYES] bayesstats ess for details. Autocorrelation lags are also
used to determine the batch size for the batch-means estimator of the MCMC standard errors; see
[BAYES] bayesstats summary.

Histogram plots

Graphical posterior summaries such as histograms and kernel density estimates provide useful
additions to the various numerical statistics (see [BAYES] bayesstats summary) for summarizing
MCMC output. It is always a good practice to inspect the histogram and kernel density estimates of
the marginal posterior distributions of parameters to ensure that these empirical distributions behave
as expected. These plots can be used to compare the empirical posterior and the specified prior
distributions to visualize the impact of the data.

A histogram depicts the general shape of the marginal posterior distribution of a model parameter.
Let’s look at histograms of our parameters.

184 bayesgraph — Graphical summaries and convergence diagnostics

. bayesgraph histogram {mpg:_cons}, normal

0
.2

.4
.6

19 20 21 22 23 24

Histogram of mpg:_cons

The distribution of {mpg: cons} is in good agreement with the normal distribution. This is
not surprising, because the specified conjugate normal prior implies that the marginal posterior for
{mpg: cons} is a normal distribution. The unimodal histogram is also another confirmation that we
have obtained a good simulation of the marginal posterior distribution of {mpg: cons}.

. bayesgraph histogram {var}

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60 70

Histogram of var

bayesgraph — Graphical summaries and convergence diagnostics 185

The histogram for {var} is also unimodal but is slightly skewed to the right. This is also in
agreement with the specified prior because the marginal posterior for the variance is inverse gamma
for the specified model.

Kernel density plots

Kernel density plots provide alternative visualizations of the simulated marginal posterior dis-
tributions. They may be viewed as smoothed histograms. By default, the bayesgraph kdensity
command shows three density curves: an overall density of the entire MCMC sample, the first-half
density obtained using the first half of the MCMC sample, and the second-half density obtained using
the second half of the MCMC sample. If the chain has converged and mixes well, we expect these
three density curves to be close to each other. Large discrepancies between the first-half curve and
the second-half curve suggest convergence problems.

Let’s look at kernel density plots for our two parameters.

. bayesgraph kdensity {mpg:_cons}

0

.2

.4

.6

18 20 22 24

overall

1st−half

2nd−half

Density of mpg:_cons

186 bayesgraph — Graphical summaries and convergence diagnostics

. bayesgraph kdensity {var}

0

.02

.04

.06

.08

20 30 40 50 60 70

overall

1st−half

2nd−half

Density of var

Kernel density plots for {mpg: cons} and {var} are similar in shape to the histograms’ plots
from the previous section. All three density curves are close to each other for both parameters.

Cumulative sum plots

Cumulative sum (cusum) plots are useful graphical summaries for detecting persistent trends in
MCMC chains. All cusum plots start and end at 0 and may or may not cross the x axis. There is great
variability in the looks of cusum plots, which make them difficult to interpret sometimes. Typically, if
the cusum line never crosses the x axis, this may indicate a problem. See, for example, Convergence
diagnostics of MCMC in [BAYES] intro for a cusum plot demonstrating convergence problems.

By inspecting a cusum plot, we may detect an early drift in the simulated sample because of an
insufficient burn-in period. In cases of pronounced persistent trends, the cusum curve may stay either
in the positive or in the negative y plane. For a well-mixing parameter, the cusum curve typically
crosses the x axis several times. This is the case for the cusum plots of {mpg: cons} and {var}.

bayesgraph — Graphical summaries and convergence diagnostics 187

. bayesgraph cusum _all, byparm

−100

−50

0

50

−400

−200

0

200

0 5000 10000

mpg:_cons

var

Iteration number
Graphs by parameter

Cusum plots

Bivariate scatterplots

The bayesgraph matrix command draws bivariate scatterplots of model parameters based on MCMC
samples. A bivariate scatterplot represents a joint sample posterior distribution for pairs of parameters.
It may reveal correlation between parameters and characterize a general shape of a multivariate
posterior distribution. For example, bivariate scatterplots are useful for detecting multimodal posterior
distributions.

Typically, scatterplots depict clouds of points. Sparseness and irregularities in the scatterplots can
be strong indications of nonconvergence of an MCMC. For a well-mixing chain, the scatterplots have
an ellipsoidal form with an increasing concentration around the posterior mode.

188 bayesgraph — Graphical summaries and convergence diagnostics

This scatterplot of {mpg: cons} and {var} is an example of a well-behaved scatterplot.

. bayesgraph matrix {mpg:_cons} {var}

mpg:_cons

varname

18

20

22

24

18 20 22 24

20

40

60

20 40 60

Diagnostic plots

Finally, we demonstrate the bayesgraph diagnostics command, which combines the trace,
histogram, autocorrelation, and kernel density plots compactly on one graph. We already discussed
the individual plots in the previous sections. Diagnostic plots are convenient for inspecting the overall
behavior of a particular model parameter. We recommend that diagnostic plots for all parameters be
inspected routinely as a part of the convergence-checking process.

bayesgraph — Graphical summaries and convergence diagnostics 189

Let’s obtain the diagnostic plot for {mpg: cons}.

. bayesgraph diagnostics {mpg:_cons}

19

20

21

22

23

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.2

.4
.6

19 20 21 22 23 24

Histogram

0.00

0.20

0.40

0.60

0 10 20 30 40
Lag

Autocorrelation

0
.2

.4
.6

18 20 22 24

all

1−half

2−half

Density

mpg:_cons

In the diagnostics plot for {var}, let’s also demonstrate the use of several options of the depicted
plots.

. bayesgraph diagnostics {var}, traceopts(lwidth(0.2) lcolor(teal))
> acopts(lag(100)) histopts(bin(100)) kdensopts(show(none))

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60 70

Histogram

−0.02

0.00

0.02

0.04

0 20 40 60 80 100
Lag

Autocorrelation

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60 70

Density

var

190 bayesgraph — Graphical summaries and convergence diagnostics

In the above, we changed the width and color of the trace line, the maximum lag for calculating
the autocorrelation, the number of bins for the histogram, and requested that the two subsample kernel
densities not be shown on the kernel density plot.

Functions of model parameters

All bayesgraph subcommands can provide graphical summaries of functions of model parameters.
Below we apply bayesgraph diagnostics to the expression {mpg: cons}/sqrt({var}), which
we label as scaled mean.

. bayesgraph diagnostics (scaled_mean: {mpg:_cons}/sqrt({var}))

2.5

3

3.5

4

4.5

5

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.5

1
1

.5

2.5 3 3.5 4 4.5 5

Histogram

−0.02

0.00

0.02

0.04

0.06

0.08

0 10 20 30 40
Lag

Autocorrelation

0
.5

1
1

.5

2.5 3 3.5 4 4.5 5

all

1−half

2−half

Density

scaled_mean: {mpg:_cons}/sqrt({var})

scaled_mean

If you detect convergence problems in a function of parameters, you must inspect every parameter
used in the expression individually. In fact, we recommend that you inspect all model parameters
before you proceed with any postestimation analysis.

Methods and formulas
Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the

marginal posterior distribution of θ.

The trace plot of θ plots θt against t with connecting lines for t = 1, . . . , T .

The autocorrelation plot of θ shows the autocorrelation in the {θt}Tt=1 sample for lags from 0 to
the lag(#) option of the ac command.

The histogram and kernel density plots of θ are drawn using the histogram and kdensity
commands.

Yu and Mykland (1998) proposed a graphical procedure for assessing the convergence of individual
parameters based on cumulative sums, also known as a cusum plot. The cusum plot for θ plots St
against t for t = 1, . . . , T and connects the successive points. St is the cumulative sum at time t:

bayesgraph — Graphical summaries and convergence diagnostics 191

St =

t∑
k=1

(θk − θ̂), θ̂ =
1

T

T∑
k=1

θk

and S0 = 0.

The scatterplot of two model parameters θ1 and θ2 plots points (θ1
t , θ

2
t) for t = 1, . . . , T .

Reference
Yu, B., and P. Mykland. 1998. Looking at Markov samplers through cusum path plots: A simple diagnostic idea.

Statistics and Computing 8: 275–286.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayesstats summary — Bayesian summary statistics

[G-2] graph matrix — Matrix graphs

[G-2] graph twoway kdensity — Kernel density plots

[R] histogram — Histograms for continuous and categorical variables

[R] kdensity — Univariate kernel density estimation

[TS] corrgram — Tabulate and graph autocorrelations

[TS] tsline — Plot time-series data

Title

bayesstats — Bayesian statistics after bayesmh

Description Also see

Description
The following subcommands are available with bayesstats after bayesmh:

Command Description

bayesstats ess effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors

Also see
[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayesstats ic — Bayesian information criteria and Bayes factors

192

Title

bayesstats ess — Effective sample sizes and related statistics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

bayesstats ess calculates effective sample sizes (ESS), correlation times, and efficiencies for
model parameters and functions of model parameters using current estimation results from the bayesmh
command.

Quick start
Effective sample sizes for all model parameters after a Bayesian regression model

bayesstats ess

As above, but only for model parameters {y:x1} and {var}

bayesstats ess {y:x1} {var}

As above, but skip every 5 observations from the full MCMC sample
bayesstats ess {y:x1} {var}, skip(5)

Effective sample sizes for functions of scalar model parameters
bayesstats ess ({y:x1}-{y: cons}) (sd:sqrt({var}))

As above, and include {y:x1} and {var}

bayesstats ess {y:x1} {var} ({y:x1}-{y: cons}) (sd:sqrt({var}))

Menu
Statistics > Bayesian analysis > Effective sample sizes

193

194 bayesstats ess — Effective sample sizes and related statistics

Syntax
Statistics for all model parameters

bayesstats ess
[
, options

]
bayesstats ess all

[
, options

]
Statistics for selected model parameters

bayesstats ess paramspec
[
, options

]
Statistics for functions of model parameters

bayesstats ess exprspec
[
, options

]
Full syntax

bayesstats ess spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] bayesmh postestimation
for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] bayesmh postestimation
for examples.

spec is one of paramspec or exprspec.

options Description

Main

skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

bayesstats ess — Effective sample sizes and related statistics 195

Options

� � �
Main �

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the
computation. skip() does not thin the chain in the sense of physically removing observations from
the sample, as is done by bayesmh’s thinning() option. It only discards selected observations
from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] estimation options.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes.
The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
all lag-k autocorrelation values for k from 0 to either corrlag() or the index at which the
autocorrelation becomes less than corrtol() if the latter is less than corrlag().

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded.

Remarks and examples

Remarks are presented under the following headings:
Effective sample size and MCMC sampling efficiency
Using bayesstats ess

Effective sample size and MCMC sampling efficiency

It is well known that for a random sample of T independent subjects, the standard error of the
sample mean estimator is proportional to 1/

√
T . In Bayesian inference, it is of interest to estimate

the standard error of the posterior mean estimator. The posterior mean of a parameter of interest is
typically estimated as a sample mean from an MCMC sample obtained from the marginal posterior
distribution of the parameter of interest. Observations from an MCMC sample are not independent
and are usually positively correlated, which must be taken into account when computing the standard
error. Thus the standard error of the posterior mean estimator is proportional to 1/

√
ESS, where ESS is

the effective sample size for the parameter of interest. Typically, ESS is less than T , the total number
of observations in the MCMC sample. We can thus interpret the posterior mean estimate as a sample
mean estimate from an independent sample of size ESS. In other words, the effective sample size is
an estimate of the number of independent observations that the MCMC chain represents. We say that
MCMC samples with higher ESS are more efficient.

196 bayesstats ess — Effective sample sizes and related statistics

Effective sample size is directly related to the convergence properties of an MCMC sample—very
low ESS relative to T suggests nonconvergence. In the extreme case of a perfectly correlated MCMC
observation, ESS is 1. It is thus a standard practice to assess the quality of an MCMC sample by
inspecting ESS values for all involved model parameters. Note, however, that high ESS values are
not generally sufficient for declaring convergence of MCMC because pseudoconvergence, which may
occur when MCMC does not explore the entire distribution, may also lead to high ESS values.

Using bayesstats ess

bayesstats ess reports effective sample sizes, correlation times, and efficiencies for model
parameters and their functions using the current estimation results from the bayesmh command.
When typed without arguments, the command displays results for all model parameters. Alternatively,
you can specify a subset of model parameters following the command name; see Different ways of
specifying model parameters in [BAYES] bayesmh postestimation. You can also obtain results for scalar
functions of model parameters; see Specifying functions of model parameters in [BAYES] bayesmh
postestimation.

Consider our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only
normal model for mpg with a noninformative prior.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

bayesstats ess — Effective sample sizes and related statistics 197

Example 1: Effective sample sizes for all parameters

To compute effective sample sizes and other related statistics for all model parameters, we type
bayesstats ess without arguments after the bayesmh command.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
_cons 971.82 10.29 0.0972

var 1070.99 9.34 0.1071

The closer the ESS estimates are to the MCMC sample size, the better. Also, the lower the correlation
times are and the higher the efficiencies are, the better. ESS estimates can be interpreted as follows. In
a sample of 10,000 MCMC observations, we have only about 972 independent observations to obtain
estimates for {mpg: cons} and only about 1,071 independent observations to obtain estimates for
{var}. Correlation times are reciprocal of efficiencies. You can interpret them as an estimated lag
after which autocorrelation in an MCMC sample is small. In our example, the estimated lag is roughly
10 for both parameters. In general, efficiencies above 10% are considered good for the MH algorithm.
In our example, they are about 12% for both parameters.

Alternatively, we could have listed all parameters manually:

. bayesstats ess {mpg:_cons} {var}
(output omitted)

Example 2: Effective sample sizes for functions of model parameters

Similarly to other bayesmh postestimation commands, bayesstats ess accepts expressions
to compute results for functions of model parameters. For example, we can use expression
(sd:sqrt({var})) with a label, sd, to compute effective sample sizes for the standard devia-
tion of mpg in addition to the variance.

. bayesstats ess (sd:sqrt({var})) {var}

Efficiency summaries MCMC sample size = 10,000

sd : sqrt({var})

ESS Corr. time Efficiency

sd 1093.85 9.14 0.1094
var 1070.99 9.34 0.1071

ESS and efficiency are higher for the standard deviation than for the variance, which means that we
need slightly more iterations to estimate {var} with the same precision as sd.

If we wanted, we could have suppressed the sd legend in the output above by specifying the
nolegend option.

198 bayesstats ess — Effective sample sizes and related statistics

Stored results
bayesstats ess stores the following in r():

Scalars
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance

Macros
r(expr #) #th expression
r(names) names of model parameters and expressions
r(exprnames) expression labels

Matrices
r(ess) matrix with effective sample sizes, correlation times, and efficiencies for parameters

in r(names)

Methods and formulas
Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the

marginal posterior distribution of θ. The effective sample size of the MCMC sample of θ is given by

ESS = T/(1 + 2

max lags∑
k=1

ρk)

where ρk = γk/γ0 is the lag-k autocorrelation of the MCMC sample, and max lags is the maximum
number less than or equal to ρlag such that for all k = 1, . . . ,max lags, |ρk| > ρtol, where ρlag

and ρtol are specified in options corrlag() and corrtol() with the respective default values of
500 and 0.01.

The lag-k autocorrelation is ρk = γk/γ0, where

γk =
1

T

T−k∑
t=1

(θt − θ̂)(θt+k − θ̂)

is the empirical autocovariance of lag k, and γ0 simplifies to the sample variance. θ̂ is the posterior
mean estimator.

Correlation time is defined as T/ESS, and efficiency is defined as the reciprocal of the correlation
time, ESS/T . Because ESS is between 0 and T , inclusively, the efficiency is always between 0 and 1.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats summary — Bayesian summary statistics

Title

bayesstats ic — Bayesian information criteria and Bayes factors

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats ic calculates and reports model-selection statistics, including the deviance information
criterion (DIC), log marginal-likelihood, and Bayes factors (BFs), using current estimation results from
the bayesmh command. BFs can be displayed in the original metric or in the log metric. The command
also provides two different methods to approximate marginal likelihood.

Quick start
Information criteria for previously saved estimation results A and B with A used as the base model

by default
bayesstats ic A B

As above, but use B as the base model instead of A
bayesstats ic A B, basemodel(B)

Report BFs instead of the default log BFs
bayesstats ic A B, bayesfactor

Menu
Statistics > Bayesian analysis > Information criteria

199

200 bayesstats ic — Bayesian information criteria and Bayes factors

Syntax
bayesstats ic

[
namelist

] [
, options

]
namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

basemodel(name) specify a base or reference model; default is the first-listed model
bayesfactor report BFs instead of the default log BFs

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

method Description

lmetropolis Laplace–Metropolis approximation; the default
hmean harmonic-mean approximation

Options

� � �
Main �

basemodel(name) specifies the name of the model to be used as a base or reference model when
computing BFs. By default, the first-listed model is used as a base model.

bayesfactor specifies that BFs be reported instead of the default log BFs.

� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.

Remarks and examples
Remarks are presented under the following headings:

Bayesian information criteria
Bayes factors
Using bayesstats ic

bayesstats ic — Bayesian information criteria and Bayes factors 201

Bayesian information criteria

Bayesian information criteria are used for selecting a model among a set of candidate models that
best fits the data. Likelihood-based inference is known to be prone to overfitting the data. Indeed, it
is often possible to increase the likelihood by simply including more parameters in a model. Bayesian
information criteria address this problem by applying a penalty proportional to the complexity of the
models to the likelihood.

Consider a finite set of Bayesian models M1, . . . , Mr, which we want to compare with a base
model Mb. All models Mjs are fit to the same dataset but may differ in their likelihood or prior
specification.

Three commonly used information criteria are Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and DIC. All three criteria are likelihood based and include a goodness-of-fit
term proportional to the negative likelihood of the model and a penalty term proportional to the
number of parameters in the model. Models with smaller values of these criteria are preferable.

The BIC, originally derived for the exponential family of distributions, is based on the assumption
that the model has a flat, noninformative prior. In frequentist statistics, BIC is widely used as a
variable-selection criterion, particularly in linear regression. In BIC, the penalty term is a product
of the number of parameters in the model and the log of the sample size. The penalty of BIC thus
increases not only with the number of parameters but also with the sample size. In the AIC, the penalty
term is two times the number of parameters and does not depend on the sample size. As a result, BIC
is more conservative than AIC and prefers simpler models. DIC is similar to AIC, but its penalty term
is based on a complexity term that measures the difference between the expected log likelihood and
the log likelihood at the posterior mean point. DIC is designed specifically for Bayesian estimation
that involves MCMC simulations.

The limitation of all three criteria is that they either ignore prior distributions or assume that prior
distributions are noninformative. They are thus not well suited for Bayesian sensitivity analysis, when
models with the same parameters but different priors are being compared.

The bayesstats ic command reports DIC. See [R] estat ic after the corresponding maximum
likelihood estimation command for values of AIC and BIC.

Bayes factors

In Bayesian inference, BFs are preferred to model-selection criteria because, unlike BIC, AIC, and
DIC, they incorporate the information about model priors. Taking into account prior information is
essential for Bayesian sensitivity analysis, when models with the same parameters but different priors
are being compared.

The BF of two models is just the ratio of their marginal likelihoods calculated using the same
dataset. Unlike BIC, AIC, and DIC, BFs include all information about the specified Bayesian model.
Thus BFs are not applicable to models with improper priors, whereas BIC, AIC, and DIC are still
applicable because they ignore prior information. BFs, however, are often difficult to compute reliably
because of the difficulty in computing marginal likelihoods.

BFs also require that posterior distributions be completely specified, including the normalizing
constants. The latter is especially important in Bayesian estimation using MCMC simulations, when
the normalizing constants are often omitted from the specification of a posterior distribution. The
bayesmh command always simulates from a complete posterior distribution when you select one of the
supported Bayesian models, but you need to make sure to include all normalizing constants with your
posterior distribution when you are programming your own Bayesian model (see [BAYES] bayesmh
evaluators) and would like to use BFs during postestimation.

202 bayesstats ic — Bayesian information criteria and Bayes factors

Let BFjb, j = 1, . . . , r, be the BF of model Mj with respect to the base model Mb. All models Mj

are fit to the same dataset; otherwise, BFs are meaningless. The bayesstats ic command calculates
BFjb’s and reports them in absolute metric or in log metric when the bayesfactor option is specified.

Jeffreys (1961) proposes the following interpretation of the values of BFjb based on half-units of
the log metric:

log10(BFjb) BFjb Evidence against Mb

0 to 1/2 1 to 3.2 Bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Kass and Raftery (1995) suggest using twice the natural logarithm of the BF to make it have the
same scale as the DIC and likelihood-ratio test statistic. They suggest the following interpretation
table:

2 loge(BFjb) BFjb Evidence against Mb

0 to 2 1 to 3 Bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

Typically, the worst-fitting model is chosen as a base model. If the base model happens to be
better than the comparison model, the corresponding BF will be negative. In this case, you can apply
results above to the absolute value of the BF.

BFs compute relative probabilities of how well each model fits the data compared with the base
model. Being relative quantities, BFs cannot be used to measure goodness of fit of a particular model
unless one assumes that the base model fits the data well. Some researchers view this as a limitation
of BFs (Gelman et al. 2014). Kass and Raftery (1995), on the other hand, show that BFs can be
viewed as differences between predictive scores and thus can be used to measure success of different
models at predicting the data.

BFs have several advantages over the more traditional, frequentist testing methods. For example,
they do not have the limitation of the p-value approach to systematically reject the null hypothesis
in large samples. BFs are also suitable for comparing both nonnested and nested models. Also see
Comparing Bayesian models in [BAYES] intro for more information about Bayesian model comparison.

A key element in computing BFs is calculating the marginal likelihood. Except for some rare
cases, marginal likelihood does not have a closed form and needs to be approximated. A detailed
review of different approximation methods is given by Kass and Raftery (1995). The default method
implemented in bayesstats ic (and bayesmh) is the Laplace–Metropolis approximation (Lewis
and Raftery 1997). The harmonic-mean approximation of the marginal likelihood is also available via
the marglmethod(hmean) option, but we recommend that you use the default method. See Methods
and formulas in [BAYES] bayesmh for technical details.

bayesstats ic — Bayesian information criteria and Bayes factors 203

Using bayesstats ic

Example 1

The bayesstats ic command provides several model-selection statistics that can be used to
compare models. To illustrate the use of bayesstats ic, we consider auto.dta. We model the
fuel-efficiency variable mpg using a normal distribution with fixed variance but unknown, random
mean. There is only one random parameter in this model—{mpg: cons}. We compare the models
with three different prior distributions to find the best one among them. We fit the three models using
bayesmh and save the corresponding estimation results as uniform1, uniform2, and normal.

First, for comparison purposes, let’s obtain the maximum likelihood estimate (MLE) of the mean
of mpg, which is simply the sample mean in our example:

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. summarize mpg

Variable Obs Mean Std. Dev. Min Max

mpg 74 21.2973 5.785503 12 41

The sample mean of mpg is roughly 21.3.

Next, we use bayesmh to fit our first model of interest. We fix the variance of the normal distribution
to 30, which is close to the estimated variance of mpg of 5.792 = 33.52.

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(-10, 10))
> initial({mpg:_cons} 2) saving(uniform1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(-10,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4102

Log marginal likelihood = -397.42978 Efficiency = .08018

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 9.965511 .0342812 .001211 9.975729 9.871825 9.998796

file uniform1_simdata.dta saved

. estimates store uniform1

In the first model, we deliberately chose a prior for {mpg: cons}, uniform(-10,10), that
does not include the value of the sample mean. We thus expect this model to fit poorly. Because of
the restricted domain of the specified uniform prior, we also needed to specify an initial value for
{mpg: cons} for MCMC to start from a point of positive posterior probability.

204 bayesstats ic — Bayesian information criteria and Bayes factors

We also specified the saving() option to save the MCMC simulation dataset so that we could use
estimates store to store our estimation results for future use. See Storing estimation results after
bayesmh in [BAYES] bayesmh postestimation for details.

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(10, 30))
> initial({mpg:_cons} 20) saving(uniform2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(10,30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4272

Log marginal likelihood = -237.08583 Efficiency = .2414

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.31085 .6447073 .013123 21.31485 20.06381 22.57936

file uniform2_simdata.dta saved

. estimates store uniform2

In the second model, we used a uniform prior that included the value of the sample mean in its
domain.

bayesstats ic — Bayesian information criteria and Bayes factors 205

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, normal(30)) saving(normal_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ normal(30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4295

Log marginal likelihood = -244.16624 Efficiency = .2319

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.01901 .6461194 .013417 21.01596 19.76637 22.3019

file normal_simdata.dta saved

. estimates store normal

In the third model, we used a normal prior with a variance fixed at 30. Note that we did not
need to specify an initial value for {mpg: cons} in this model, because the domain of the normal
distribution is the whole real line.

Both the uniform2 and normal models yield estimates close to the MLE of 21.3. According to
their credible intervals, the domain of the posterior distribution of {mpg: cons} is concentrated
around MLE. For example, the 95% credible interval for the uniform2 model is [20.06, 22.60].

Now, let’s use bayesstats ic to compare the three models. We list all the models following the
command name and use the normal model as a reference model.

. bayesstats ic uniform1 uniform2 normal, basemodel(normal)

Bayesian information criteria

DIC log(ML) log(BF)

uniform1 785.8891 -397.4298 -153.2635
uniform2 471.1909 -237.0858 7.080404

normal 471.3905 -244.1662 .

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

The uniform1 model performs worse than the other two models according to the log marginal-
likelihood, log(ML), and DIC—the DIC value is much larger, and the log(ML) value is much smaller
for the uniform1 model. The other two models have only slightly different values for DIC and
log(ML), according to which the uniform2 model is preferable.

Although the uniform2 and normal models have different prior distributions, they have almost
identical posterior domain, that is, the range of values of {mpg: cons} where the posterior is strictly
positive. As such, they will have the same values for AIC and BIC, and we will not be able to
discriminate between the two models based on these information criteria.

206 bayesstats ic — Bayesian information criteria and Bayes factors

The most decisive factor between the uniform2 and normal models is the BF. The value of log
BF, log(BF), is 7.08, which provides very strong evidence in favor of the uniform2 model.

We thus conclude that uniform2 is the best model among the three considered models. This may
be explained by the fact that the specified uniform(10,30) prior is in more agreement with the
likelihood of the data than the specified normal(0,30) prior.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase uniform1_simdata.dta

. erase uniform2_simdata.dta

. erase normal_simdata.dta

Stored results
bayesstats ic stores the following in r():

Scalars
r(bayesfactor) 1 if bayesfactor is specified; 0 otherwise

Macros
r(names) names of estimation results used
r(basemodel) name of the base or reference model
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean

Matrices
r(ic) matrix reporting DIC, log(ML), and log(BF) or BF if bayesfactor is used

Methods and formulas
DIC was introduced by Spiegelhalter et al. (2002) for Bayesian model selection using MCMC

simulations. DIC is based on the deviance statistics

D(θ) = −2 {log f(y; θ)− log f∗(y; θ∗)}

where f(· ; ·) is the likelihood function of the model and f∗(y; θ∗) is the likelihood of the full
model that fits data perfectly. Because f∗(y; θ∗) is constant across models fit to the same data, it
is ignored in the actual calculation of DIC. Given an MCMC sample {θt}Tt=1, the expected deviance
can be estimated by the sample average D(θ) = 1/T

∑T
t=1D(θt). Similarly to AIC and BIC, DIC

is a sum of two components: the goodness-of-fit term D(θ) and the model complexity term pD:
DIC = D(θ) + pD. The complexity is defined as the difference between the expected deviance and
the deviance at the sample posterior mean: pD = D(θ)−D(θ). We thus have

DIC = D(θ) + 2pD

Models with smaller values of DIC are preferred to models with larger values of DIC.

BFs were introduced by Jeffreys (1961). The BF of two models, M1 and M2, is given by

BF12 =
P (y|M1)

P (y|M2)
=
m1(y)

m2(y)

bayesstats ic — Bayesian information criteria and Bayes factors 207

where m1(·) and m2(·) are the corresponding marginal likelihoods associated with models M1 and
M2. (See Methods and formulas in [BAYES] bayesmh for details about computing marginal likelihood.)
BFs are defined only for proper marginal densities. Comparing models with improper priors is allowed
as long as the resulting marginal densities are proper. The methodological importance of BFs comes
from the fact that the so-called posterior odds is a product of prior odds and BF:

P (M1|y)

P (M2|y)
=
P (M1)

P (M2)
× BF12

Therefore, if we assume that M1 and M2 are equally probable a priori, the posterior odds will be
equal to the BF. We thus prefer model M1 if BF12 > 1 and model M2 otherwise. In practice, because
of the higher numerical stability, we often calculate BFs in the (natural) log metric and compare its
value against 0.

logBF12 = logm1(y)− logm2(y)

References
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.

3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Jeffreys, H. 1961. Theory of Probability. 3rd ed. Oxford: Oxford University Press.

Kass, R. E., and A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.

Lewis, S. M., and A. E. Raftery. 1997. Estimating Bayes factors via posterior simulation with the Laplace–Metropolis
estimator. Journal of the American Statistical Association 92: 648–655.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. 2002. Bayesian measures of model complexity
and fit. Journal of the Royal Statistical Society, Series B 64: 583–639.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities

[R] estimates — Save and manipulate estimation results

Title

bayesstats summary — Bayesian summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats summary calculates and reports posterior summary statistics for model parameters
and functions of model parameters using current estimation results from the bayesmh command.
Posterior summary statistics include posterior means, posterior standard deviations, MCMC standard
errors (MCSE), posterior medians, and equal-tailed credible intervals or highest posterior density (HPD)
credible intervals.

Quick start
Posterior summaries for all model parameters after a Bayesian regression model

bayesstats summary

As above, but only for parameters {y:x1} and {y:x2}

bayesstats summary {y:x1} {y:x2}

Same as above
bayesstats summary {y:x1 x2}

Posterior summaries for elements 1,1 and 2,1 of matrix parameter {S}
bayesstats summary {S_1_1 S_2_1}

Posterior summaries for all elements of matrix parameter {S}
bayesstats summary {S}

Posterior summaries with HPD instead of equal-tailed credible intervals and with credible level of
90%

bayesstats summary, hpd clevel(90)

Posterior summaries with MCSE calculated using batch means
bayesstats summary, batch(100)

Posterior summaries for functions of scalar model parameters
bayesstats summary ({y:x1}-{y:_cons}) (sd:sqrt({var}))

Posterior summaries for the log-likelihood and log-posterior functions
bayesstats summary _loglikelihood _logposterior

Posterior summaries for selected model parameters and functions of model parameters and for
log-likelihood and log-posterior functions using abbreviated syntax

bayesstats summary {var} ({y:x1}-{y:_cons}) _ll _lp

208

bayesstats summary — Bayesian summary statistics 209

Menu
Statistics > Bayesian analysis > Summary statistics

Syntax

Summary statistics for all model parameters

bayesstats summary
[
, options

]
bayesstats summary all

[
, options

]
Summary statistics for selected model parameters

bayesstats summary paramspec
[
, options

]
Summary statistics for functions of model parameters

bayesstats summary exprspec
[
, options

]
Summary statistics of log-likelihood or log-posterior functions

bayesstats summary loglikelihood | logposterior
[
, options

]
Full syntax

bayesstats summary spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] bayesmh postestimation
for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] bayesmh postestimation
for examples.

loglikelihood and logposterior also have respective synonyms ll and lp.

spec is one of paramspec, exprspec, loglikelihood (or ll), or logposterior (or lp).

210 bayesstats summary — Bayesian summary statistics

options Description

Main

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed credible intervals
batch(#) specify length of block for batch-means calculations; default is batch(0)

skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

Options

� � �
Main �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd specifies the display of HPD credible intervals instead of the default equal-tailed credible intervals.

batch(#) specifies the length of the block for calculating batch means, batch standard deviation, and
MCSE using batch means. The default is batch(0), which means no batch calculations. When
batch() is not specified, MCSE is computed using effective sample sizes instead of batch means.
Option batch() may not be combined with corrlag() or corrtol().

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the
computation. skip() does not thin the chain in the sense of physically removing observations from
the sample, as is done by bayesmh’s thinning() option. It only discards selected observations
from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] estimation options.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

bayesstats summary — Bayesian summary statistics 211

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Bayesian summaries for an auto data example

Introduction

bayesstats summary reports posterior summary statistics for model parameters and their functions
using the current estimation results from the bayesmh command. When typed without arguments,
the command displays results for all model parameters. Alternatively, you can specify a subset of
model parameters following the command name; see Different ways of specifying model parameters in
[BAYES] bayesmh postestimation. You can also obtain results for scalar functions of model parameters;
see Specifying functions of model parameters in [BAYES] bayesmh postestimation.

Sometimes, it may be useful to obtain posterior summaries of log-likelihood and log-posterior
functions. This can be done by specifying loglikelihood and logposterior (or the respective
synonyms ll and lp) following the command name.

bayesstats summary reports the following posterior summary statistics: posterior mean, posterior
standard deviation, MCMC standard error, posterior median, and equal-tailed credible intervals or, if
the hpd option is specified, HPD credible intervals. The default credible level is set to 95%, but you
can change this by specifying the clevel() option. Equal-tailed and HPD intervals may produce very
different results for asymmetric or highly skewed marginal posterior distributions. The HPD intervals
are preferable in this situation.

You should not confuse the term “HPD interval” with the term “HPD region”. A {100×(1−α)}% HPD
interval is defined such that it contains {100×(1−α)}% of the posterior density. A {100×(1−α)}%
HPD region also satisfies the condition that the density inside the region is never lower than that outside
the region. For multimodal univariate marginal posterior distributions, the HPD regions may include
unions of nonintersecting HPD intervals. For unimodal univariate marginal posterior distributions, HPD
regions are indeed simply HPD intervals. The bayesstats summary command thus calculates HPD
intervals assuming unimodal marginal posterior distributions (Chen and Shao 1999).

Some authors use the term “posterior intervals” instead of “credible intervals” and the term “central
posterior intervals” instead of “equal-tailed credible intervals” (for example, Gelman et al. [2014]).

Bayesian summaries for an auto data example

Recall our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only normal
model for mpg with a noninformative prior.

212 bayesstats summary — Bayesian summary statistics

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Example 1: Summaries for all parameters

If we type bayesstats summary without arguments after the bayesmh command, we will obtain
the same summary table as reported by bayesmh.

. bayesstats summary

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

The posterior mean of {mpg: cons} is 21.29 and of {var} is 34.8. They are close to their respective
frequentist analogs (the sample mean of mpg is 21.297, and the sample variance is 33.47), because
we used a noninformative prior. Posterior standard deviations are 0.68 for {mpg: cons} and 5.92
for {var}, and they are comparable to frequentist standard errors under this noninformative prior.
The standard error estimates of the posterior means, MCSEs, are low. For example, MCSE is 0.022
for {mpg: cons}. This means that the precision of our estimate is, up to one decimal point, 21.3
provided that MCMC converged. The posterior means and medians of {mpg: cons} are close, which
suggests that the posterior distribution for {mpg: cons} may be symmetric. According to the credible

bayesstats summary — Bayesian summary statistics 213

intervals, we are 95% certain that the posterior mean of {mpg: cons} is roughly between 20 and
23 and that the posterior mean of {var} is roughly between 25 and 48. We can infer from this that
{mpg: cons} is greater than, say, 15, and that {var} is greater than, say, 20, with a very high
probability. (We can use [BAYES] bayestest interval to compute the actual probabilities.)

The above is also equivalent to typing
. bayesstats summary {mpg:_cons} {var}

(output omitted)

Example 2: Credible intervals

By default, bayesstats summary reports 95% equal-tailed credible intervals. We can change the
default credible level by specifying the clevel() option.

. bayesstats summary, clevel(90)

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [90% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 20.18807 22.44172

var 34.76572 5.91534 .180754 34.18391 26.28517 44.81732

As expected, 90% credible intervals are more narrow.

To calculate and report HPD intervals, we specify the hpd option.
. bayesstats summary, hpd

Posterior summary statistics MCMC sample size = 10,000

HPD
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.94985 22.54917

var 34.76572 5.91534 .180754 34.18391 24.34876 46.12339

The posterior distribution of {mpg: cons} is symmetric about the posterior mean; thus there is
little difference between the 95% equal-tailed credible interval from example 1 and this 95% HPD
credible interval for {mpg: cons}. The 95% HPD interval for {var} has a smaller width than the
corresponding equal-tailed interval in example 1.

Example 3: Batch-means estimator

bayesstats summary provides two estimators for MCSE: effective-sample-size and batch-means.
Estimation using effective sample sizes is the default. You can use the batch(#) option to request the
batch-means estimator, where # is the batch size. The optimal batch size depends on the autocorrelation
in the MCMC sample. For example, if we observe that the autocorrelation for the parameters of interest
is negligible after lag 100, we can specify batch(100) to estimate MCSE.

214 bayesstats summary — Bayesian summary statistics

In our example, autocorrelation dies out after about lag 10 (see, for example, Autocorrelation plots
in [BAYES] bayesgraph and example 1 in [BAYES] bayesstats ess), so we use 10 as our batch size:

. bayesstats summary, batch(10)

Posterior summary statistics MCMC sample size = 10,000
Batch size = 10

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .4842889 .015315 21.27898 19.99152 22.61904

var 34.76572 4.278417 .135295 34.18391 24.9129 47.61286

Note: Mean, Std. Dev., and MCSE are estimated using batch means.

The batch-means MCSE estimates are somewhat smaller than those obtained by default using effective
sample sizes.

Use caution when choosing the batch size for the batch-means method. For example, if you use
the batch size of 1, you will obtain MCSE estimates under the assumption that the draws in the MCMC
sample are independent, which is not true.

Example 4: Subsampling or thinning the chain

You can reduce correlation between MCMC draws by thinning or subsampling the MCMC chain.
You can use the skip(#) option to skip every # observations from the MCMC sample, which is
equivalent to a thinning interval of # + 1. For example, if you specify skip(1), corresponding to the
thinning interval of 2, bayesstats summary will skip every other observation in the sample and will
use only observations 1, 3, 5, and so on in the computation. If you specify skip(2), corresponding
to the thinning interval of 3, bayesstats summary will skip every two observations in the sample
and will use only observations 1, 4, 7, and so on in the computation. By default, no observations are
skipped—skip(0). Note that skip() does not thin the chain in the sense of physically removing
observations from the sample, as is done by bayesmh’s thinning() option. It discards only selected
observations from the computation and leaves the original sample unmodified.

. bayesstats summary, skip(9)
note: skipping every 9 sample observations; using observations 1,11,21,...

Posterior summary statistics MCMC sample size = 1,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29554 .6813796 .029517 21.27907 19.98813 22.58582

var 34.7396 5.897313 .206269 33.91782 24.9554 48.11452

We selected to skip every 9 observations, which led to a significant reduction of the MCMC sample
size and thus increased our standard deviations. In some cases, with larger MCMC sample sizes,
subsampling may decrease standard deviations because of the decreased autocorrelation in the reduced
MCMC sample.

bayesstats summary — Bayesian summary statistics 215

Example 5: Summaries for functions of model parameters

bayesstats summary accepts expressions to provide summaries of functions of model parameters.
For example, we can use expression (sd:sqrt({var})) with a label, sd, to summarize the standard
deviation of mpg in addition to the variance.

. bayesstats summary (sd:sqrt({var})) {var}

Posterior summary statistics MCMC sample size = 10,000

sd : sqrt({var})

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

sd 5.87542 .4951654 .014972 5.846701 4.991282 6.900207
var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Expressions can also be used for calculating posterior probabilities, although this can be more
easily done using bayestest interval (see [BAYES] bayestest interval). For illustration, let’s verify
the probability that {var} is within the endpoints of the reported credible interval, indeed 0.95.

. bayesstats summary (prob:{var}>24.913 & {var}<47.613)

Posterior summary statistics MCMC sample size = 10,000

prob : {var}>24.913 & {var}<47.613

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

prob .9502 .2175424 .005301 1 0 1

Example 6: Summaries for log likelihood and log posterior

We can use reserved names loglikelihood (or the synonym ll) and logposterior (or the
synonym lp) to obtain summaries of the log likelihood and log posterior for the simulated MCMC
sample.

. bayesstats summary _ll _lp

Posterior summary statistics MCMC sample size = 10,000

_ll : _loglikelihood
_lp : _logposterior

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

_ll -235.4162 .990654 .032232 -235.1379 -238.1236 -234.4345
_lp -238.9507 1.037785 .034535 -238.6508 -241.7889 -237.9187

216 bayesstats summary — Bayesian summary statistics

Stored results
bayesstats summary stores the following in r():

Scalars
r(clevel) credible interval level
r(hpd) 1 if hpd is specified; 0 otherwise
r(batch) batch length for batch-means calculations
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance

Macros
r(expr #) #th expression
r(names) names of model parameters and expressions
r(exprnames) expression labels

Matrices
r(summary) matrix with posterior summaries statistics for parameters in r(names)

Methods and formulas
Methods and formulas are presented under the following headings:

Point estimates
Credible intervals

Most of the summary statistics employed in Bayesian analysis are based on the marginal posterior
distributions of individual model parameters or functions of model parameters.

Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC chain of size T drawn from the
marginal posterior distribution of θ. For a function g(θ), substitute {θt}Tt=1 with {g(θt)}Tt=1 in the
formulas below. If θ is a covariance matrix model parameter, the formulas below are applied to each
element of the lower-diagonal portion of θ.

Point estimates

Marginal posterior moments are approximated using the Monte Carlo integration applied to the
simulated samples {θt}Tt=1.

Sample posterior mean and sample standard deviation are defined as follows,

θ̂ =
1

T

T∑
t=1

θt, ŝ
2 =

1

T − 1

T∑
t=1

(θt − θ̂)2

where θ̂ and ŝ2 are sample estimators of the population posterior mean E(θt) and posterior variance
Var(θt).

The precision of the sample posterior mean is evaluated by its standard error, also known as the
Monte Carlo standard error (MCSE). Note that MCSE cannot be estimated using the classical formula
for the standard error, ŝ/

√
T , because of the dependence between θt’s.

Let

σ2 = Var(θt) + 2

∞∑
k=1

Cov(θt, θt+k)

bayesstats summary — Bayesian summary statistics 217

Then,
√
T×MCSE approaches σ2 asymptotically in T .

bayesstats summary provides two different approaches for estimating MCSE. Both approaches
try to adjust for the existing autocorrelation in the MCMC sample. The first one uses the so-called
effective sample size (ESS), and the second one uses batch means (Roberts 1996; Jones et al. 2006).

The ESS-based estimator for MCSE, the default in bayesstats summary, is given by

MCSE(θ̂) = ŝ/
√

ESS

ESS is defined as

ESS = T/(1 + 2

max lags∑
k=1

ρk)

where ρk is the lag-k autocorrelation, and max lags is the maximum number less than or equal to
ρlag such that for all k = 1, . . . ,max lags, |ρk| > ρtol, where ρlag and ρtol are specified in options
corrlag() and corrtol() with the respective default values of 500 and 0.01. ρk is estimated as
γk/γ0, where

γk =
1

T

T−k∑
t=1

(θt − θ̂)(θt+k − θ̂)

is the lag-k empirical autocovariance.

The batch-means estimator of MCSE is obtained as follows. For a given batch of length b, the
initial MCMC chain is split into m batches of size b,

{θj′+1, . . . , θj′+b} {θj′+b+1, . . . , θj′+2b} . . . {θT−b+1, . . . , θT }

where j′ = T −m × b and m batch means µ̂1, . . . , µ̂m are calculated as sample means of each
batch. m is chosen as the maximum number such that m × b ≤ T . If m is not a divisor of T ,
the first T −m × b observations of the sample are not used in the batch-means computation. The
batch-means estimator of the posterior variance, ŝ2

batch, is based on the assumption that µ̂js are much
less correlated than the original sample draws.

The batch-means estimators of the posterior mean and posterior variance are

θ̂batch =
1

m

m∑
j=1

µ̂j , ŝ
2
batch =

1

m− 1

m∑
j=1

(µ̂j − θ̂batch)2

We have θ̂batch = θ̂, whenever m × b = T . Under the assumption that the batch means are
uncorrelated, ŝ2

batch can be used as an estimator of σ2/b. This fact justifies the batch-means estimator
of MCSE given by

MCSEbatch(θ̂) =
ŝbatch√
m

The accuracy of the batch-means estimator depends on the choice of the batch length b. The higher
the autocorrelation in the original MCMC sample, the larger the batch length b should be, provided
that the number of batches m does not become too small;

√
T is typically used as the maximum

value for b. The batch length is commonly determined by inspecting the autocorrelation plot for θ.
Under certain assumptions, Flegal and Jones (2010) establish that an asymptotically optimal batch
size is of order T 1/3.

218 bayesstats summary — Bayesian summary statistics

Credible intervals

Let θ(1), . . . , θ(T) be an MCMC sample ordered from smallest to largest. Let (1−α) be a credible
level. Then, a {100× (1− α)}% equal-tailed credible interval is

(θ([Tα/2]), θ([T (1−α/2)]))

where [] in the above imply an integer number.

A {100× (1−α)}% HPD interval is defined as the shortest interval among the {100× (1−α)}%
credible intervals (θ(j), θ(j+[T (1−α)])), j = 1, . . . , T − [T (1− α)].

References
Chen, M.-H., and Q.-M. Shao. 1999. Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of

Computational and Graphical Statistics 8: 69–92.

Flegal, J. M., and G. L. Jones. 2010. Batch means and spectral variance estimators in Markov chain Monte Carlo.
Annals of Statistics 38: 1034–1070.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Jones, G. L., M. Haran, B. S. Caffo, and R. Neath. 2006. Fixed-width output analysis for Markov chain Monte Carlo.
Journal of the American Statistical Association 101: 1537–1547.

Roberts, G. O. 1996. Markov chain concepts related to sampling algorithms. In Markov Chain Monte Carlo in Practice,
ed. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 45–57. Boca Raton, FL: Chapman and Hall.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesgraph — Graphical summaries and convergence diagnostics

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayestest interval — Interval hypothesis testing

Title

bayestest — Bayesian hypothesis testing

Description Remarks and examples Also see

Description
bayestest provides two types of Bayesian hypothesis testing, interval hypothesis testing and

model hypothesis testing, using current estimation results from the bayesmh command.

bayestest interval performs interval hypothesis tests for model parameters and functions of
model parameters; see [BAYES] bayestest interval.

bayestest model tests hypotheses about models by computing posterior probabilities of the
models; see [BAYES] bayestest model.

Remarks and examples
Bayesian hypothesis testing is fundamentally different from the conventional frequentist hypothesis

testing using p-values. Frequentist hypothesis testing is based on the deterministic decision of whether
to reject a null hypothesis against an alternative hypothesis based on the obtained p-value. Bayesian
hypothesis testing is built upon a probabilistic formulation for a parameter of interest. For example,
it can provide a probabilistic summary of how likely that parameter of interest belongs to some
prespecified set of values. Also, Bayesian testing can assign a probability to a hypothesis of interest or
model of interest given the observed data. This cannot be done in the frequentist testing. The ability
to assign a probability to a hypothesis often provides a more natural interpretation of the results. For
example, Bayesian hypothesis testing provides a direct answer to the following questions. How likely
is it that the mean height of males is larger than six feet? What is the probability that a person is
guilty versus being innocent? How likely is one model over the other model? Frequentist hypothesis
testing cannot be used to answer these questions.

We consider two forms of Bayesian hypothesis testing: interval hypothesis testing and what we
call model hypothesis testing.

The goal of interval hypothesis testing is to estimate the probability that a model parameter lies
in a certain interval; see [BAYES] bayestest interval for details.

The goal of model hypothesis testing is to test hypotheses about models by computing probabilities
of the specified models given the observed data; see [BAYES] bayestest model for details.

Also see
[BAYES] bayestest interval — Interval hypothesis testing

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] Glossary

219

Title

bayestest interval — Interval hypothesis testing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

bayestest interval performs interval hypothesis tests for model parameters and functions of
model parameters using current estimation results from the bayesmh command. bayestest interval
reports mean estimates, standard deviations, and MCMC standard errors of posterior probabilities
associated with an interval hypothesis.

Quick start
Posterior probability of the hypothesis that 45 < {y: cons} < 50

bayestest interval {y: cons}, lower(45) upper(50)

As above, but skip every 5 observations from the full MCMC sample
bayestest interval {y: cons}, lower(45) upper(50) skip(5)

Posterior probability of a hypothesis about a function of model parameter {y:x1}
bayestest interval (OR:exp({y:x1})), lower(1.1) upper(1.5)

Posterior probability of hypotheses 45 < {y: cons} < 50 and 0 < {var} < 10 tested independently
bayestest interval ({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10))

As above, but tested jointly
bayestest interval (({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10)), joint)

Posterior probability of the hypothesis {mean} = 2 for discrete parameter {mean}
bayestest interval ({mean}==2)

Posterior probability of the interval hypothesis 0 ≤ {mean} ≤ 4
bayestest interval {mean}, lower(0, inclusive) upper(4, inclusive)

Menu
Statistics > Bayesian analysis > Interval hypothesis testing

220

bayestest interval — Interval hypothesis testing 221

Syntax
Test one interval hypothesis about continuous or discrete parameter

bayestest interval exspec
[
, luspec options

]
Test one point hypothesis about discrete parameter

bayestest interval exspec==#
[
, options

]
Test multiple hypotheses separately

bayestest interval (testspec)
[
(testspec) . . .

] [
, options

]
Test multiple hypotheses jointly

bayestest interval (jointspec)
[
, options

]
Full syntax

bayestest interval (spec)
[
(spec) . . .

] [
, options

]
exspec is optionally labeled expression of model parameters,

[
prlabel:

]
expr, where prlabel is a

valid Stata name (or prob# by default), and expr is a scalar model parameter or scalar expression
(parentheses are optional) containing scalar model parameters. The expression expr may not contain
variable names.

testspec is exspec
[
, luspec

]
or exspec==# for discrete parameters only.

jointspec is
[

prlabel:
]
(testspec) (testspec) . . . , joint. The labels (if any) of testspec are ignored.

spec is one of testspec or jointspec.

luspec Null hypothesis

lower(#)
[
upper(.)

]
θ > #

lower(#, inclusive)
[
upper(.)

]
θ ≥ #[

lower(.)
]
upper(#) θ < #[

lower(.)
]
upper(#, inclusive) θ ≤ #

lower(#l) upper(#u) #l < θ <#u
lower(#l) upper(#u, inclusive) #l < θ ≤ #u
lower(#l, inclusive) upper(#u) #l ≤ θ < #u
lower(#l, inclusive) upper(#u, inclusive) #l ≤ θ ≤ #u

lower(intspec) and upper(intspec) specify the lower- and upper-interval values, respectively.

intspec is #
[
, inclusive

]
where # is the interval value, and suboption inclusive specifies that this value should be included
in the interval, meaning a closed interval. Closed intervals make sense only for discrete parameters.

intspec may also contain a dot (.), meaning negative infinity for lower() and positive infinity
for upper(). Either option lower(.) or option upper(.) must be specified.

222 bayestest interval — Interval hypothesis testing

options Description

Main

skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

Options

� � �
Main �

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the
computation. skip() does not thin the chain in the sense of physically removing observations from
the sample, as is done by bayesmh’s thinning() option. It only discards selected observations
from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes.
The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
all lag-k autocorrelation values for k from 0 to either corrlag() or the index at which the
autocorrelation becomes less than corrtol() if the latter is less than corrlag().

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded.

Remarks and examples

Remarks are presented under the following headings:
Introduction
Interval tests for continuous parameters
Interval tests for discrete parameters

bayestest interval — Interval hypothesis testing 223

Introduction

In this entry, we describe interval hypothesis testing, the goal of which is to estimate the probability
that a model parameter lies in a certain interval. Interval hypothesis testing is inversely related to
credible intervals. For example, if we have a 95% credible interval for θ with endpoints U and L, then
the probability of a hypothesis H0: θ ∈ [U,L] is 0.95. For hypothesis testing using model posterior
probabilities, see [BAYES] bayestest model.

In frequentist hypothesis testing, we often consider a point hypothesis such as H0: θ = θ0 versus
Ha : θ 6= θ0. In Bayesian hypothesis testing, the probability P (θ = θ0) is 0 whenever θ has a
continuous posterior distribution. A point hypothesis is relevant only to parameters with discrete
posterior distributions. For continuous parameters, all hypotheses should be formulated as intervals.
One possibility is to consider an interval hypothesis H0: θ ∈ (θ0 − ε, θ0 + ε), where ε is some small
value.

Note that Bayesian hypothesis testing does not really need a distinction between the null and
alternative hypotheses, in the sense that they are defined in a frequentist statistic. There is no need to
“protect” the null hypothesis: if P{H0: θ ∈ (a, b)} = p, then P{Ha: θ /∈ (a, b)} = 1− p. In what
follows, when we refer to H0, we imply a hypothesis of interest H0: θ ∈ Θ, and when we refer to
Ha, we imply the complement hypothesis Ha: θ ∈ Θc, where Θ is a set of points from the domain
of θ and Θc is its complement.

The bayestest interval command estimates the posterior probability of a null interval hypothesis
H0 using the simulated posterior distributions of model parameters produced by bayesmh. Essentially,
bayestest interval reports posterior summaries for a dichotomous expression that represents H0.

For example, suppose we would like to test the following hypothesis: H0: θ ∈ (a, b). Then,

bayestest interval ({theta}, lower(a) upper(b))

is equivalent to

bayesstats summary ({theta} > a & {theta} < b)

bayestest interval reports the estimated posterior mean probability for H0, which is not a
p-value—as reported by classical frequentist tests—used to decide whether to reject H0 in favor
of the alternative Ha. The p-value interpretation is based on the dichotomous problem formulation
of H0 versus Ha, assuming that one of these two alternatives is actually true. The answer in the
Bayesian context is a probability statement about θ that is free of any deterministic presumptions.
For example, if you estimate P (H0) to be 0.15, you cannot ask whether this value is significant
or whether you can reject the null hypothesis. Bayesian interpretation of this probability is that if
you draw θ from the specified prior distribution and update your knowledge about θ based on the
observed data, then there is a 15% chance that θ will belong to the interval (a, b). So the conclusion
of Bayesian hypothesis testing is not an acceptance or rejection of the null hypothesis but an explicit
probability statement about the tested hypothesis.

224 bayestest interval — Interval hypothesis testing

Interval tests for continuous parameters

Let’s continue our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only
normal model for mpg with a noninformative prior.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Example 1: Interval hypothesis and credible intervals

In the introduction, we commented on the inverse relationship that exists between interval hypothesis
tests and credible intervals. Let’s verify this using bayestest interval. We are interested in a
hypothesis H0: {mpg: cons} ∈ (19.992, 22.619), where the specified numbers are the endpoints of
the credible interval for {mpg: cons} from the bayesmh output. To compute the posterior probability
for this hypothesis, we specify the parameter following the command line and specify interval endpoints
in lower() and upper().

. bayestest interval {mpg:_cons}, lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619

Mean Std. Dev. MCSE

prob1 .9496 0.21878 .0053652

The estimated posterior probability is close to 0.95, as we expected, because we used the endpoints
of the 95% credible intervals for {mpg: cons}.

bayestest interval — Interval hypothesis testing 225

By default, bayestest interval labels probabilities as prob# (prob1 in our example). You can
specify your own label as long as you enclose the parameter in parentheses:

. bayestest interval (mean:{mpg:_cons}), lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

mean : 19.992 < {mpg:_cons} < 22.619

Mean Std. Dev. MCSE

mean .9496 0.21878 .0053652

Example 2: Testing multiple hypotheses separately

Continuing example 1, we can verify that the probability associated with the credible interval for
{var} is also close to 0.95.

We can specify multiple hypotheses with bayestest interval, but we must enclose them in
parentheses.

. bayestest interval ({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619
prob2 : 24.913 < {var} < 47.613

Mean Std. Dev. MCSE

prob1 .9496 0.21878 .0053652
prob2 .9502 0.21754 .0053011

The estimated posterior probability prob2 is also close to 0.95.

Example 3: Testing multiple hypotheses jointly

We can perform joint tests of multiple hypotheses by enclosing hypothesis to be tested jointly in
parentheses and by specifying suboption joint. Notice that each individual hypothesis must also be
enclosed in parentheses.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

Mean Std. Dev. MCSE

prob1 .9034 0.29543 .0076789

The joint posterior probability of both {mpg: cons} and {var} belonging to their respective intervals
is 0.9 with a posterior variance of 0.3 and MCSE of 0.008.

226 bayestest interval — Interval hypothesis testing

Example 4: Full syntax

We can specify multiple separate hypotheses and hypotheses tested jointly in one call to bayestest
interval.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)
> ({mpg:_cons}, lower(21))
> ({var}, upper(40))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

prob2 : {mpg:_cons} > 21
prob3 : {var} < 40

Mean Std. Dev. MCSE

prob1 .9034 0.29543 .0076789
prob2 .6505 0.47684 .015786
prob3 .8136 0.38945 .0110613

In addition to the joint hypothesis from the previous example, we specified two new separate
interval hypotheses for testing {mpg: cons} > 21 and for testing {var} < 40. The estimated
posterior probabilities for these hypotheses are 0.65 and 0.81, respectively.

Example 5: Point hypothesis for continuous parameters

As we discussed in Introduction above, point hypothesis for continuous parameters do not make
sense, because the corresponding probability is 0:

. bayestest interval ({mpg:_cons}==21)

Interval tests MCMC sample size = 10,000

prob1 : {mpg:_cons}==21

Mean Std. Dev. MCSE

prob1 0 0.00000 0

We can consider a small window around the value of interest and test an interval hypothesis
instead:

. bayestest interval ({mpg:_cons}, lower(20.5) upper(21.5))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 < {mpg:_cons} < 21.5

Mean Std. Dev. MCSE

prob1 .4932 0.49998 .0138391

The probability that {mpg: cons} is between 20.5 and 21.5 is about 50%.

Note that the probability of a continuous parameter belonging to a closed interval or semiclosed
interval is the same as that for the open interval. Below we use suboption inclusive within lower()
and upper() to request the closed interval.

bayestest interval — Interval hypothesis testing 227

. bayestest interval ({mpg:_cons}, lower(20.5,inclusive) upper(21.5,inclusive))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 <= {mpg:_cons} <= 21.5

Mean Std. Dev. MCSE

prob1 .4932 0.49998 .0138391

We obtain the same results as above for the corresponding open interval.

Example 6: Functions of parameters

We can test functions of model parameters. For example, let’s compute the probability that the
posterior standard deviation is greater than 6.

. bayestest interval (sd: sqrt({var}), lower(6))

Interval tests MCMC sample size = 10,000

sd : sqrt({var}) > 6

Mean Std. Dev. MCSE

sd .3793 0.48524 .0143883

The estimated probability is 0.38.

Interval tests for discrete parameters

In this section, we demonstrate how to perform hypothesis testing for a discrete parameter.

First, we simulate data from the Poisson distribution with a mean of 2.

. clear

. set seed 12345

. set obs 20
number of observations (_N) was 0, now 20

. generate double y = rpoisson(2)

228 bayestest interval — Interval hypothesis testing

We fit a Bayesian Poisson model to the data and specify a discrete prior for the mean
P (µ = k) = 0.25 for k = 1, 2, 3, 4.

. set seed 14

. bayesmh y, likelihood(poisson, noglmtransform)
> prior({y:}, index(0.25,0.25,0.25,0.25)) initial({y:_cons} 2)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ poisson({y:_cons})

Prior:
{y:_cons} ~ index(0.25,0.25,0.25,0.25)

Bayesian Poisson regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .2552

Log marginal likelihood = -31.58903 Efficiency = .4428

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 2.0014 .1039188 .001562 2 2 2

We specified the noglmtransform option with the Poisson likelihood to request that the GLM logit
link function not be applied to the model constant, {y: cons}, so that we could model the mean
parameter directly. Without this option, bayesmh, likelihood(poisson) fits a Poisson regression
with a logit link function between the mean and the linear predictor formed by the specified regressors.

Example 7: Point hypotheses for discrete parameters

We can compute probabilities for each of the four discrete values of {y: cons}.

. bayestest interval ({y:_cons}==1) ({y:_cons}==2) ({y:_cons}==3) ({y:_cons}==4)

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons}==1
prob2 : {y:_cons}==2
prob3 : {y:_cons}==3
prob4 : {y:_cons}==4

Mean Std. Dev. MCSE

prob1 .0047 0.06840 .0013918
prob2 .9892 0.10337 .0027909
prob3 .0061 0.07787 .0017691
prob4 0 0.00000 0

The posterior probability that {y} equals 2 is 0.99.

bayestest interval — Interval hypothesis testing 229

Example 8: Interval hypotheses for discrete parameters

As we can with continuous parameters, we can test interval hypotheses for discrete parameters.
For example, we can compute the probability of whether {y: cons} is between 2 and 4.

. bayestest interval {y:_cons}, lower(2) upper(4)

Interval tests MCMC sample size = 10,000

prob1 : 2 < {y:_cons} < 4

Mean Std. Dev. MCSE

prob1 .0061 0.07787 .0017691

The estimated probability is very small.

Note that unlike hypotheses for continuous parameters, hypotheses including open intervals and
closed or semiclosed intervals for discrete parameters may have different probabilities.

. bayestest interval {y:_cons}, lower(2, inclusive) upper(4, inclusive)

Interval tests MCMC sample size = 10,000

prob1 : 2 <= {y:_cons} <= 4

Mean Std. Dev. MCSE

prob1 .9953 0.06840 .0013918

The estimated posterior probability that {y: cons} is between 2 and 4, inclusively, is drastically
different compared with the results for the corresponding open interval.

Stored results
bayestest interval stores the following in r():
Scalars
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance

Macros
r(expr #) #th probability expression
r(names) names of probability expressions

Matrices
r(summary) test results for parameters in r(names)

Methods and formulas
Let θ be a model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the marginal

posterior distribution of θ. It is often of interest to test how likely it is that θ belongs to a particular
range of values. Note that testing a point null hypothesis such as H0: θ = θ0 is usually of no interest
for parameters with continuous posterior distributions, because the posterior probability P (H0) is 0.

To perform an open-interval test of the form

H0: θ ∈ (a, b) versus Ha: θ /∈ (a, b)

230 bayestest interval — Interval hypothesis testing

we estimate the posterior probability of H0 from the given MCMC sample. The bayestest interval
command calculates the probability P (H0) based on the simulated marginal posterior distribution of
θ. The estimate is given by the frequency of inclusion of θts in the test interval

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b)} (1)

where 1{A} is an indicator function and equals 1 if A is true and 0 otherwise.

When a model parameter θ is discrete, the following closed- and semiclosed-interval tests may be
of interest in addition to open-interval tests:

H0: θ = a versus Ha: θ 6= a

H0: θ ∈ [a, b] versus Ha: θ /∈ [a, b]

H0: θ ∈ [a, b) versus Ha: θ /∈ [a, b)

H0: θ ∈ (a, b] versus Ha: θ /∈ (a, b]

The corresponding probabilities are calculated as follows:

P̂ (H0) =
1

T

T∑
t=1

1{θt=a}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b]}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b)}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b]}

The probability of an alternative hypothesis is always given by P (Ha) = 1− P (H0).

The formulas above can be modified to accommodate joint hypotheses tests by multiplying the
indicator functions of the individual hypothesis statements. For example, for a joint hypothesis
H0: θ1 > a, θ2 < b, we would replace the indicator function with 1{θ1t>a} × 1{θ2t<b} in (1), where
{θ1t}Tt=1 and {θ2t}Tt=1 are the corresponding MCMC samples for θ1 and θ2.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities

Title

bayestest model — Hypothesis testing using model posterior probabilities

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

bayestest model computes posterior probabilities of Bayesian models fit using the bayesmh
command. These posterior probabilities can be used to test hypotheses about model parameters. The
command reports marginal likelihoods, prior probabilities, and posterior probabilities for all tested
models.

Quick start
Compute posterior probabilities of models corresponding to previously saved estimation results M1

and M2

bayestest model M1 M2

As above, but specify prior probabilities for models
bayestest model M1 M2, prior(0.3 0.7)

Menu
Statistics > Bayesian analysis > Hypothesis testing using model posterior probabilities

231

232 bayestest model — Hypothesis testing using model posterior probabilities

Syntax
bayestest model

[
namelist

] [
, options

]
where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

prior(numlist) specify prior probabilities for tested models; default is all models
are equally likely

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

method Description

lmetropolis Laplace–Metropolis approximation; default
hmean harmonic-mean approximation

Options

� � �
Main �

prior(numlist) specifies prior probabilities for models. By default, all models are assumed to be
equally likely. You may specify probabilities for all tested models, in which case the probabilities
must sum to one. Alternatively, you may specify probabilities for all but the last model, in which
case the sum of the specified probabilities must be less than one, and the probability for the last
model is computed as one minus this sum.

� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Testing nested hypotheses
Comparing models with different priors

bayestest model — Hypothesis testing using model posterior probabilities 233

Introduction

In this entry, we describe hypothesis testing by computing model posterior probabilities, probabilities
of Bayesian models given observed data. For interval hypothesis testing, see [BAYES] bayestest interval.

The bayestest model command computes posterior probabilities for specified models. The
computed probabilities can be used to compare which model is more likely among considered models
given observed data. You can compare models that differ only in several covariates or models with
completely different regression functions, such as linear and nonlinear models. You can compare
models with different outcome distributions or with different prior distributions or both. The only
requirements are that the considered models have proper posterior distributions and that the same
data are used to fit the models. If MCMC is used to approximate posterior distributions, convergence
of MCMC should also be verified before model comparison.

The results reported by bayestest model are related to Bayes factors; see [BAYES] bayesstats
ic to compute Bayes factors.

To use bayestest model, you must store estimation results after each bayesmh model of interest.
You can use estimates store (see [R] estimates store) to store estimation results after bayesmh, as
you can with other estimation commands, provided you also saved simulation results from bayesmh
using the saving() option. See Storing estimation results after bayesmh in [BAYES] bayesmh
postestimation for details.

Testing nested hypotheses

Consider the following Bayesian regression model for auto.dta,

mpg = β0 + β1weight1 + β2length1 + ε

where weight1 and length1 are the original weight and length variables rescaled to have similar
scale as mpg.

We assume that errors are normally distributed: ε ∼ normal(0, σ2). We also assume a noninfor-
mative Jeffreys prior for the parameters: (β, σ2) ∼ 1/σ2. Suppose that we are interested in testing
whether there is a relationship between mileage and weight and length of cars. We will consider four
models: the mean-only model, the model with weight only, the model with length only, and the full
model with both covariates.

In a frequentist setting, the four models correspond to the following hypotheses: H0 : β1 = 0,
β2 = 0, H0: β1 = 0, and H0: β2 = 0. In a Bayesian setting, we cannot formulate point hypotheses
for parameters with continuous distributions; see [BAYES] bayestest interval for examples. However,
we can compute probabilities of how likely each of the four models is given the observed data.

234 bayestest model — Hypothesis testing using model posterior probabilities

Let’s load auto.dta and generate rescaled versions of weight and length.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. generate weight1 = weight/100

. generate length1 = length/10

Next, we fit the four models using bayesmh. We use the saving() option to save the simulation
datasets so that we can store estimation results of each model for later use with bayestest model.

The first model we fit is the mean-only model. We store its estimation results as meanonly.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(meanonly_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2627
Efficiency: min = .105

avg = .1064
Log marginal likelihood = -234.64617 max = .1078

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29355 .6768607 .020887 21.28059 20.00132 22.61904

var 34.80707 5.963995 .181615 34.23247 24.9129 47.6883

file meanonly_simdata.dta saved

. estimates store meanonly

To accommodate the Jeffreys prior for the parameters, we specify suboption flat within the
prior() option for coefficients to request the flat prior with the density of 1 and suboption jeffreys
within prior() for the variance parameter to request a Jeffreys prior. We also specify a longer burn-in
period to improve convergence of MCMC samples for all examples. (Remember to use bayesgraph
to check convergence of MCMC.)

bayestest model — Hypothesis testing using model posterior probabilities 235

We fit the second model containing only covariate length1 and store its results as length:

. set seed 14

. bayesmh mpg length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(length_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2865
Efficiency: min = .0771

avg = .07938
Log marginal likelihood = -198.7678 max = .08286

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length1 -2.069861 .1882345 .006539 -2.068094 -2.44718 -1.706264

_cons 60.20346 3.562119 .127411 60.20927 53.34306 67.22423

var 12.88852 2.273808 .081887 12.62042 9.169482 18.16685

file length_simdata.dta saved

. estimates store length

236 bayestest model — Hypothesis testing using model posterior probabilities

We fit the third model containing only covariate weight1 and store its results as weight:

. set seed 14

. bayesmh mpg weight1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(weight_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1735
Efficiency: min = .0463

avg = .06694
Log marginal likelihood = -198.20751 max = .07989

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight1 -.6014409 .0506121 .001791 -.6013071 -.6996976 -.50121

_cons 39.45934 1.574673 .057646 39.49735 36.31386 42.33547

var 12.13997 2.141741 .099534 11.87332 8.883221 17.14041

file weight_simdata.dta saved

. estimates store weight

bayestest model — Hypothesis testing using model posterior probabilities 237

Finally, we fit the last model containing both covariates and store its results as full:
. set seed 14

. bayesmh mpg weight1 length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(full_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2323
Efficiency: min = .05455

avg = .06647
Log marginal likelihood = -196.86195 max = .08085

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight1 -.3977027 .1580411 .005558 -.401646 -.6965175 -.0721332
length1 -.7599159 .5546754 .021944 -.7502182 -1.907818 .3106868

_cons 47.5913 6.132597 .262563 47.5656 35.89593 60.18002

var 11.81753 1.96315 .07608 11.59273 8.729182 16.14065

file full_simdata.dta saved

. estimates store full

Example 1: Computing posterior probabilities of models

We now use bayestest model to compute posterior probabilities of the four models.
. bayestest model meanonly length weight full

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.2500 0.0000
length -198.7678 0.2500 0.1055
weight -198.2075 0.2500 0.1848

full -196.8619 0.2500 0.7097

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

The mean-only model is very unlikely compared with other models. The length and weight models
are somewhat likely with the respective posterior probabilities of 0.11 and 0.18, and the full model
has the highest posterior probability of 0.71.

238 bayestest model — Hypothesis testing using model posterior probabilities

Example 2: Specifying prior probabilities of models

If we have some prior knowledge about each of the models, we can use the prior() option to
specify prior probabilities for each model. For example, suppose that we have prior knowledge that
the weight model is much more likely than the full model so that the prior probabilities are 0.1 for
the mean-only model and the length model, 0.6 for the weight model, and only 0.2 for the full model.

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6 0.2)

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.1000 0.0000
length -198.7678 0.1000 0.0401
weight -198.2075 0.6000 0.4210

full -196.8619 0.2000 0.5389

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Under the specified prior, posterior probabilities of the weight and full models are now more similar:
0.42 and 0.54, respectively, but the full model is still preferable.

The above is equivalent to the following prior specification:

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6)
(output omitted)

Using our results, we conclude that mpg is related to both weight and length and would proceed
with the full model.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase meanonly_simdata.dta

. erase weight_simdata.dta

. erase length_simdata.dta

. erase full_simdata.dta

Comparing models with different priors

In the previous section, we used bayestest model to compare nested hypotheses about which
covariates to include in the regression function. We can use bayestest model to compare models
with not only different covariates but also different outcome distributions and priors for parameters.

We continue our analysis of auto.dta, but for simplicity, we now consider the mean-only model
for mpg. Let’s compare models with two slightly different informative priors. We use an informative
normal–inverse-gamma prior for both models,

(β0|σ2) ∼ N(µ0, σ
2/n0)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

with µ0 = 25, n0 = 10, and σ2
0 = 30, but we consider two different values for the degrees of

freedom: ν0 = 5 and ν0 = 1.

bayestest model — Hypothesis testing using model posterior probabilities 239

We use bayesmh to fit our models. Following the formulas, we specify a normal() prior for the
constant {mpg: cons} (mean parameter) and an inverse-gamma prior igamma() for the variance
parameter {var}. We specify an expression for the variance of the normal prior distribution in
parentheses.

We fit the first model with ν0 = 5 and store its estimation results as informative1.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(2.5,75)) saving(inf1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(2.5,75)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2548
Efficiency: min = .09065

avg = .1049
Log marginal likelihood = -238.55856 max = .1192

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.71853 .6592655 .019091 21.69554 20.44644 23.04896

var 35.47405 5.823372 .193417 34.72454 25.84419 48.228

file inf1_simdata.dta saved

. estimates store informative1

240 bayestest model — Hypothesis testing using model posterior probabilities

We fit the second model with ν0 = 1 and store its estimation results as informative2.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(0.5,15)) saving(inf2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(0.5,15)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2261
Efficiency: min = .0941

avg = .109
Log marginal likelihood = -239.4049 max = .1239

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.7175 .6539814 .021319 21.7295 20.47311 23.02638

var 35.89504 6.288571 .178665 35.17056 25.86084 50.21624

file inf2_simdata.dta saved

. estimates store informative2

Example 3: Comparing models with informative priors

We now use bayestest model to compare our models with two different informative priors.

. bayestest model informative1 informative2

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.5000 0.6998
informative2 -239.4049 0.5000 0.3002

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Assuming that both models are equally likely a priori, the posterior probability of the informative1
stored results, 0.70, is much higher than the probability of the informative2 stored results, 0.3.

bayestest model — Hypothesis testing using model posterior probabilities 241

Example 4: Comparing a model with noninformative prior

A note of caution regarding comparing models with informative and noninformative priors—models
with noninformative priors will often win because they are typically in most agreement with the
observed data. For models with noninformative priors, most of the information about parameters
is contained in a likelihood. As such, any model with an informative prior that is not in perfect
agreement with the data will not fit data as well as a model with a noninformative prior.

For example, let’s fit our constant-only model using a noninformative Jeffreys prior for the
parameters.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(jeffreys_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

file jeffreys_simdata.dta saved

. estimates store jeffreys

Let’s now compare this model with our two informative models.
. bayestest model informative1 informative2 jeffreys

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.3333 0.0194
informative2 -239.4049 0.3333 0.0083

jeffreys -234.6450 0.3333 0.9723

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

The posterior probability of the Jeffreys model is 0.97.

242 bayestest model — Hypothesis testing using model posterior probabilities

Finally, at the end of our analysis, we erase all the simulation datasets we no longer need. We
erase all of them by typing

. erase inf1_simdata.dta

. erase inf2_simdata.dta

. erase jeffreys_simdata.dta

Stored results
bayestest model stores the following in r():

Macros
r(names) names of estimation results used
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean

Matrices
r(test) test results for parameters in r(names)

Methods and formulas
Suppose we have r models Mj for j = 1, . . . , r with prior probabilities P (Mj) such that∑r
j=1 p(Mj) = 1. Then, posterior probability for model J is

P (Mj |y) =
P (y|Mj)P (Mj)

P (y)

where P (y|Mj) = mj(y) is the marginal likelihood of Mj with respect to y, and P (y) =∑r
j=1 P (y|Mj)P (Mj). See Methods and formulas in [BAYES] bayesmh for details about computing

marginal likelihood.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats ic — Bayesian information criteria and Bayes factors

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest interval — Interval hypothesis testing

Title

set clevel — Set default credible level

Description Syntax Option Remarks and examples Also see

Description
set clevel specifies the default credible level for credible intervals for all Bayesian commands

(see [BAYES] bayes) that report credible intervals. The initial value is 95, meaning 95% credible
intervals.

Syntax

set clevel #
[
, permanently

]
is any number between 10.00 and 99.99 and may be specified with at most two digits after the

decimal point.

Option
permanently specifies that in addition to making the change right now, the clevel setting be

remembered and become the default setting when you invoke Stata.

Remarks and examples
To change the level of credible intervals reported by a particular command, you need not reset the

default credible level. All commands that report credible intervals have a clevel(#) option. When
you do not specify the option, the credible intervals are calculated for the default level set by set
clevel or for 95% if you have not reset set clevel.

243

244 set clevel — Set default credible level

Example 1

We use the bayesmh command to obtain the credible interval for the mean of mpg:

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal(30)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.30364 .6429995 .013186 21.30381 20.03481 22.5555

To obtain 90% credible intervals, we would type

. bayesmh, clevel(90)

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. Dev. MCSE Median [90% Cred. Interval]

_cons 21.30364 .6429995 .013186 21.30381 20.24172 22.35158

set clevel — Set default credible level 245

or we could type

. set clevel 90

. bayesmh

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. Dev. MCSE Median [90% Cred. Interval]

_cons 21.30364 .6429995 .013186 21.30381 20.24172 22.35158

If we opt for the second alternative, the next time that we fit a model, 90% credible intervals will
be reported. If we wanted 95% credible intervals, we could specify clevel(95) on the estimation
command, or we could reset the default by typing set clevel 95.

The current setting of clevel() is stored as the c-class value c(clevel); see [P] creturn.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[R] query — Display system parameters

[P] creturn — Return c-class values

Glossary

a posteriori. In the context of Bayesian analysis, we use a posteriori to mean “after the sample is
observed”. For example, a posteriori information is any information obtained after the data sample
is observed. See posterior distribution, posterior.

a priori. In the context of Bayesian analysis, we use a priori to mean “before the sample is observed”.
For example, a priori information is any information obtained before the data sample is observed.
In a Bayesian model, a priori information about model parameters is specified by prior distributions.

acceptance rate. In the context of the MH algorithm, acceptance rate is the fraction of the proposed
samples that is accepted. The optimal acceptance rate depends on the properties of the target
distribution and is not known in general. If the target distribution is normal, however, the opti-
mal acceptance rate is known to be 0.44 for univariate distributions and 0.234 for multivariate
distributions.

adaptation. In the context of the MH algorithm, adaptation refers to the process of tuning or adapting the
proposal distribution to optimize the MCMC sampling. Typically, adaptation is performed periodically
during the MCMC sampling. The bayesmh command performs adaptation every # of iterations
as specified in option adaptation(every(#)) for a maximum of adaptation(maxiter())
iterations. In a continuous-adaptation regimes, the adaptation lasts during the entire process of the
MCMC sampling. See [BAYES] bayesmh.

adaptation period. Adaptation period includes all MH adaptive iterations. It equals the length of
the adaptation interval, as specified by adaptation(every()), times the maximum number of
adaptations, adaptation(maxiter()).

adaptive iteration. In the adaptive MH algorithm, adaptive iterations are iterations during which
adaptation is performed.

Akaike information criterion, AIC. Akaike information criterion (AIC) is an information-based model-
selection criterion. It is given by the formula −2 × log likelihood + 2k, where k is the number
of parameters. AIC favors simpler models by penalizing for the number of model parameters. It
does not, however, account for the sample size. As a result, the AIC penalization diminishes as the
sample size increases, as does its ability to guard against overparameterization.

batch means. Batch means are means obtained from batches of sample values of equal size. Batch
means provide an alternative method for estimating MCMC standard errors (MCSE). The batch size
is usually chosen to minimize the correlation between different batches of means.

Bayes factor. Bayes factor is given by the ratio of the marginal likelihoods of two models, M1

and M2. It is a widely used criterion for Bayesian model comparison. Bayes factor is used in
calculating the posterior odds ratio of model M1 versus M2,

P (M1|y)

P (M2|y)
=
P (y|M1)

P (y|M2)

P (M1)

P (M2)

where P (Mi|y) is a posterior probability of model Mi, and P (Mi) is a prior probability of model
Mi. When the two models are equally likely, that is, when P (M1) = P (M2), the Bayes factor
equals the posterior odds ratio of the two models.

Bayes’s rule. The Bayes’s rule is a formal method for relating conditional probability statements. For
two (random) events X and Y , the Bayes’s rule states that

P (X|Y) ∝ P (Y |X)P (X)

247

248 Glossary

that is, the probability of X conditional on Y is proportional to the probability of X and the
probability of Y conditional on X . In Bayesian analysis, the Bayes’s rule is used for combining
prior information about model parameters and evidence from the observed data to form the posterior
distribution.

Bayesian analysis. Bayesian analysis is a statistical methodology that considers model parameters to
be random quantities and estimates their posterior distribution by combining prior knowledge about
parameters with the evidence from the observed data sample. Prior knowledge about parameters
is described by prior distributions and evidence from the observed data is incorporated through
a likelihood model. Using the Bayes’s rule, the prior distribution and the likelihood model are
combined to form the posterior distribution of model parameters. The posterior distribution is then
used for parameter inference, hypothesis testing, and prediction.

Bayesian hypothesis testing. Bayesian hypothesis testing computes probabilities of hypotheses condi-
tional on the observed data. In contrast to the frequentist hypothesis testing, the Bayesian hypothesis
testing computes the actual probability of a hypothesis H by using the Bayes’s rule,

P (H|y) ∝ P (y|H)P (H)

where y is the observed data, P (y|H) is the marginal likelihood of y given H , and P (H) is
the prior probability of H . Two different hypotheses, H1 and H2, can be compared by simply
comparing P (H1|y) to P (H2|y).

Bayesian information criterion, BIC. The Bayesian information criterion (BIC), also known as
Schwarz criterion, is an information based criterion used for model selection in classical statistics.
It is given by the formula −0.5× log likelihood + k× lnn, where k is the number of parameters
and n is the sample size. BIC favors simpler, in terms of complexity, models and it is more
conservative than AIC.

blocking. In the context of the MH algorithm, blocking refers to the process of separating model
parameters into different subsets or blocks to be sampled independently of each other. MH algorithm
generates proposals and applies the acceptance–rejection rule sequentially for each block. It is
recommended that correlated parameters are kept in one block. Separating less-correlated or
independent model parameters in different blocks may improve the mixing of the MH algorithm.

burn-in period. The burn-in period is the number of iterations it takes for an MCMC sequence to
reach stationarity.

central posterior interval. See equal-tailed credible interval.

conditional conjugacy. See semiconjugate prior.

conjugate prior. A prior distribution is conjugate for a family of likelihood distributions if the prior
and posterior distributions belong to the same family of distributions. For example, the gamma
distribution is a conjugate prior for the Poisson likelihood. Conjugacy may provide an efficient
way of sampling from posterior distributions and is used in Gibbs sampling.

continuous parameters. Continuous parameters are parameters with continuous prior distributions.

credible interval. In Bayesian analysis, the credible interval of a scalar model parameter is an interval
from the domain of the marginal posterior distribution of that parameter. Two types of credible
intervals are typically used in practice: equal-tailed credible intervals and HPD credible intervals.

credible level. The credible level is a probability level between 0% and 100% used for calculating
credible intervals in Bayesian analysis. For example, a 95% credible interval for a scalar parameter
is an interval the parameter belongs to with the probability of 95%.

cusum plot, CUSUM plot. The cusum (CUSUM) plot of an MCMC sample is a plot of cumulative
sums of the differences between sample values and their overall mean against the iteration number.
Cusum plots are useful graphical summaries for detecting early drifts in MCMC samples.

Glossary 249

deviance information criterion, DIC. The deviance information criterion (DIC) is an information
based criterion used for Bayesian model selection. It is an analog of AIC and is given by the
formula D(θ) + 2× pD, where D(θ) is the deviance at the sample mean and pD is the effective
complexity, a quantity equivalent to the number of parameters in the model. Models with smaller
DIC are preferred.

diminishing adaptation. Diminishing adaptation of the adaptive algorithm is the type of adaptation
in which the amount of adaptation decreases with the size of the MCMC chain.

discrete parameters. Discrete parameters are parameters with discrete prior distributions.

effective sample size, ESS. Effective sample size (ESS) is the MCMC sample size T adjusted for the
autocorrelation in the sample. It represents the number of independent observations in an MCMC
sample. ESS is used instead of T in calculating MCSE. Small ESS relative to T indicates high
autocorrelation and consequently poor mixing of the chain.

efficiency. In the context of MCMC, efficiency is a term used for assessing the mixing quality of
an MCMC procedure. Efficient MCMC algorithms are able to explore posterior domains in less
time (using fewer iterations). Efficiency is typically quantified by the sample autocorrelation and
effective sample size. An MCMC procedure that generates samples with low autocorrelation and
consequently high ESS is more efficient.

equal-tailed credible interval. An equal-tailed credible interval is a credible interval defined in
such a way that both tails of the marginal posterior distribution have the same probability. A
{100 × (1 − α)}% equal-tailed credible interval is defined by the α/2th and {(1 − α)/2}th
quantiles of the marginal posterior distribution.

feasible initial value. An initial-value vector is feasible if it corresponds to a state with a positive
posterior probability.

frequentist analysis. Frequentist analysis is a form of statistical analysis where model parameters are
considered to be unknown but fixed constants and the observed data are viewed as a repeatable
random sample. Inference is based on the sampling distribution of the data.

full conditionals. A full conditional is the probability distribution of a random variate conditioned
on all other random variates in a joint probability model. Full conditional distributions are used
in Gibbs sampling.

full Gibbs sampling. See Gibbs sampling, Gibbs sampler.

Gibbs sampling, Gibbs sampler. Gibbs sampling is an MCMC method, according to which each
random variable from a joint probability model is sampled according to its full conditional
distribution.

highest posterior density credible interval, HPD credible interval. The highest posterior density
(HPD) credible interval is a type of a credible interval with the highest marginal posterior density.
An HPD interval has the shortest width among all other credible intervals. For some multimodal
marginal distributions, HPD may not exists. See highest posterior density region, HPD region.

highest posterior density region, HPD region. The highest posterior density (HPD) region for model
parameters has the highest marginal posterior probability among all domain regions. Unlike an
HPD credible interval, an HPD region always exist.

hybrid MH sampling, hybrid MH sampler. A hybrid MH sampler is an MCMC method in which
some blocks of parameters are updated using the MH algorithms and other blocks are updated
using Gibbs sampling.

hyperparameter. In Bayesian analysis, hyperparameter is a parameter of a prior distribution, in
contrast to a model parameter.

250 Glossary

hyperprior. In Bayesian analysis, hyperprior is a prior distribution of hyperparameters. See hyper-
parameter.

improper prior. A prior is said to be improper if it does not integrate to a finite number. Uniform
distributions over unbounded intervals are improper. Improper priors may still yield proper posterior
distributions. When using improper priors, however, one has to make sure that the resulting posterior
distribution is proper for Bayesian inference to be invalid.

independent a posteriori. Parameters are considered independent a posteriori if their marginal
posterior distributions are independent; that is, their joint posterior distribution is the product of
their individual marginal posterior distributions.

independent a priori. Parameters are considered independent a priori if their prior distributions are
independent; that is, their joint prior distribution is the product of their individual marginal prior
distributions.

informative prior. An informative prior is a prior distribution that has substantial influence on the
posterior distribution.

interval hypothesis testing. Interval hypothesis testing performs interval hypothesis tests for model
parameters and functions of model parameters.

interval test. In Bayesian analysis, an interval test applied to a scalar model parameter calculates the
marginal posterior probability for the parameter to belong to the specified interval.

Jeffreys prior. The Jeffreys prior of a vector of model parameters θ is proportional to the square
root of the determinant of its Fisher information matrix I(θ). Jeffreys priors are locally uniform
and, by definition, agree with the likelihood function. Jeffreys priors are considered noninformative
priors that have minimal impact on the posterior distribution.

marginal distribution. In Bayesian context, a distribution of the data after integrating out parameters
from the joint distribution of the parameters and the data.

marginal likelihood. In the context of Bayesian model comparison, a marginalized over model param-
eters θ likelihood of data y for a given model M , P (y|M) = m(y) =

∫
P (y|θ,M)P (θ|M)dθ.

Also see Bayes factor.

marginal posterior distribution. In Bayesian context, a marginal posterior distribution is a distribution
resulting from integrating out all but one parameter from the joint posterior distribution.

Markov chain. Markov chain is a random process that generates sequences of random vectors (or
states) and satisfies the Markov property: the next state depends only on the current state and not
on any of the previous states. MCMC is the most common methodology for simulating Markov
chains.

matrix model parameter. A matrix model parameter is any model parameter that is a matrix. Matrix
elements, however, are viewed as scalar model parameters.

Matrix model parameters are defined and referred to within the bayesmh command as
{param,matrix} or {eqname:param,matrix} with the equation name eqname. For example,
{Sigma, matrix} and {Scale:Omega, matrix} are matrix model parameters. Individual matrix
elements cannot be referred to within the bayesmh command, but they can be referred within postes-
timation commands accepting parameters. For example, to refer to the individual elements of the de-
fined above, say, 2×2 matrices, use {Sigma 1 1}, {Sigma 2 1}, {Sigma 1 2}, {Sigma 2 2}
and {Scale:Omega 1 1}, {Scale:Omega 2 1}, {Scale:Omega 1 2}, {Scale:Omega 2 2},
respectively. See [BAYES] bayesmh.

matrix parameter. See matrix model parameter.

Glossary 251

MCMC, Markov chain Monte Carlo. MCMC is a class of simulation-based methods for generating
samples from probability distributions. Any MCMC algorithm simulates a Markov chain with a
target distribution as its stationary or equilibrium distribution. The precision of MCMC algorithms
increases with the number of iterations. The lack of a stopping rule and convergence rule, however,
makes it difficult to determine for how long to run MCMC. The time needed to converge to the
target distribution within a prespecified error is referred to as mixing time. Better MCMC algorithms
have faster mixing times. Some of the popular MCMC algorithms are random-walk Metropolis,
Metropolis–Hastings, and Gibbs sampling.

MCMC sample. An MCMC sample is obtained from MCMC sampling. An MCMC sample approximates
a target distribution and is used for summarizing this distribution.

MCMC sample size. MCMC sample size is the size of the MCMC sample. It is specified in bayesmh’s
option mcmcsize(); see [BAYES] bayesmh.

MCMC sampling, MCMC sampler. MCMC sampling is an MCMC algorithm that generates samples
from a target probability distribution.

MCMC standard error, MCSE MCSE is the standard error of the posterior mean estimate. It is
defined as the standard deviation divided by the square root of ESS. MCSEs are analogs of standard
errors in frequentist statistics and measure the accuracy of the simulated MCMC sample.

Metropolis–Hastings (MH) sampling, MH sampler. A Metropolis–Hastings (MH) sampler is an
MCMC method for simulating probability distributions. According to this method, at each step
of the Markov chain, a new proposal state is generated from the current state according to a
prespecified proposal distribution. Based on the current and new state, an acceptance probability
is calculated and then used to accept or reject the proposed state. Important characteristics of MH
sampling is the acceptance rate and mixing time. The MH algorithm is very general and can be
applied to an arbitrary target distribution. However, its efficiency is limited, in terms of mixing
time, and decreases as the dimension of the target distribution increases. Gibbs sampling, when
available, can provide much more efficient sampling than MH sampling.

mixing of Markov chain. Mixing refers to the rate at which a Markov chain traverses the parameter
space. It is a property of the Markov chain that is different from convergence. Poor mixing indicates
a slow rate at which the chain explores the stationary distribution and will require more iterations to
provide inference at a given precision. Poor (slow) mixing is typically a result of high correlation
between model parameters or of weakly-defined model specifications.

model hypothesis testing. Model hypothesis testing tests hypotheses about models by computing
model posterior probabilities.

model parameter. A model parameter refers to any (random) parameter in a Bayesian model. Model
parameters can be scalars or matrices. Examples of model parameters as defined in bayesmh are
{mu}, {scale:s}, {Sigma,matrix}, and {Scale:Omega,matrix}. See [BAYES] bayesmh and,
specifically, Declaring model parameters and Referring to model parameters in that entry. Also
see Different ways of specifying model parameters in [BAYES] bayesmh postestimation.

model posterior probability. Model posterior probability is probability of a model M computed
conditional on the observed data y,

P (M |y) = P (M)P (y|M) = P (M)m(y)

where P (M) is the prior probability of a model M and m(y) is the marginal likelihood under
model M .

noninformative prior. A noninformative prior is a prior with negligible influence on the posterior
distribution. See, for example, Jeffreys prior.

252 Glossary

objective prior. See noninformative prior.

one-at-a-time MCMC sampling. A one-at-a-time MCMC sample is an MCMC sampling procedure in
which random variables are sampled individually, one at a time. For example, in Gibbs sampling,
individual variates are sampled one at a time, conditionally on the most recent values of the rest
of the variates.

posterior distribution, posterior. A posterior distribution is a probability distribution of model
parameters conditional on observed data. The posterior distribution is determined by the likelihood
of the parameters and their prior distribution. For a parameter vector θ and data y, the posterior
distribution is given by

P (θ|y) =
P (θ)P (y|θ)

P (y)

where P (θ) is the prior distribution, P (y|θ) is the model likelihood, and P (y) is the marginal
distribution for y. Bayesian inference is based on a posterior distribution.

posterior independence. See independent a posteriori.

posterior interval. See credible interval.

posterior odds. Posterior odds for θ1 compared with θ2 is the ratio of posterior density evaluated at
θ1 and θ2 under a given model,

p(θ1|y)

p(θ2|y)
=
p(θ1)

p(θ2)

p(y|θ1)

p(y|θ2)

In other words, posterior odds are prior odds times the likelihood ratio.

posterior predictive distribution. A posterior predictive distribution is a distribution of unobserved
(future) data conditional on the currently observed data. Posterior predictive distribution is derived by
marginalizing the likelihood function with respect to the posterior distribution of model parameters.

prior distribution, prior. In Bayesian statistics, prior distributions are probability distributions of
model parameters formed based on some a priori knowledge about parameters. Prior distributions
are independent of the observed data.

prior independence. See independent a priori.

prior odds. Prior odds for θ1 compared with θ2 is the ratio of prior density evaluated at θ1 and θ2

under a given model, p(θ1)/p(θ2). Also see posterior odds.

proposal distribution. In the context of the MH algorithm, a proposal distribution is used for defining
the transition steps of the Markov chain. In the standard random-walk Metropolis algorithm, the
proposal distribution is a multivariate normal distribution with zero mean and adaptable covariance
matrix.

pseudoconvergence. A Markov chain may appear to converge when in fact it did not. We refer to
this phenomenon as pseudoconvergence. Pseudoconvergence is typically caused by multimodality
of the stationary distribution, in which case the chain may fail to traverse the weakly connected
regions of the distribution space. A common way to detect pseudoconvergence is to run multiple
chains using different starting values and to verify that all of the chain converge to the same target
distribution.

reference prior. See noninformative prior.

scalar model parameter. A scalar model parameter is any model parameter that is a scalar. For
example, {mean} and {hape:alpha} are scalar parameters, as declared by the bayesmh command.
Elements of matrix model parameters are viewed as scalar model parameters. For example, for

Glossary 253

a 2× 2 matrix parameter {Sigma,matrix}, individual elements {Sigma 1 1}, {Sigma 2 1},
{Sigma 1 2}, and {Sigma 2 2} are scalar parameters. If a matrix parameter contains a label, the
label should be included in the specification of individual elements as well. See [BAYES] bayesmh.

scalar parameter. See scalar model parameter.

semiconjugate prior. A prior distribution is semiconjugate for a family of likelihood distributions if
the prior and (full) conditional posterior distributions belong to the same family of distributions.
For semiconjugacy to hold, parameters must typically be independent a priori; that is, their joint
prior distribution must be the product of the individual marginal prior distributions. For example,
the normal prior distribution for a mean parameter of a normal data distribution with an unknown
variance (which is assumed to be independent of the mean a priori) is a semiconjugate prior.
Semiconjugacy may provide an efficient way of sampling from posterior distributions and is used
in Gibbs sampling.

stationary distribution. Stationary distribution of a stochastic process is a joint distribution that does
not change over time. In the context of MCMC, stationary distribution is the target probability
distribution to which the Markov chain converges. When MCMC is used for simulating a Bayesian
model, the stationary distribution is the target joint posterior distribution of model parameters.

subjective prior. See informative prior.

subsampling the chain. See thinning.

thinning. Thinning is a way of reducing autocorrelation in the MCMC sample by subsampling the MCMC
chain every prespecified number of iterations determined by the thinning interval. For example,
the thinning interval of 1 corresponds to using the entire MCMC sample; the thinning interval of 2
corresponds to using every other sample value; and the thinning interval of 3 corresponds to using
values from iterations 1, 4, 7, 10, and so on. Thinning should be applied with caution when used
to reduce autocorrelation because it may not always be the most appropriate way of improving
the precision of estimates.

vague prior. See noninformative prior.

valid initial state. See feasible initial value.

vanishing adaptation. See diminishing adaptation.

Zellner’s g-prior. Zellner’s g-prior is a form of a weakly informative prior for the regression
coefficients in a linear model. It accounts for the correlation between the predictor variables and
controls the impact of the prior of the regression coefficients on the posterior with parameter g.
For example, g = 1 means that prior weight is 50% and g →∞ means diffuse prior.

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.

255

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac OS X

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support
	3.9 References

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata
	5.3 Size limits of Stata/MP, SE, IC, and Small Stata
	5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 Setting matsize
	6.5 The memory command

	7 --more-- conditions
	7.1 Description
	7.2 set more off
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to user-written additions?
	17.10 Reference

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specifying the estimation subsample
	20.7 Specifying the width of confidence intervals
	20.8 Formatting the coefficient table
	20.9 Obtaining the variance--covariance matrix
	20.10 Obtaining predicted values
	20.11 Accessing estimated coefficients
	20.12 Performing hypothesis tests on the coefficients
	20.13 Obtaining linear combinations of coefficients
	20.14 Obtaining nonlinear combinations of coefficients
	20.15 Obtaining marginal means, adjusted predictions, and predictive margins
	20.16 Obtaining conditional and average marginal effects
	20.17 Obtaining pairwise comparisons
	20.18 Obtaining contrasts, tests of interactions, and main effects
	20.19 Graphing margins, marginal effects, and contrasts
	20.20 Dynamic forecasts and simulations
	20.21 Obtaining robust variance estimates
	20.22 Obtaining scores
	20.23 Weighted estimation
	20.24 A list of postestimation commands
	20.25 References

	Advice
	21 Entering and importing data
	21.1 Overview
	21.2 Determining which method to use
	21.3 If you run out of memory
	21.4 Transfer programs
	21.5 ODBC sources
	21.6 Reference

	22 Combining datasets
	22.1 References

	23 Working with strings
	23.1 Description
	23.2 Categorical string variables
	23.3 Mistaken string variables
	23.4 Complex strings
	23.5 Reference

	24 Working with dates and times
	24.1 Overview
	24.2 Inputting dates and times
	24.3 Displaying dates and times
	24.4 Typing dates and times (datetime literals)
	24.5 Extracting components of dates and times
	24.6 Converting between date and time values
	24.7 Business dates and calendars
	24.8 References

	25 Working with categorical data and factor variables
	25.1 Continuous, categorical, and indicator variables
	25.2 Estimation with factor variables

	26 Overview of Stata estimation commands
	26.1 Introduction
	26.2 Means, proportions, and related statistics
	26.3 Linear regression with simple error structures
	26.4 Structural equation modeling (SEM)
	26.5 ANOVA, ANCOVA, MANOVA, and MANCOVA
	26.6 Generalized linear models
	26.7 Binary-outcome qualitative dependent-variable models
	26.8 ROC analysis
	26.9 Conditional logistic regression
	26.10 Fractional-outcome dependent-variable models
	26.11 Multiple-outcome qualitative dependent-variable models
	26.12 Item response theory
	26.13 Count dependent-variable models
	26.14 Exact estimators
	26.15 Linear regression with heteroskedastic errors
	26.16 Stochastic frontier models
	26.17 Regression with systems of equations
	26.18 Models with endogenous sample selection
	26.19 Models with time-series data
	26.20 Panel-data models
	26.21 Multilevel mixed-effects models
	26.22 Survival-time (failure-time) models
	26.23 Treatment-effect models
	26.24 Generalized method of moments (GMM)
	26.25 Estimation with correlated errors
	26.26 Survey data
	26.27 Multiple imputation
	26.28 Multivariate and cluster analysis
	26.29 Pharmacokinetic data
	26.30 Specification search tools
	26.31 Power and sample-size analysis
	26.32 Bayesian analysis
	26.33 Obtaining new estimation commands
	26.34 References

	27 Commands everyone should know
	27.1 41 commands
	27.2 The by construct

	28 Using the Internet to keep up to date
	28.1 Overview
	28.2 Sharing datasets (and other files)
	28.3 Official updates
	28.4 Downloading and managing additions by users
	28.5 Making your own download site

	[BAYES] Bayesian Analysis
	Contents
	intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary

	References
	Also see

	bayes
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of MH sampling

	Logistic regression model: a case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model{---}a random-coefficient model

	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Also see

	bayesmh postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after bayesmh

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	Reference
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	intro
	Description
	Also see

	data management
	Description
	Reference
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	datetime
	Description
	Syntax
	Types of dates and their human readable forms (HRFs)
	Stata internal form (SIF)
	HRF-to-SIF conversion functions
	Displaying SIFs in HRF
	Building SIFs from components
	SIF-to-SIF conversion
	Extracting time-of-day components from SIFs
	Extracting date components from SIFs
	Conveniently typing SIF values
	Obtaining and working with durations
	Using dates and times from other software

	Remarks and examples
	References
	Also see

	datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	datetime display formats
	Description
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	datetime translation
	Description
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the HRF-to-SIF functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Translating run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two SIF datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other translation functions

	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Acknowledgments
	References
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	References
	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode

	Reference
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats

	References
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type

	Methods and formulas
	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup

	Remarks and examples
	Using icd10
	Managing datasets with ICD-10 codes
	Creating new variables
	Working with U codes

	Stored results
	Acknowledgments
	References
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	odbc
	infile (free format){---}infile without a dictionary
	infix (fixed format)
	infile (fixed format){---}infile with a dictionary
	import sasxport
	import haver (Windows only)
	xmluse

	Examples
	Video example

	Reference
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	import delimited
	export delimited
	Video example

	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sasxport
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport
	Option for import sasxport, describe
	Options for export sasxport
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	References
	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Reference
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Reference
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples

	References
	Also see

	missing values
	Description
	Remarks and examples
	Reference
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings

	References
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xmlsave
	Description
	Menu
	Syntax
	Options for xmlsave
	Options for xmluse
	Remarks and examples
	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Option for zipfile
	Option for unzipfile
	Remarks and examples

	[FN] Functions
	Contents
	intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	lnfactorial()
	lngamma()
	log()
	log10()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	Matrix functions returning a scalar
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	KISS32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distributions
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distributions
	dunnettprob()
	invdunnettprob()
	Exponential distributions
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma and inverse gamma distributions
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distributions
	hypergeometricp()
	hypergeometric()
	Logistic distributions
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distributions
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), log of the normal, binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distributions
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distributions
	tukeyprob()
	invtukeyprob()
	Weibull distributions
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distributions
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart and inverse Wishart distributions
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexm()
	regexr()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	Reference
	Also see

	[G] Graphics
	Contents
	Introduction
	intro
	Description
	Also see

	graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	graph editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits

	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Reference
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	Reference
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboption
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	Reference
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Colors are independent of the background color
	White backgrounds and black backgrounds
	RGB values
	CMYK values
	HSV values
	Adjusting intensity

	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Remarks and examples
	Syntax
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	relativesize
	Description
	Syntax
	Remarks and examples
	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	Also see

	scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	scheme sj
	Description
	Syntax
	Remarks and examples
	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	intro
	Contents
	Description
	Remarks and examples
	What's new

	Also see

	Introduction and advice
	intro
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	first
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	how
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	limits
	Description
	Summary
	Remarks and examples
	Also see

	naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	returnedargs
	Description
	Syntax
	Remarks and examples
	Also see

	source
	Description
	Syntax
	Remarks and examples
	Also see

	tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Also see

	comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	Reference
	Also see

	subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Option
	Syntax
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Index and guide to functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	io
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	manipulation
	Contents
	Description
	Remarks and examples
	Also see

	mathematical
	Contents
	Description
	Remarks and examples
	Also see

	matrix
	Contents
	Description
	Remarks and examples
	Also see

	programming
	Contents
	Also see

	scalar
	Contents
	Description
	Remarks and examples
	Also see

	solvers
	Contents
	Description
	Remarks and examples
	Also see

	standard
	Contents
	Description
	Remarks and examples
	Also see

	stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	statistical
	Contents
	Description
	Remarks and examples
	Also see

	string
	Contents
	Description
	Remarks and examples
	Also see

	utility
	Contents
	Description
	Remarks and examples
	Also see

	Mata functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table

	Query routines
	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes
	Stata's matsize is irrelevant

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Setting the Excel worksheet
	Step 4: Reading and writing data from and to an Excel worksheet
	Step 5: Formatting cells in an Excel worksheet
	Step 6: Formatting text in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Specifying the Excel worksheet
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples
	Format colors

	Utility functions
	Handling errors
	Error codes

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models

	Acknowledgments
	References
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	References
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models

	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	meqrlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	meqrlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	References
	Also see

	meqrpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	meqrpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc
	Options for estat recovariance
	Options for estat wcorrelation
	Options for estat df

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations
	Within-cluster covariance matrix
	Small-sample inference

	References
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order
	What's new

	Acknowledgments
	Also see

	estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	intro
	Description
	Also see

	multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents
	intro
	Description
	References
	Also see

	automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Efficiency settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Unicode settings
	Other settings
	Other

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	file formats .dta
	Description
	Remarks and examples
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	java
	Description
	Usage
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Option
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro extended functions
	Macro extended function for extracting program properties
	Macro extended functions for extracting data attributes
	Macro extended function for naming variables
	Macro extended functions for filenames and file paths
	Macro extended function for accessing operating-system parameters
	Macro extended functions for names of stored results
	Macro extended function for formatting results
	Macro extended function for manipulating lists
	Macro extended functions related to matrices
	Macro extended function related to time-series operators
	Macro extended function for copying a macro
	Macro extended functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro extended functions

	References
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	putexcel
	Description
	Menu
	Syntax
	cellexplist types

	Options
	Remarks and examples
	Video example

	References
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Printing
	Bringing forward
	Closing
	Renaming

	Commands to manage Viewer windows
	Printing
	Bringing forward
	Closing

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	[PSS] Power and Sample Size
	Contents
	intro
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example with PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Contingency tables
	Survival analysis
	Tables of results
	Power curves

	Stored results
	Methods and formulas
	References
	Also see

	power, graph
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	Computing power

	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using a log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary

	[R] Base Reference
	Contents
	Introduction
	intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	adoupdate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adoupdate
	Possible problem the first time you run adoupdate and the solution
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	asclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	asclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Methods and formulas
	Also see

	asmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Variance structures

	Stored results
	Methods and formulas
	Simulated likelihood

	References
	Also see

	asmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics
	Obtaining marginal effects

	Stored results
	Methods and formulas
	Marginal effects

	Also see

	asroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	asroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	BIC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary confidence intervals
	Binomial confidence intervals
	Poisson confidence intervals
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	Ordinary
	Binomial
	Poisson

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log-log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	copyright apache
	Description
	Also see

	copyright boost
	Description
	Also see

	copyright icd10
	Description
	Also see

	copyright icu
	Description
	Also see

	copyright lapack
	Description
	Also see

	copyright libharu
	Description
	Also see

	copyright libpng
	Description
	Also see

	copyright mersennetwister
	Description
	Also see

	copyright miglayout
	Description
	Also see

	copyright scintilla
	Description
	Also see

	copyright ttf2pt1
	Description
	Also see

	copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimation options
	Description
	Syntax
	Options
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options for fp
	Options for fp generate
	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	References
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins

	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Reference
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases
	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	inequality
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	limits
	Description
	Remarks and examples
	Maximum size limits
	Matrix size
	Determining which flavor of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	matsize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	maximize
	Description
	Syntax
	Maximization options
	Option for set maxiter
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	Remarks and examples
	Reference
	Also see

	meta
	Remarks and examples
	References

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	mkspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Linear splines
	Restricted cubic splines

	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	Reference
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	References
	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	References
	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	news
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	pk
	Description
	Remarks and examples
	References

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and significance levels
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	qc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R2

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Instrumental variables and two-stage least-squares regression
	Video example

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	Reference

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of rologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state
	Random-number generators in Stata

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables
	Video example

	Methods and formulas
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	References
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	intro 1
	Description
	Remarks and examples
	Also see

	intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes

	Reference
	Also see

	intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables
	Inconsistency between gsem and other estimation commands

	Also see

	intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models

	References
	Also see

	intro 6
	Description
	Remarks and examples
	The generic SEM model
	Fitting the model for different groups of the data
	Which parameters vary by default, and which do not
	Specifying which parameters are allowed to vary in broad, sweeping terms
	Adding constraints for path coefficients across groups
	Adding constraints for means, variances, or covariances across groups
	Adding constraints for some groups but not others
	Adding paths for some groups but not others
	Relaxing constraints

	Reference
	Also see

	intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	intro 8
	Description
	Options
	Remarks and examples
	Also see

	intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	intro 10
	Description
	Remarks and examples
	Also see

	intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	example 4
	Description
	Remarks and examples
	Reference
	Also see

	example 5
	Description
	Remarks and examples
	Reference
	Also see

	example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	example 11
	Description
	Remarks and examples
	Also see

	example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	example 13
	Description
	Remarks and examples
	Also see

	example 14
	Description
	Remarks and examples
	Also see

	example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 19
	Description
	Remarks and examples
	Reference
	Also see

	example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	example 21
	Description
	Remarks and examples
	Also see

	example 22
	Description
	Remarks and examples
	Also see

	example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying family and link

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability

	Link functions
	The logit link
	The probit link
	The complementary log-log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	The likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation

	Survey data
	Postestimation
	Empirical Bayes
	Other predictions

	References
	Also see

	methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Reference
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	intro
	Description
	Also see

	survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	discrete
	Description
	Acknowledgment
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Reference
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options for strate
	Options for stmh and stmc
	Remarks and examples
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Stored results
	Acknowledgments
	References
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Adjusted estimates
	Counting the number lost due to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	Glossary

	[SVY] Survey Data
	Contents
	intro
	Description
	Also see

	survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	poststratification
	Description
	Remarks and examples
	Overview
	Video example

	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TE] Treatment Effects
	Contents
	intro
	Description
	Also see

	treatment effects
	Description
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Reference
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and trade-offs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Inverse-probability-weighted regression adjustment
	Augmented inverse-probability weighting
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	Reference
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects overlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[TS] Time Series
	Contents
	intro
	Description
	Also see

	time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series
	Multivariate time series
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	Remarks and examples
	Methods and formulas
	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Glossary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

